首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this study, solid lipid nanoparticles (SLNs) were successfully prepared by an ultrasonic and high-pressure homogenization method to improve the oral bioavailability of the poorly water-soluble drug cryptotanshinone (CTS). The particle size and distribution, drug loading capacity, drug entrapment efficiency, zeta potential, and long-term physical stability of the SLNs were characterized in detail. A pharmacokinetic study was conducted in rats after oral administration of CTS in different SLNs, and it was found that the relative bioavailability of CTS in the SLNs was significantly increased compared with that of a CTS-suspension. The incorporation of CTS in SLNs also markedly changes the metabolism behavior of CTS to tanshinone IIA. These results indicate that CTS absorption is enhanced significantly by employing SLN formulations, and SLNs represent a powerful approach for improving the oral absorption of poorly soluble drugs.  相似文献   

3.
The development of drug dispersions using solid lipids is a novel formulation strategy that can help address the challenges of poor drug solubility and systemic exposure after oral administration. The highly lipophilic and poorly water-soluble drug torcetrapib could be effectively formulated into solid lipid microparticles (SLMs) using an anti-solvent precipitation strategy. Acoustic milling was subsequently used to obtain solid lipid nanoparticles (SLNs). Torcetrapib was successfully incorporated into the lipid matrix in an amorphous state. Spherical SLMs with mean particle size of approximately 15–18 μm were produced with high drug encapsulation efficiency (>96%) while SLNs were produced with a mean particle size of 155 nm and excellent colloidal stability. The in vitro drug release and the in vivo absorption of the solid lipid micro- and nanoparticles after oral dosing in rats were evaluated against conventional crystalline drug powders as well as a spray dried amorphous polymer dispersion formulation. Interestingly, the in vitro drug release rate from the lipid particles could be tuned for immediate or extended release by controlling either the particle size or the precipitation temperature used when forming the drug-lipid particles. This change in the rate of drug release was manifested in vivo with changes in Tmax as well. In addition, in vivo pharmacokinetic studies revealed a significant increase (∼6 to 11-fold) in oral bioavailability in rats dosed with the SLMs and SLNs compared to conventional drug powders. Importantly, this formulation approach can be performed rapidly on a small scale, making it ideal as a formulation technology for use early in the drug discovery timeframe.Electronic supplementary materialThe online version of this article (doi:10.1208/s12249-015-0299-8) contains supplementary material, which is available to authorized users.KEY WORDS: anti-solvent precipitation, controlled release, formulation, nanoparticles, solid lipid  相似文献   

4.
The objective of this work was to develop a self-microemulsifying drug delivery system (SMEDDS) for improving oral absorption of poorly water-soluble drug, silymarin. The pseudo-ternary phase diagrams were constructed using ethyl linoleate, Cremophor EL, ethyl alcohol, and normal saline to identify the efficient self-microemulsification region. The particle size and its distribution of the resultant microemulsions were determined using dynamic light scattering. The optimal formulation with the best self-microemulsifying and solubilization ability consisted of 10% (w/w) of ethyl linoleate, 30% of Cremophor EL, and 60% of ethyl alcohol. The release of silymarin from SMEDDS was significantly faster than that from the commercial silymarin preparation hard capsule (Legalon®). The bioavailability results indicated that the oral absorption of silymarin SMEDDS was enhanced about 2.2-fold compared with the hard capsule in fasted dogs. It could be concluded that SMEDDS would be a promising drug delivery system for poorly water-soluble drugs by the oral route.  相似文献   

5.
Zidovudine (AZT) is one of the most referred antiretroviral drug. In spite of its higher bioavailability (50–75%) the most important reason of its cessation are bone marrow suppression, anemia, neutropenia and various organs related toxicities. This study aims at the improvement of oral delivery of AZT through its encapsulation in lactoferrin nanoparticles (AZT-lactonano). The nanoparticles (NPs) are of 50–60 nm in size and exhibit 67% encapsulation of the AZT. They are stable in simulated gastric and intestinal fluids. Anti-HIV-1 activity of AZT remains unaltered in nanoformulation in acute infection. The bioavailability and tissue distribution of AZT is higher in blood followed by liver and kidney. AZT-lactonano causes the improvement of pharmacokinetic profile as compared to soluble AZT; a more than 4 fold increase in AUC and AUMC in male and female rats. The serum Cmax for AZT-lactonano was increased by 30%. Similarly there was nearly 2-fold increase in Tmax and t1/2. Our in vitro study confirms that, the endosomal pH is ideal for drug release from NPs and shows constant release from up to 96h. Bone marrow micronucleus assay show that nanoformulation exhibits approximately 2fold lower toxicity than soluble form. Histopathological and biochemical analysis further confirms that less or no significant organ toxicities when nanoparticles were used. AZT-lactonano has shown its higher efficacy, low organs related toxicities, improved pharmacokinetics parameter while keeping the antiviral activity intact. Thus, the nanoformulation are safe for the target specific drug delivery.  相似文献   

6.
Low water solubility and low bioavailability are frequent problems in drug development, particularly in the area of central nervous system (CNS) drugs. This short review describes selected prodrug approaches which have been developed to enhance the bioavailability of drugs, especially that of poorly soluble drugs. Some of the most successful drugs on the market are prodrugs. With a better understanding of active‐transport processes at cell membranes in the gut as well as at the blood–brain barrier, the importance of prodrug approaches will further increase in the future. Prodrug approaches will already be considered in the early phase of drug discovery.  相似文献   

7.
Intravenous injection of some liposomal drugs, diagnostic agents, micelles and other lipid-based nanoparticles can cause acute hypersensitivity reactions (HSRs) in a high percentage (up to 45%) of patients, with hemodynamic, respiratory and cutaneous manifestations. The phenomenon can be explained with activation of the complement (C) system on the surface of lipid particles, leading to anaphylatoxin (C5a and C3a) liberation and subsequent release reactions of mast cells, basophils and possibly other inflammatory cells in blood. These reactions can be reproduced and studied in pigs, dogs and rats, animal models which differ from each other in sensitivity and spectrum of symptoms. In the most sensitive pig model, a few miligrams of liposome (phospholipid) can cause anaphylactoid shock, characterized by pulmonary hypertension, systemic hypotension, decreased cardiac output and major cardiac arrhythmias. Pigs also display cutaneous symptoms, such as flushing and rash. The sensitivity of dogs to hemodynamic changes is close to that of pigs, but unlike pigs, dogs also react to micellar lipids (such as Cremophor EL) and their response includes pronounced blood cell and vegetative neural changes (e.g., leukopenia followed by leukocytosis, thrombocytopenia, fluid excretions). Rats are relatively insensitive inasmuch as hypotension, their most prominent response to liposomes, is induced only by one or two orders of magnitude higher phospholipid doses (based on body weight) compared to the reactogenic dose in pigs and dogs. It is suggested that the porcine and dog models are applicable for measuring and predicting the (pseudo)allergic activity of particulate “nanodrugs”.  相似文献   

8.
Mohsin K 《AAPS PharmSciTech》2012,13(2):637-646
Lipid-based drug carriers are likely to have influence on bioavailability through enhanced solubilization of the drug in the gastrointestinal tract. The study was designed to investigate the lipid formulation digestibility in the simulated gastro intestinal media. Fenofibrate was formulated in representative Type II, IIIA, IIIB and IV self-emulsifying/microemulsifying lipid delivery systems (SEDDS and SMEDDS designed for oral administration) using various medium-chain glyceride components, non-ionic surfactants and cosolvents as excipients. Soybean oil was used only as an example of long-chain triglycerides to compare the effects of formulation with their counterparts. The formulations were subjected to in vitro digestion specifically to predict the fate of the drug in the gastro intestinal tract after exposure of the formulation to pancreatic enzymes and bile. In vitro digestion experiments were carried out using a pH-stat maintained at pH 7.5 for 30 min using intestinal fluids simulating the fed and fasted states. The digestion rate was faster and almost completed in Type II and IIIA systems. Most of the surfactants used in the studies are digestible. However, the high concentration of surfactant and/or cosolvent used in Type IIIB or IV systems lowered the rate of digestion. The digestion of medium-chain triglycerides was faster than long-chain triglycerides, but kept comparatively less drug in the post digestion products. Medium-chain mixed glycerides are good solvents for fenofibrate as rapidly digested but to improve fenofibrate concentration in post digestion products the use of long-chain mixed glycerides are suggested for further investigations.KEY WORDS: fenofibrate, in vitro lipolysis, lipid formulation classification system, self-emulsifying/microemulsifying drug delivery systems (SEDDS, SMEDDS)  相似文献   

9.
A novel supersaturated self-emulsifying drug delivery system (Super-SEDDS) loaded with scutellarin-phospholipid complex (SPC) was developed. The system aimed to address the limitations presented by conventional SEDDS as delivery carriers for drugs with poor water-solubility, low liposolubility and high dose. As an intermediate, SPC was first prepared based on the response surface design. The presence of amorphous scutellarin was demonstrated through differential scanning calorimetry (DSC) and X-ray diffraction (XRD), while enhanced liposolubility was confirmed through comparison with scutellarin powder via an octanol/water distribution test. On the basis of the solubility study and ternary phase diagram, Super-SEDDS containing SPC of up to 200% equilibrium solubility (Seq) was designed, which composed of ethyl oleate, Cremophor RH40 and Transcutol HP with a ratio of 60∶25∶15 (w/w%). The subsequent in vitro lipolysis study and ex vivo intestinal absorption test indicated that Super-SEDDS enhanced the cumulative dissolution from 70% to 100% and improved the intestinal absorption from 0.04 to 0.12 µg/cm2 compared with scutellarin powder. Furthermore, an in vivo study demonstrated that Super-SEDDS achieved the AUC0-t of scutellarin up to approximate 1.7-fold as scutellarin powder. It was also proved superior to SPC and the conventional SEDDS. Super-SEDDS showed great potential for expanding the usage of SEDDS and could act as an alternative to conventional SEDDS.  相似文献   

10.
The aim of the present report was to develop nonionic surfactant vesicles (niosomes) to improve poor and variable oral bioavailability of griseofulvin. Niosomes were prepared by using different nonionic surfactants span 20, span 40, and span 60. The lipid mixture consisted of surfactant, cholesterol, and dicetyl phosphate in the molar ratio of 125:25:1.5, 100:50:1.5, and 75:75:1.5, respectively. The niosomal formulations were prepared by thin film method and ether injection method. The influence of different formulation variables such as surfactant type, surfactant concentration, and cholesterol concentration was optimized for size distribution and entrapment efficiency for both methods. Result indicated that the niosomes prepared by thin film method with span 60 provided higher entrapment efficiency. The niosomal formulation exhibited significantly retarded in vitro release as compared with free drug. The in vivo study revealed that the niosomal dispersion significantly improved the oral bioavailability of griseofulvin in albino rats after a single oral dose. The maximum concentration (C max) achieved in case of niosomal formulation was approximately double (2.98 μg/ml) as compared to free drug (1.54 μg/ml). Plasma drug profile also suggested that the developed niosomal system also has the potential of maintaining therapeutic level of griseofulvin for a longer period of time as compared to free griseofulvin. The niosomal formulation showed significant increase in area under the curve0-24 (AUC; 41.56 μg/ml h) as compared to free griseofulvin (22.36 μg/ml h) reflecting sustained release characteristics. In conclusion, the niosomal formulation could be one of the promising delivery system for griseofulvin with improved oral bioavailability and prolonged drug release profiles.  相似文献   

11.
12.
一种榄香烯口服微乳相对生物利用度的初步研究   总被引:1,自引:0,他引:1       下载免费PDF全文
目的:研究口服榄香烯微乳在大鼠体内的相对生物利用度。方法:大鼠口服给予榄香烯微乳、榄香烯乳剂后,在不同时间点采血,采用超快速液相色谱法检测血浆榄香烯的浓度,计算其药动学参数与相对生物利用度。结果:榄香烯微乳粒径为(67±13)nm;Zeta电位为(3.2±0.4)mv;pH值为5.16;粘度为6 mpa.s;表面张力为31.7 mN.m-1。榄香烯微乳中β-榄香烯含量为(8.273±0.018)mg.mL-1。榄香烯微乳相对生物利用度为163.1%。结论:大鼠口服榄香烯微乳与榄香烯口服乳相比其生物利用度有较大提高。  相似文献   

13.
Glyceryl monooleate (GMO)/poloxamer 407 cubic nanoparticles were investigated as potential oral drug delivery systems to enhance the bioavailability of the water-insoluble model drug simvastatin. The simvastatin-loaded cubic nanoparticles were prepared through fragmentation of the GMO/poloxamer 407 bulk cubic-phase gel using high-pressure homogenization. The internal structure of the cubic nanoparticles was identified by cryo-transmission electron microscopy. The mean diameter of the cubic nanoparticles varied within the range of 100–150 nm, and both GMO/poloxamer 407 ratio and theoretical drug loading had no significant effect on particle size and distribution. Almost complete entrapment with efficiency over 98% was achieved due to the high affinity of simvastatin to the hydrophobic regions of the cubic phase. Release of simvastatin from the cubic nanoparticles was limited both in 0.1 M hydrochloride solution containing 0.2% sodium lauryl sulfate and fasted-state simulated intestinal fluid with a total release of <3.0% at 10 h. Pharmacokinetic profiles in beagle dogs showed sustained plasma levels of simvastatin for cubic nanoparticles over 12 h. The relative oral bioavailability of simvastatin cubic nanoparticles calculated on the basis of area under the curve was 241% compared to simvastatin crystal powder. The enhancement of simvastatin bioavailability was possibly attributable to facilitated absorption by lipids in the formulation rather than improved release.  相似文献   

14.
Tan Q  Liu S  Chen X  Wu M  Wang H  Yin H  He D  Xiong H  Zhang J 《AAPS PharmSciTech》2012,13(2):534-547
A novel evodiamine (EVO)-phospholipid complex (EPLC) was designed to improve the bioavailability of EVO. A central composite design approach was employed for process optimization. EPLC were characterized by differential scanning calorimetry, ultraviolet spectroscopy, Fourier transformed infrared spectroscopy, 1H-NMR spectroscopy, matrix-assisted laser desorption/ionization time-of-flight spectroscopy, apparent solubility, and dissolution rate. After oral administration of EPLC, the concentrations of EVO at different time points were determined by high-performance liquid chromatography. The optimal formulation for EPLC was obtained where the values of X1, X2, and X3 were 2, 0.5, and 2.5 mg/mL, respectively. The average particle size and zeta potential of EPLC with the optimized formulation were 246.1 nm and −26.94 mV, respectively. The EVO and phospholipids in the EPLC were associated with non-covalent interactions. The solubility of EPLC in water and the dissolution rate of EPLC in phosphate-buffered solution (pH 6.8) were substantially enhanced. The plasma EVO concentration-time curves of EPLC and free EVO were both in accordance with the two-compartment model. The peak concentration and AUC0−∞ of EPLC were increased, and the relative bioavailability was significantly increased to 218.82 % compared with that of EVO.KEY WORDS: bioavailability, evodiamine, phospholipid complex, process optimization  相似文献   

15.
The aim of this study is to investigate the potential of nanostructured lipid carriers (NLCs) in improving the oral bioavailability of a lipid lowering agent, fenofibrate (FEN). FEN-loaded NLCs (FEN-NLCs) were prepared by hot homogenization followed by an ultrasonication method using Compritol 888 ATO as a solid lipid, Labrafil M 1944CS as a liquid lipid, and soya lecithin and Tween 80 as emulsifiers. NLCs were characterized in terms of particle size and zeta pote\ntial, surface morphology, encapsulation efficiency, and physical state properties. Bioavailability studies were carried out in rats by oral administration of FEN-NLC. NLCs exhibited a spherical shape with a small particle size (84.9 ± 4.9 nm). The drug entrapment efficiency was 99% with a loading capacity of 9.93 ± 0.01% (w/w). Biphasic drug release manner with a burst release initially, followed by prolonged release was depicted for in vitro drug release studies. After oral administration of the FEN-NLC, drug concentration in plasma and AUCt-∞ was fourfold higher, respectively, compared to the free FEN suspension. According to these results, FEN-NLC could be a potential delivery system for improvement of loading capacity and control of drug release, thus prolonging drug action time in the body and enhancing the bioavailability.KEY WORDS: bioavailability, fenofibrate, nanoparticles, nanostructured lipid carriers  相似文献   

16.
We and others have been aiming at modifications to maintain or to enhance solubility while enabling permeability for cyclic hexapeptides. Especially, the 2  相似文献   

17.
Gong Y  Wu Y  Zheng C  Fan L  Xiong F  Zhu J 《AAPS PharmSciTech》2012,13(3):961-966
This study set out to develop a novel and stable nanoemulsion formulation of natural vitamin E with increased oral bioavailability. The natural vitamin E nanoemulsion was prepared by a modified emulsification technique. The physicochemical characteristics of natural vitamin E nanoemulsion were characterized and its pharmacokinetics study was performed as well. The experimental results showed droplet diameters ranging from 20 to 400 nm (average, 87.7 nm) with a negative electrostatic potential (−23.5 ± 1.5 mv). The pharmacokinetics study of this nanoemulsion and corresponding soft capsule was carried out using noncompartment model method. Compared with the marketed soft capsule, the Cmax of the natural vitamin E nanoemulsion was higher, while the Tmax was shorter. Thus, plasma concentration–time profiles in rats dosed with nanoemulsion showed a 1.6-fold enhancement in the area under the curve of natural vitamin E compared with the marketed soft capsule. The antioxidative effects of the natural vitamin E nanoemulsion and the marketed soft capsule were also evaluated by the levels of superoxide dismutase (SOD) activity and malondialdehyde (MDA) concentration in serum and liver tissue. According to the SOD activity and the MDA concentration determined, the nanoemulsion was superior to the marketed soft as an antioxidative agent. The overall results demonstrated that the nanoemulsion drug delivery system could be a promising strategy for the delivery of natural vitamin E, which showed great potential for clinical application.Key word: Antioxidation, Nanoemulsion, Natural vitamin E, Oral bioavailability  相似文献   

18.
In this study, the oral bioavailabilities of numerous 2,3,7,8-PCDD/F congeners were evaluated in soil samples from an industrial site. The purpose of this study is several-fold: (1) to compare the soil bioavailability results of the different PCDD/F congeners; (2) to evaluate the consistency of the bioavailability results with those obtained in an in vitro bioaccessibility study with simulated GI tract fluids; and (3) to develop quantitative bioavailability measurements that are appropriate for use in a health risk assessment for this site. Soil samples containing PCDD/F toxic equivalent (TEQ) concentrations ranging from 0.53–45.2 ng/g were administered to female Sprague Dawley rats via oral gavage. Reference formulations of PCDD/Fs were administered intravenously or by oral gavage. The overall relative bioavailability of PCDD/Fs in the soil samples on a TEQ basis ranged from 17 to 51%, with a mean of 38%. The results of the in vitro bioaccessibility study were consistent with the bioavailability results (mean extracted TEQ of 22%). Because of the clear relationship between increasing chlorination and decreasing bioavailability and bioaccessibility observed in this study, we suggest that simply extrapolating results from one congener to another may be associated with a high degree of uncertainty.  相似文献   

19.
Diosgenin (DSG), a well-known steroid sapogenin derived from Dioscorea nipponica Makino and Dioscorea zingiberensis Wright, has a variety of bioactivities. However, it shows low oral bioavailability due to poor aqueous solubility and strong hydrophobicity. The present study aimed to develop DSG nanocrystals to increase the dissolution and then improve the oral bioavailability and biopharmaceutical properties of DSG. DSG nanocrystals were prepared by the media milling method using a combination of pluronic F127 and sodium dodecyl sulfate as surface stabilizers. The physicochemical properties of the optimal DSG nanocrystals were characterized using their particle size distribution, morphology, differential scanning calorimetry, powder X-ray diffraction, Fourier transform infrared spectroscopy data, and solubility and dissolution test results. Pharmacokinetic studies of the DSG coarse suspension and its nanocrystals were performed in rats. The particle size and polydispersity index of DSG nanocrystals were 229.0?±?3.7 nm and 0.163?±?0.064, respectively. DSG retained its original crystalline state during the manufacturing process, and its chemical structure was not compromised by the nanonizing process. The dissolution rate of the freeze-dried DSG nanocrystals was significantly improved in comparison with the original DSG. The pharmacokinetic studies showed that the AUC0–72h and C max of DSG nanocrystals increased markedly (p?<?0.01) in comparison with the DSG coarse suspension by about 2.55- and 2.01-fold, respectively. The use of optimized nanocrystals is a good and efficient strategy for oral administration of DSG due to the increased dissolution rate and oral bioavailability of DSG nanocrystals.  相似文献   

20.
It is well known that surface plasmon resonance (SPR) can selectively enhance the photoluminescence (PL) from nearby chromophores with a single emission peak at an appropriate distance. Here, we combine white light-emitting CdS quantum dot nanocrystals containing band-edge and surface-state emissions simultaneously with Ag nanoparticles and study the interaction between them. It is found that the surface-state emission is always enhanced while the band-edge emission quenched regardless of the SPR wavelength of Ag nanoparticles. This phenomenon reveals that the SPR of Ag nanoparticles is not enhancing the emission from a wavelength-matched state. We propose that the surface plasmon of Ag nanoparticles is first excited by the energy of the band-edge emission and then the excited energetic electrons transfer to the surface-state of CdS. Through this energy transfer process, the surface-state emission is enhanced and band-edge emission quenched. This investigation can not only deliver understanding of the complicated interaction between metallic nanoparticles and nearby multi-emission-peak contained chromophores, but it also has potential applications in tuning the color temperature of white light-emitting materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号