首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P S Deng  Y Hatefi  S Chen 《Biochemistry》1990,29(4):1094-1098
N-Arylazido-beta-alanyl-NAD+ [N3'-O-(3-[N-(4-azido-2-nitrophenyl)amino]propionyl)NAD+] has been prepared by alkaline phosphatase treatment of arylazido-beta-alanyl-NADP+ [N3'-O-(3-[N-(4-azido-2-nitrophenyl)amino]propionyl)NADP+]. This NAD+ analogue was found to be a potent competitive inhibitor (Ki = 1.45 microM) with respect to NADH for the purified bovine heart mitochondrial NADH dehydrogenase (EC 1.6.99.3). The enzyme was irreversibly inhibited as well as covalently labeled by this analogue upon photoirradiation. A stoichiometry of 1.15 mol of N-arylazido-beta-alanyl-NAD+ bound/mol of enzyme, at 100% inactivation, was determined from incorporation studies using tritium-labeled analogue. Among the three subunits, 0.85 mol of the analogue was bound to the Mr = 51,000 subunit, and each of the two smaller subunits contained 0.15 mol of the analogue when the dehydrogenase was completely inhibited upon photolysis. Both the irreversible inactivation and the covalent incorporation could be prevented by the presence of NADH during photolysis. These results indicate that N-arylazido-beta-alanyl-NAD+ is an active-site-directed photoaffinity label for the mitochondrial NADH dehydrogenase, and are further evidence that the Mr = 51,000 subunit contains the NADH binding site. Previous studies using A-arylazido-beta-alanyl-NAD+ [A3'-O-(3-[N-(4-azido-2-nitrophenyl)amino]propionyl)NAD+] demonstrated that the NADH binding site is on the Mr = 51,000 subunit [Chen, S., & Guillory, R. J. (1981) J. Biol. Chem. 256, 8318-8323]. Results are also presented to show that N-arylazido-beta-alanyl-NAD+ binds the dehydrogenase in a more effective manner than A-arylazido-beta-alanyl-NAD+.  相似文献   

2.
A homogeneous multimeric protein isolated from the green alga, Scenedesmus obliquus, has both latent phosphoribulokinase activity and glyceraldehyde-3-phosphate dehydrogenase activity. The glyceraldehyde-3-phosphate dehydrogenase was active with both NADPH and NADH, but predominantly with NADH. Incubation with 20 mM dithiothreitol and 1 mM NADPH promoted the coactivation of phosphoribulokinase and NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase, accompanied by a decrease in the glyceraldehyde-3-phosphate dehydrogenase activity linked to NADH. The multimeric enzyme had a Mr of 560,000 and was of apparent subunit composition 8G6R. R represents a subunit of Mr 42,000 conferring phosphoribulokinase activity and G a subunit of 39,000 responsible for the glyceraldehyde-3-phosphate dehydrogenase activity. On SDS-PAGE the Mr-42,000 subunit comigrates with the subunit of the active form of phosphoribulokinase whereas that of Mr-39,000 corresponds to that of NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase. The multimeric enzyme had a S20,W of 14.2 S. Following activation with dithiothreitol and NADPH, sedimenting boundaries of 7.4 S and 4.4 S were formed due to the depolymerization of the multimeric protein to NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase (4G) and active phosphoribulokinase (2R). It has been possible to isolate these two enzymes from the activated preparation by DEAE-cellulose chromatography. Prolonged activation of the multimeric protein by dithiothreitol in the absence of nucleotide produced a single sedimenting boundary of 4.6 S, representing a mixture of the active form of phosphoribulokinase and an inactive dimeric form of glyceraldehyde-3-phosphate dehydrogenase. Algal thioredoxin, in the presence of 1 mM dithiothreitol and 1 mM NADPH, stimulated the depolymerization of the multimeric protein with resulting coactivation of phosphoribulokinase and NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase. Light-induced depolymerization of the multimeric protein, mediated by reduced thioredoxin, is postulated as the mechanism of light activation in vivo. Consistent with such a postulate is the presence of high concentrations of the active forms of phosphoribulokinase and NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase in extracts from photoheterotrophically grown algae. By contrast, in extracts from the dark-grown algae the multimeric enzyme predominates.  相似文献   

3.
The interactions of the essential divalent cation, Zn2+, with the binary complex formed between glycerol dehydrogenase (glycerol:NAD+ 2-oxidoreductase, EC 1.1.1.6) and its coenzyme NADH have been examined by fluorescence spectroscopy. Both the metallo and non-metallo form of the enzyme bind the coenzyme NADH. The addition of Zn2+ ions to a solution of the binary complex formed between metal-depleted enzyme and NADH results in a rapid increase in fluorescence emission at 430 nm. This has been used to determine the on rate for Zn2+ to the enzyme/binary complex. A dissociation constant of 3.02 +/- 0.25.10(-9) M for the equilibrium between Zn2+ ions and the enzyme has been determined.  相似文献   

4.
Pyruvate dehydrogenase phosphatase was purified to apparent homogeneity from bovine heart and kidney mitochondria. The phosphatase has a sedimentation coefficient (S20,w) of about 7.4 S and a molecular weight (Mr) of about 150 000 as determined by sedimentation equilibrium and by gel-permeation chromatography. The phosphatase consists of two subunits with molecular weights of about 97 000 and 50 000 as estimated by sodium dodecyl sulfate--polyacrylamide gel electrophoresis. Phosphatase activity resides in the Mr 50 000 subunit, which is sensitive to proteolysis. The phosphatase contains approximately 1 mol of flavin adenine dinucleotide (FAD) per mol of protein of Mr 150 000. FAD is apparently associated with the Mr 97 000 subunit. The function of this subunit remains to be established. The phosphatase binds 1 mol of Ca2+ per mol of enzyme of Mr 150 000 at pH 7.0, with a dissociation constant (Kd) of about 35 microM as determined by flow dialysis. Use of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetate (EGTA) at pH 7.6 in conjunction with flow dialysis gave a Kd value for Ca2+ of about 8 microM. In the presence of both the phosphatase and the dihydrolipoyl transacetylase (E2) core of the pyruvate dehydrogenase complex, two equivalent and apparently non-interacting CA2+-binding sites were detected per unit of Mr 150 000, with a Kd value of about 24 microM in the absence and about 5 microM in the presence of EGTA. In the presence of 0.2 M KCl, which inhibits phosphatase activity about 95%, the phosphatase exhibited only one Ca2+-binding site, even in the presence of E2. The phosphatase apparently possesses an "intrinsic" Ca2+-binding site, and a second Ca2+-binding site is produced in the presence of E2. The second site is apparently altered by increasing the ionic strength. It is proposed that the second site may be at the interface between the phosphatase and E2, with Ca2+ acting as a bridging ligand for specific attachment of the phosphatase to E2.  相似文献   

5.
T Chase  Jr 《The Biochemical journal》1986,239(2):435-443
Mannitol-1-phosphate dehydrogenase was purified to homogeneity, and some chemical and physical properties were examined. The isoelectric point is 4.19. Amino acid analysis and polyacrylamide-gel electrophoresis in presence of SDS indicate a subunit Mr of about 22,000, whereas gel filtration and electrophoresis of the native enzyme indicate an Mr of 45,000. Thus the enzyme is a dimer. Amino acid analysis showed cysteine, tyrosine, histidine and tryptophan to be present in low quantities, one, three, four and four residues per subunit respectively. The zinc content is not significant to activity. The enzyme is inactivated (greater than 99%) by reaction of 5,5'-dithiobis-(2-nitrobenzoate) with the single thiol group; the inactivation rate depends hyperbolically on reagent concentration, indicating non-covalent binding of the reagent before covalent modification. The pH-dependence indicated a pKa greater than 10.5 for the thiol group. Coenzymes (NAD+ and NADH) at saturating concentrations protect completely against reaction with 5,5'-dithiobis-(2-nitrobenzoate), and substrates (mannitol 1-phosphate, fructose 6-phosphate) protect strongly but not completely. These results suggest that the thiol group is near the catalytic site, and indicate that substrates as well as coenzymes bind to free enzyme. Dissociation constants were determined from these protective effects: 0.6 +/- 0.1 microM for NADH, 0.2 +/- 0.03 mM for NAD+, 9 +/- 3 microM for mannitol 1-phosphate, 0.06 +/- 0.03 mM for fructose 6-phosphate. The binding order for reaction thus may be random for mannitol 1-phosphate oxidation, though ordered for fructose 6-phosphate reduction. Coenzyme and substrate binding in the E X NADH-mannitol 1-phosphate complex is weaker than in the binary complexes, though in the E X NADH+-fructose 6-phosphate complex binding is stronger.  相似文献   

6.
1. Inactivation of yeast alcohol dehydrogenase for diethyl pyrocarbonate indicates that one histidine residue per enzyme subunit is necessary for enzymic activity. The inactivated enzyme regains its activity over a period of days. 2. Enzyme modified by diethyl pyrocarbonate can form the binary enzyme - NADH complex with the same maximum NADH-binding capacity as that of native enzyme. Modified enzyme cannot form normal ternary complexes of the type enzyme - NADH - acetamide and enzyme - NAD+ - pyrazole, which are characteristic of native enzyme. 3. The rate constant for the reaction of enzyme with diethyl pyrocarbonate has been determined over the pH range 5.5--9. The histidine residue involved has approximately the same pKa as free histidine, but is 10-fold more reactive than free histidine.  相似文献   

7.
In the yeast Saccharomyces cerevisiae, the two most important systems for conveying excess cytosolic NADH to the mitochondrial respiratory chain are external NADH dehydrogenase (Nde1p/Nde2p) and the glycerol-3-phosphate dehydrogenase shuttle. In the latter system, NADH is oxidized to NAD+ and dihydroxyacetone phosphate is reduced to glycerol 3-phosphate by the cytosolic Gpd1p; glycerol 3-phosphate gives two electrons to the respiratory chain via mitochondrial glycerol-3-phosphate dehydrogenase (Gut2p)-regenerating dihydroxyacetone phosphate. Both Nde1p/Nde2p and Gut2p are located in the inner mitochondrial membrane with catalytic sites facing the intermembranal space. In this study, we showed kinetic interactions between these two enzymes. First, deletion of either one of the external dehydrogenases caused an increase in the efficiency of the remaining enzyme. Second, the activation of NADH dehydrogenase inhibited the Gut2p in such a manner that, at a saturating concentration of NADH, glycerol 3-phosphate is not used as respiratory substrate. This effect was not a consequence of a direct action of NADH on Gut2p activity because both NADH dehydrogenase and its substrate were needed for Gut2p inhibition. This kinetic regulation of the activity of an enzyme as a function of the rate of another having a similar physiological function may be allowed by their association into the same supramolecular complex in the inner membrane. The physiological consequences of this regulation are discussed.  相似文献   

8.
D H Ozturk  I Park  R F Colman 《Biochemistry》1992,31(43):10544-10555
A new guanosine nucleotide has been synthesized and characterized: guanosine 5'-O-[S-(3-bromo-2-oxopropyl)]thiophosphate (GMPSBOP), with a reactive functional group which can be placed at a position equivalent to the pyrophosphate region of GTP. This new analog is negatively charged at neutral pH and is similar in size to GTP. GMPSBOP has been shown to react with bovine liver glutamate dehydrogenase with an incorporation of 2 mol of reagent/mol of subunit. The modification reaction desensitizes the enzyme to inhibition by GTP, activation by ADP, and inhibition by high concentrations of NADH, but does not affect the catalytic activity of the enzyme. The rate constant for reaction of GMPSBOP with the enzyme exhibits a nonlinear dependence on reagent concentration with KD = 75 microM. The addition to the reaction mixture of alpha-ketoglutarate, GTP, ADP, or NADH alone results in little decrease in the rate constant, but the combined addition of 5 mM NADH with 0.4 mM GTP or with 10 mM alpha-ketoglutarate reduces the reaction rate approximately 6-fold. GMPSBOP modifies peptides containing Met-169 and Tyr-262, of which Tyr-262 is not critical for the decreased sensitivity of the enzyme toward allosteric ligands. The presence of 0.4 mM GTP plus 5 mM NADH protects the enzyme against reaction at both Met-169 and Tyr-262, but yields enzyme with 1 mol of reagent incorporated/mol of subunit which is modified at an alternate site, Met-469. In the presence of 0.2 mM GTP + 0.1 mM NADH, protection against modification of Tyr-262, but only partial protection against labeling of Met-169, is observed. In contrast, the presence of 10 mM alpha-ketoglutarate + 5 mM NADH protect only against reaction with Met-169. The results suggest that GMPSBOP reacts at the GTP-dependent NADH regulatory site [Lark, R. H., & Colman, R. F. (1986) J. Biol. Chem. 261, 10659-10666] of bovine liver glutamate dehydrogenase, which markedly affects the sensitivity of the enzyme to GTP inhibition. The reaction of GMPSBOP with Met-169 is primarily responsible for the altered allosteric properties of the enzyme.  相似文献   

9.
5-Ethylphenazine-lactate-dehydrogenase-NAD+ conjugate (EP(+)-LDH-NAD+) was prepared by linking poly(ethylene glycol)-bound 5-ethylphenazine and poly(ethylene glycol)-bound NAD+ to lactate dehydrogenase. The average number of the ethylphenazine moieties bound per molecule of enzyme subunit was 0.46, and that of the NAD+ moieties was 0.32. This conjugate is a semisynthetic enzyme having lactate oxidase activity using oxygen or 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) as an electron acceptor; to make such conjugates seems to be a general method for artificially converting a dehydrogenase into an oxidase. When the concentration of oxygen or MTT is varied, the oxidase activity fits the Michaelis-Menten equation with the following kinetic constants: for the reaction system with oxygen, the turnover number per subunit is 2.3 min-1 and Km for oxygen is 1.91 mM; and for the system with MTT, the turnover number is 0.25 min-1 and Km for MTT is 0.076 mM. At the initial steady state of the oxidase reaction, only 2.1% of the NAD+ moieties of the conjugate are in the free state (i.e. not bound in the coenzyme-binding site of the lactate dehydrogenase moiety) and the rest are hidden in the coenzyme site; almost all the NAD+ moieties are in the reduced state. The apparent intramolecular rate constant for the reaction between a free NADH moiety and an oxidized ethylphenazine moiety is 2.3 s-1 and 2.1 s-1 for the systems with oxygen and with MTT, respectively. The apparent effective concentration of the free NADH moiety for the ethylphenazine moiety is 5.5 microM and is much smaller than that (0.34 mM) of the ethylphenazine moiety for the free NADH moiety; this difference is due to the effect of hiding the NADH moiety in the binding site, as the hidden NADH moiety cannot react with the ethylphenazine moiety.  相似文献   

10.
Properties of gamma-aminobutyraldehyde dehydrogenase from Escherichia coli   总被引:1,自引:0,他引:1  
gamma-Aminobutyraldehyde dehydrogenase from Escherichia coli K-12 has been purified and characterized from cell mutants able to grow in putrescine as the sole carbon and nitrogen source. The enzyme has an Mr of 195,000 +/- 10,000 in its dimeric form with an Mr of 95,000 +/- 1,000 for each subunit, a pH optimum at 5.4 in sodium citrate buffer, and does not require bivalent cations for its activity. Km values are 31.3 +/- 6.8 microM and 53.8 +/- 7.4 microM for delta-1-pyrroline and NAD+, respectively. An inhibitory capacity for NADH is also shown using the purified enzyme.  相似文献   

11.
Pure L-threonine dehydrogenase from Escherichia coli is a tetrameric protein (Mr = 148,000) with 6 half-cystine residues/subunit; its catalytic activity as isolated is stimulated 5-10-fold by added Mn2+ or Cd2+. The peptide containing the 1 cysteine/subunit which reacts selectively with iodoacetate, causing complete loss of enzymatic activity, has been isolated and sequenced; this cysteine residue occupies position 38. Neutron activation and atomic absorption analyses of threonine dehydrogenase as isolated in homogeneous form now show that it contains 1 mol of Zn2+/mol of enzyme subunit. Removal of the Zn2+ with 1,10-phenanthroline demonstrates a good correlation between the remaining enzymatic activity and the zinc content. Complete removal of the Zn2+ yields an unstable protein, but the native metal ion can be exchanged by either 65Zn2+, Co2+, or Cd2+ with no change in specific catalytic activity. Mn2+ added to and incubated with the native enzyme, the 65Zn2(+)-, the Co2(+)-, or the Cd2(+)- substituted form of the enzyme stimulates dehydrogenase activity to the same extent. These studies along with previously observed structural homologies further establish threonine dehydrogenase of E. coli as a member of the zinc-containing long chain alcohol/polyol dehydrogenases; it is unique among these enzymes in that its activity is stimulated by Mn2+ or Cd2+.  相似文献   

12.
1. (Na+ + K+)-ATPase from rectal glands of Squalus acanthias contains 34 SH groups per mol (Mr 265000). 15 are located on the alpha subunit (Mr 106000) and two on the beta subunit (Mr 40000). The beta subunit also contains one disulphide bridge. 2. The reaction of (Na+ + K+)-ATPase with N-ethylmaleimide shows the existence of at least three classes of SH groups. Class I contains two SH groups on each alpha subunit and one on each beta subunit. Reaction of these groups with N-ethylmaleimide in the presence of 40% glycerol or sucrose does not alter the enzyme activity. Class II contains four SH groups on each alpha subunit, and the reaction of these groups with 0.1 mM N-ethylmaleimide in the presence of 150 mM K+ leads to an enzyme species with about 16% activity. The remaining enzyme activity can be completely abolished by reaction with 5-10 mM N-ethylmaleimide, indicating a third class of SH groups (Class III). This pattern of inactivation is different from that of the kidney enzyme, where only one class of SH groups essential to activity is observed. 3. It is also shown that N-ethylmaleimide and DTNB inactivate by reacting with the same Class II SH groups. 4. Spin-labelling of the (Na+ + K+)-ATPase with a maleimide derivative shows that Class II groups are mostly buried in the membrane, whereas Class I groups are more exposed. It is also shown that spin label bound to the Class I groups can monitor the difference between the Na+- and K+-forms of the enzyme.  相似文献   

13.
A membrane-associated NADH dehydrogenase from beef neutrophils was purified to homogeneity, using detergent (cholate plus Triton X-100) extraction and chromatography on DEAE-Sepharose CL-6B, agarose-hexane-NAD, and hydroxylapatite. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed an apparent subunit molecular weight of 17,500, but the enzyme was highly aggregated (Mr greater than 450,000) in nondenaturing gels containing 0.1% Triton X-100. The protein band in nondenaturing gels was also stained for activity using NADH and nitro blue tetrazolium. The enzyme showed greatest electron acceptor activity with ferricyanide (100%), followed by cytochrome c (3.5%), dichloroindophenol (2.7%), and cytochrome b5 (0.34%). No activity was seen with oxygen. The Km values for NADH and ferricyanide were 18 and 9.5 microM, respectively, and NAD+ was a weak competitive inhibitor (Ki = 118 microM). No activity was seen with NADPH. No effects were seen with mitochondrial respiratory inhibitors such as azide, cyanide, or rotenone, but p-chloromercuribenzoate was strongly inhibitory and N-ethylmaleimide was weakly inhibitory. No free flavin was detectable in enzyme preparations. Based upon kinetic, physical, and inhibition properties, this NADH dehydrogenase differs from those previously described in microsomes and erythrocyte plasma membrane.  相似文献   

14.
3-Hydroxyisobutyrate dehydrogenase (3-hydroxy-2-methyl propanoate: NAD+ oxidoreductase, EC 1.1.1.31) was purified 1800-fold from rabbit liver by detergent extraction, differential solubility in polyethylene glycol and (NH4)2SO4, and column chromatography on DEAE-Sephacel, phenyl-Sepharose, CM(carboxymethyl)-Sepharose, Affi-Gel Blue, and Ultrogel AcA-34. The enzyme had a native Mr of 74,000 and appeared to be a homodimer with subunit Mr = 34,000. The enzyme was specific for NAD+. It oxidized both S-3-hydroxyisobutyrate and R-3-hydroxyisobutyrate, but the kcat/Km was approximately 350-fold higher for the S-isomer. Steady state kinetic analysis indicates an ordered Bi Bi reaction mechanism with NAD+ binding before 3-hydroxyisobutyrate. The enzyme catalyzed oxidation of S-3-hydroxyisobutyrate between pH 7.0 and 11.5 with optimal activity between pH 9.0 and 11.0. The enzyme apparently does not have a metal ion requirement. Essential sulfhydryl groups may be present at both the 3-hydroxyisobutyrate and NAD+ binding sites since inhibition by sulfhydryl-binding agents was differentially blocked by each substrate. The enzyme is highly sensitive to product inhibition by NADH which may play an important physiological role in regulating the complete oxidation of valine beyond the formation of 3-hydroxyisobutyrate.  相似文献   

15.
Interaction between the alpha-ketoglutarate dehydrogenase complex and NAD+-dependent isocitrate dehydrogenase was detected with a variety of techniques including polyethylene glycol precipitation, ultracentrifugation, and centrifugal gel filtration on a Sepharose 6B column. The interaction was specific in that citrate synthase, cytosolic malate dehydrogenase, and NADP-dependent isocitrate dehydrogenase did not interact with alpha-ketoglutarate dehydrogenase complex. The interaction was not inhibited by either 0.1 M KCl or 0.4 M (NH4)2SO4, but was completely prevented by 5% glycerol. A new method for the preparation of NADH: ubiquinone oxidoreductase resulted in an enzyme having a protein subunit composition similar to that of classical complex I preparation. Evidence is given for the existence of ternary complexes containing NADH:ubiquinone oxidoreductase-alpha-ketoglutarate dehydrogenase complex-NAD-dependent isocitrate dehydrogenase and NADH: ubiquinone oxidoreductase-alpha-ketoglutarate dehydrogenase complex-succinate thiokinase. These data suggest that a part of the citric acid cycle may be located in the vicinity of NADH: ubiquinone oxidoreductase. These complexes may facilitate the transport of metabolites among these enzymes without their equilibrating with the whole compartment.  相似文献   

16.
Valine dehydrogenase (VDH) from Streptomyces coelicolor A3(2) was purified from cell-free extracts to apparent homogeneity. The enzyme had an Mr 41,000 in denaturing conditions and an Mr 70,000 by gel filtration chromatography, indicating that it is composed of two identical subunits. It oxidized L-valine and L-alpha-aminobutyric acid efficiently, L-isoleucine and L-leucine less efficiently, and did not act on D-valine. It required NAD+ as cofactor and could not use NADP+. Maximum dehydrogenase activity with valine was at pH 10.5 and the maximum reductive amination activity with 2-oxoisovaleric acid and NH4Cl was at pH 9. The enzyme exhibited substrate inhibition in the forward direction and a kinetic pattern with NAD+ that was consistent with a sequential ordered mechanism with non-competitive inhibition by valine. The following Michaelis constants were calculated from these data: L-valine, 10.0 mM; NAD+, 0.17 mM; 2-oxoisovalerate, 0.6 mM; and NADH, 0.093 mM. In minimal medium, VDH activity was repressed in the presence of glucose and NH4+, or glycerol and NH4+ or asparagine, and was induced by D- and L-valine. The time required for full induction was about 24 h and the level of induction was 2- to 23-fold.  相似文献   

17.
Xanthine dehydrogenase (EC 1.2.1.37) from Pseudomonas acidovorans has been purified to near homogeneity (approx. 65-fold). The enzyme has a molecular weight of about 275 000. Electrophoresis in gels containing sodium dodecyl sulphate showed the presence of two types of subunit with molecular weights of about 81 000 and 63 000. Thus the intact molecule probably contains two of each type of subunit. Xanthine and hypoxanthine are good substrates, and NAD+ is an effective electron acceptor. With xanthine and NAD+ as substrates the purified enzyme has a specific activity of about 20 mumol NADH formed/min per mg protein. Michaelis constants for xanthine and NAD+ are 0.07 and 0.12 mM, respectively, and for hypoxanthine and NAD+ 0.29 and 0.16 mM, respectively.  相似文献   

18.
Glutamate dehydrogenase (L-glutamate:NAD(P)+ oxidoreductase, deaminating, EC 1.4.1.3.) of the extreme thermophilic archaebacterium Sulfolobus solfataricus was purified to homogeneity by (NH4)2SO4 fractionation, anion-exchange chromatography and affinity chromatography on 5'-AMP-Sepharose. The purified native enzyme had a Mr of about 270,000 and was shown to be a hexamer of subunit Mr of 44,000. It was active from 30 to 95 degrees C, with a maximum activity at 85 degrees C. No significant loss of enzyme activity could be detected, either after incubation of the purified enzyme at 90 degrees C for 60 min, or in the presence of 4 M urea or 0.1% SDS. The enzyme was catalytically active with both NADH and NADPH as coenzyme and was specific for 2-oxoglutarate and L-glutamate as substrates. With respect to coenzyme utilization the Sulfolobus solfataricus glutamate dehydrogenase resembled more closely the equivalent enzymes from eukaryotic organisms than those from eubacteria.  相似文献   

19.
The NAD-dependent glutamate dehydrogenase (GDH) from Dictyostelium discoideum was purified 1101-fold with a yield of 23.4%. The enzyme has an apparent Mr of 356 kDa, determined using Sephacryl S400, and a subunit molecular weight of 54 kDa on SDS-polyacrylamide gel electrophoresis. The Kms for alpha-ketoglutarate, NADH, and NH4+ are 0.36 +/- 0.03 mM, 16.0 +/- 0.1 microM, and 34.5 +/- 2.7 mM, respectively. The purified enzyme has a pH optimum of pH 7.25-7.5. At 0.1 mM, ADP and AMP stimulate GDH activity 25 and 102%, respectively. Half-maximal activity in the presence of 0.1 mM AMP for alpha-ketoglutarate, NADH, and NH4+ is reached at 2.3 +/- 0.1 mM, 71.4 +/- 5.5 microM, and 27.9 +/- 3.6 mM, respectively.  相似文献   

20.
T Yagi  T M Dinh 《Biochemistry》1990,29(23):5515-5520
The NADH dehydrogenase complex isolated from Paracoccus denitrificans is composed of approximately 10 unlike polypeptides and contains noncovalently bound FMN, non-heme iron, and acid-labile sulfide [Yagi, T. (1986) Arch. Biochem. Biophys. 250, 302-311]. When the Paracoccus NADH dehydrogenase complex was irradiated by UV light in the presence of [adenylate-32P]NAD, radioactivity was incorporated exclusively into one of three polypeptides of Mr approximately 50,000. Similar results were obtained when [adenylate-32P]NADH was used. The labeling of the Mr 50,000 polypeptide was diminished when UV irradiation of the enzyme with [adenylate-32P]NAD was performed in the presence of NADH, but not in the presence of NADP(H). The labeled polypeptide was isolated by preparative sodium dodecyl sulfate gel electrophoresis and was shown to cross-react with antiserum to the NADH-binding subunit (Mr = 51,000) of bovine NADH-ubiquinone oxidoreductase. Its amino acid composition was also very similar to that of the bovine NADH-binding subunit. These chemical and immunological results indicate that the Mr 50,000 polypeptide is an NADH-binding subunit of the Paracoccus NADH dehydrogenase complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号