首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Muscle samples from the M. gluteus medius were obtained from six Quarter Horses (QH), six Thoroughbreds (TB), and five Standardbreds (SB) to determine carnosine values and fiber type percentages. 2. Muscle biopsies were for fiber type percentages and carnosine concentration. 3. QH had a lower percentage of slow twitch oxidative fibers and a higher percentage of past twitch glycolytic fibers than SB or TB. 4. Fast twitch oxidative-glycolytic fibers were lowest in the QH. 5. The QH had mean carnosine values significantly greater (P less than 0.01) than the mean values for SB and TB. 6. Across breeds muscle carnosine concentration was positively correlated (P less than 0.05; r = 0.53) with fast twitch glycolytic fiber percentage and negatively correlated (P less than 0.05, r = -0.51) with fast twitch oxidative fiber percentage. 7. Free intramuscular carnosine is believed to function as an intracellular buffer. Since carnosine was highest in the muscle of horses with the greatest percentage of fast twitch glycolytic fibers, these data are consistent with the proposed function of this dipeptide.  相似文献   

2.
The content of anserine and carnosine in the lateral portion of the quadriceps femoris muscle of 50 healthy, human subjects has been studied. Anserine was undetectable in all muscle samples examined. Muscle carnosine values for the group conformed to a normal distribution with a mean (SD) value of 20.0 (4.7) mmol.kg-1 of dry muscle mass. The concentration of carnosine was significantly higher in the muscle of male subjects (21.3, 4.2 mmol.kg-1 dry mass) than in females of a similar age and training status (17.5, 4.8 mmol.kg-1 dry mass) (P less than 0.005). The test-retest reliability of measures was determined on a subgroup of 17 subjects. No significant difference in mean carnosine concentration was found between the two trials [21.5 (4.0) and 22.0 (5.2) mmol.kg-1 dry muscle mass; P greater than 0.05]. The importance of carnosine as a physicochemical buffer within human muscle was examined by calculating its buffering ability over the physiological pH range. From the range of carnosine concentrations observed (7.2-30.7 mmol.kg-1 dry muscle mass), it was estimated that the dipeptide could buffer between 2.4 and 10.1 mmol H+.kg-1 dry mass over the physiological pH range 7.1-6.5, contributing, on average, approximately 7% to the total muscle buffering. This suggests that in humans, in contrast to many other species, carnosine is of only limited importance in preventing the reduction in pH observed during high intensity exercise.  相似文献   

3.
Buffering capacity of deproteinized human vastus lateralis muscle   总被引:7,自引:0,他引:7  
The in vitro deproteinized vastus lateralis muscle buffer capacity, carnosine, and histidine levels were examined in 20 men from 4 distinct populations (5 sprinters, 800-m runners; 5 rowers; 5 marathoners; 5 untrained). Needle biopsies were obtained at rest from the vastus lateralis muscle. The buffer capacity was determined in deproteinized homogenates by repeatedly titrating supernatant extracts over the pH range of 7.0-6.0 with 0.01 N HCl. Carnosine and histidine levels were determined on an amino acid AutoAnalyzer. Fast-twitch fiber percentage was determined by staining intensity of myosin adenosinetriphosphatase. High-intensity running performance was assessed on an inclined treadmill run to fatigue (20% incline; 3.5 m X s-1). Significantly (P less than 0.01) elevated buffer capacities, carnosine levels, and high-intensity running performances were demonstrated by the sprinters and rowers, but no significant differences existed between these variables for the marathoners vs. untrained subjects. Low but significant (P less than 0.05) interrelationships were demonstrated between buffer capacity, carnosine levels, and fast-twitch fiber composition. These findings indicate that the sprinters and rowers possess elevated buffering capabilities and carnosine levels compared with marathon runners and untrained subjects.  相似文献   

4.
Activity of kidney and liver carnosinase and concentration of carnosine in leg muscles were determined for 8 weeks in old geese of three races: Italian white, Bilgoraj and Lublin. significant differences were noted between the three races with respect to all parameters under study. the following correlations were found: 1. Between live goose weight and carnosine concentration in muscles (r= 0.5276). 2. Between weight of leg muscles and carnosine level in these muscles (r=0.4912). 3. Between liver weight and carnosine level in muscles (r= 0.3292). 4. Between kidney carnosinase activity and liver carnosinase activity (r= .2104). 5. Between liver carnosinase activity and carnosine level (r= 0.2280). 6. Between kidney carnosinase activity and carnosine level (r= -0.1675). 7. Between the ratio of kidney:liver carnosinase activity and carnosine level in muscles (r =0.1816).  相似文献   

5.
Carnosine is found in high concentrations in skeletal muscles, where it is involved in several physiological functions. The muscle carnosine content measured within a population can vary by a factor 4. The aim of this study was to further characterize suggested determinants of the muscle carnosine content (diet, gender and age) and to identify new determinants (plasma carnosinase activity and testosterone). We investigated a group of 149 healthy subjects, which consisted of 94 men (12 vegetarians) and 55 women. Muscle carnosine was quantified in M. soleus, gastrocnemius and tibialis anterior using magnetic resonance proton spectroscopy and blood samples were collected to determine CNDP1 genotype, plasma carnosinase activity and testosterone concentrations. Compared to women, men have 36, 28 and 82% higher carnosine concentrations in M. soleus, gastrocnemius and tibialis anterior muscle, respectively, whereas circulating testosterone concentrations were unrelated to muscle carnosine levels in healthy men. The carnosine content of the M. soleus is negatively related to the subjects’ age. Vegetarians have a lower carnosine content of 26% in gastrocnemius compared to omnivores. In contrast, there is no difference in muscle carnosine content between omnivores with a high or low ingestion of β-alanine. Muscle carnosine levels are not related to the polymorphism of the CNDP1 gene or to the enzymatic activity of the plasma carnosinase. In conclusion, neither CNDP1 genotype nor the normal variation in circulating testosterone levels affects the muscular carnosine content, whereas vegetarianism, female gender and increasing age are the factors associated with reduced muscle carnosine stores.  相似文献   

6.
Carnosine (beta-alanyl-l-histidine) is present in high concentrations in human skeletal muscle. The ingestion of beta-alanine, the rate-limiting precursor of carnosine, has been shown to elevate the muscle carnosine content. We aimed to investigate, using proton magnetic resonance spectroscopy (proton MRS), whether oral supplementation with beta-alanine during 4 wk would elevate the calf muscle carnosine content and affect exercise performance in 400-m sprint-trained competitive athletes. Fifteen male athletes participated in a placebo-controlled, double-blind study and were supplemented orally for 4 wk with either 4.8 g/day beta-alanine or placebo. Muscle carnosine concentration was quantified in soleus and gastrocnemius by proton MRS. Performance was evaluated by isokinetic testing during five bouts of 30 maximal voluntary knee extensions, by endurance during isometric contraction at 45% maximal voluntary contraction, and by the indoor 400-m running time. beta-Alanine supplementation significantly increased the carnosine content in both the soleus (+47%) and gastrocnemius (+37%). In placebo, carnosine remained stable in soleus, while a small and significant increase of +16% occurred in gastrocnemius. Dynamic knee extension torque during the fourth and fifth bout was significantly improved with beta-alanine but not with placebo. Isometric endurance and 400-m race time were not affected by treatment. In conclusion, 1) proton MRS can be used to noninvasively quantify human muscle carnosine content; 2) muscle carnosine is increased by oral beta-alanine supplementation in sprint-trained athletes; 3) carnosine loading slightly but significantly attenuated fatigue in repeated bouts of exhaustive dynamic contractions; and 4) the increase in muscle carnosine did not improve isometric endurance or 400-m race time.  相似文献   

7.
Activity of carnosinase (CN1), the only dipeptidase with substrate specificity for carnosine or homocarnosine, varies greatly between individuals but increases clearly and significantly with age. Surprisingly, the lower CN1 activity in children is not reflected by differences in CN1 protein concentrations. CN1 is present in different allosteric conformations in children and adults since all sera obtained from children but not from adults were positive in ELISA and addition of DTT to the latter sera increased OD450 values. There was no quantitative difference in the amount of monomeric CN1 between children and adults. Further, CN1 activity was dose dependently inhibited by homocarnosine. Addition of 80 μM homocarnosine lowered V max for carnosine from 440 to 356 pmol/min/μg and increased K m from 175 to 210 μM. The estimated K i for homocarnosine was higher (240 μM). Homocarnosine inhibits carnosine degradation and high homocarnosine concentrations in cerebrospinal fluid (CSF) may explain the lower carnosine degradation in CSF compared to serum. Because CN1 is implicated in the susceptibility for diabetic nephropathy (DN), our findings may have clinical implications for the treatment of diabetic patients with a high risk to develop DN. Homocarnosine treatment can be expected to reduce CN1 activity toward carnosine, resulting in higher carnosine levels.  相似文献   

8.
Mechanism of antioxidant action of carnosine   总被引:2,自引:0,他引:2  
The comparative study of the antiradical activity of carnosine and vitamin C was carried out by the means of the evaluation of quenching of ESR signals of 2,2-diphenyl-1-picrylhydrazyl (DFPH) and semiquinone radical of alpha-tocopherol. It was shown that carnosine is not able to quench the ESR signals of the stable radical of DFPH and semiquinone radical of alpha-tocopherol. It permits to conclude that: a) carnosine does not interact directly with highly active free radicals; b) carnosine is unable to regenerate the radical of alpha-tocopherol to form the antiradical synergistic couple. The data obtained are consistent with the idea that there is a difference between on the antioxidant mechanism action of vitamin C and carnosine due to the difference in the antiradical activity of these compounds.  相似文献   

9.
Carnosine stimulates vimentin expression in cultured rat fibroblasts.   总被引:2,自引:0,他引:2  
Two-dimensional electrophoretic gel profiles were compared between rat 3Y1 fibroblasts cultured in the presence and absence of 30 mM L-carnosine (beta-alanyl-L-histidine) for one week without any replenishment of medium. While a number of cellular proteins changed their expression levels by the addition of carnosine, we identified one of the most prominently varied proteins as vimentin. Immunoblot analysis with anti-vimentin antibody demonstrated that the vimentin levels increased about 2-fold after one-week culture in the presence of carnosine. We also confirmed that the increase of vimentin expression was dependent on the concentration of carnosine added to the medium. Moreover, when cultured cells were stained with anti-vimentin antibody and observed by light microscopy, most cells grown in the presence of carnosine were found to have markedly developed vimentin filaments. The increase of vimentin expression was also observed by adding with carnosine related dipeptides, N-acetylcarnosine and anserine.  相似文献   

10.
Nitric oxide (NO) plays a significant role in the development of diabetic nephropathy. We investigated the effects of an antioxidant, carnosine, on streptozotocin (STZ)-induced renal injury in diabetic rats. We used four groups of eight rats: group 1, control; group 2, carnosine treated; group 3, untreated diabetic; group 4, carnosine treated diabetic. Kidneys were removed and processed, and sections were stained with periodic acid-Schiff (PAS) and subjected to eNOS immunohistochemistry. Examination by light microscopy revealed degenerated glomeruli, thickened basement membrane and glycogen accumulation in the tubules of diabetic kidneys. Carnosine treatment prevented the renal morphological damage caused by diabetes. Moreover, administration of carnosine decreased somewhat the oxidative damage of diabetic nephropathy. Appropriate doses of carnosine might be a useful therapeutic option to reduce oxidative stress and associated renal injury in diabetes mellitus.  相似文献   

11.
A polymorphism in the carnosine dipeptidase-1 gene (CNDP1), resulting in decreased plasma carnosinase activity, is associated with a reduced risk for diabetic nephropathy. Because carnosine, a natural scavenger/suppressor of ROS, advanced glycation end products, and reactive aldehydes, is readily degraded in blood by the highly active carnosinase enzyme, it has been postulated that low serum carnosinase activity might be advantageous to reduce diabetic complications. The aim of this study was to examine whether low carnosinase activity promotes circulating carnosine levels after carnosine supplementation in humans. Blood and urine were sampled in 25 healthy subjects after acute supplementation with 60 mg/kg body wt carnosine. Precooled EDTA-containing tubes were used for blood withdrawal, and plasma samples were immediately deproteinized and analyzed for carnosine and β-alanine by HPLC. CNDP1 genotype, baseline plasma carnosinase activity, and protein content were assessed. Upon carnosine ingestion, 8 of the 25 subjects (responders) displayed a measurable increase in plasma carnosine up to 1 h after supplementation. Subjects with no measurable increment in plasma carnosine (nonresponders) had ~2-fold higher plasma carnosinase protein content and ~1.5-fold higher activity compared with responders. Urinary carnosine recovery was 2.6-fold higher in responders versus nonresponders and was negatively dependent on both the activity and protein content of the plasma carnosinase enzyme. In conclusion, low plasma carnosinase activity promotes the presence of circulating carnosine upon an oral challenge. These data may further clarify the link among CNDP1 genotype, carnosinase, and diabetic nephropathy.  相似文献   

12.
—An enzyme from rat brain catalysing the synthesis of the histidine-containing dipeptides carnosine and homocarnosine (l .-histidine: β-alanine ligase (AMP) [EC 6.3.2.11]) was purified about 30-40-fold from a 100,000 g supernatant. Assays were conducted by measuring the incorporation of L-[14C]histidine into carnosine and homocarnosine isolated by paper electrophoresis from the incubation mixture. The ratios of specific activities for the formation of carnosine and homocarnosine were not significantly different for the various purification steps. This was taken as evidence of one enzyme synthesizing both dipeptides. In studying the properties of this enzyme, a pH optimum of 7.4 was shown for carnosine synthesis. The concentrations of amino acid substrates giving maximal synthesis of both dipeptides were in the physiological range found for rat brain. An apparent requirement for ATP, Mg2+, and DPN was seen for dipeptide synthesis. A substrate dependent, enzymecatalysed 32PPi-ATP exchange reaction was observed, suggesting the formation of an aminoacyl-AMP intermediate. Certain other nucleoside triphosphates could substitute for the ATP; this effect showed a specificity toward the dipeptide being synthesized. The apparent requirement for DPN was quite specific, with a number of related compounds having no effect. The stoichiometry of enzyme-catalysed carnosine synthesis was studied. A one to one relationship between carnosine formed and ATP hydrolysed was demonstrated. However, the ratio between carnosine synthesized and DPN hydrolysed was about 6 to 1, indicating a catalytic role for the DPN. The breakdown of DPN did not occur with enzyme alone but was dependent on the presence of substrate.  相似文献   

13.
To further analyze the action of copper on brain synaptic mechanisms, the brain dipeptide carnosine (beta-alanyl-L-histidine) was tested in Xenopus laevis oocytes expressing the rat P2X4 or P2X7 receptors. Ten micromolar copper halved the currents evoked by ATP in both receptors; co-application of carnosine plus copper prevented the metal induced-inhibition with a median effective concentration of 12.1 +/- 3.9 and 12.0 +/- 5.5 microm for P2X4 and P2X7, respectively. Zinc potentiated only the P2X4 ATP-evoked currents; carnosine had no effect over this metal. The relative potency and selectivity of classical metal chelators to prevent the copper inhibition was compared between carnosine and penicillamine (PA), bathophenanthroline (BPh) or L-histidine (His). Their rank order of potency in P2X4 and P2X7 receptors was carnosine = PA = His > BPh > Glycine (Gly) and carnosine = BPh = His > PA > Gly, respectively. The potency to prevent the zinc-induced potentiation in the P2X4 receptor was BPh > PA > His; carnosine, Gly and beta-alanine were inactive. Whereas 1-100 microm carnosine or His alone did not modify the ATP-evoked currents, 10-100 microm PA augmented and 100 microm BPh decreased the ATP-evoked currents. Carnosine was able to revert the copper-induced inhibition restoring the maximal ATP gated current in a concentration-dependent manner. Electronic spectroscopy confirm the formation of carnosine-Cu(II) complexes, mechanism that can account for the prevention and reversal of the copper inhibition, revealing its potential in copper intoxication treatment.  相似文献   

14.
Carnosine is present in high concentrations in skeletal muscle where it contributes to acid buffering and functions also as a natural protector against oxidative and carbonyl stress. Animal studies have shown an anti-diabetic effect of carnosine supplementation. High carnosinase activity, the carnosine degrading enzyme in serum, is a risk factor for diabetic complications in humans. The aim of the present study was to compare the muscle carnosine concentration in diabetic subjects to the level in non-diabetics. Type 1 and 2 diabetic patients and matched healthy controls (total n=58) were included in the study. Muscle carnosine content was evaluated by proton magnetic resonance spectroscopy (3 Tesla) in soleus and gastrocnemius. Significantly lower carnosine content (-45%) in gastrocnemius muscle, but not in soleus, was shown in type 2 diabetic patients compared with controls. No differences were observed in type 1 diabetic patients. Type II diabetic patients display a reduced muscular carnosine content. A reduction in muscle carnosine concentration may be partially associated with defective mechanisms against oxidative, glycative and carbonyl stress in muscle.  相似文献   

15.
Interest into the effects of carnosine on cellular metabolism is rapidly expanding. The first study to demonstrate in humans that chronic β-alanine (BA) supplementation (~3-6 g BA/day for ~4 weeks) can result in significantly augmented muscle carnosine concentrations (>50%) was only recently published. BA supplementation is potentially poised for application beyond the niche exercise and performance-enhancement field and into other more clinical populations. When examining all BA supplementation studies that directly measure muscle carnosine (n=8), there is a significant linear correlation between total grams of BA consumed (of daily intake ranges of 1.6-6.4 g BA/day) versus both the relative and absolute increases in muscle carnosine. Supporting this, a recent dose-response study demonstrated a large linear dependency (R2=0.921) based on the total grams of BA consumed over 8 weeks. The pre-supplementation baseline carnosine or individual subjects' body weight (from 65 to 90 kg) does not appear to impact on subsequent carnosine synthesis from BA consumption. Once muscle carnosine is augmented, the washout is very slow (~2%/week). Recently, a slow-release BA tablet supplement has been developed showing a smaller peak plasma BA concentration and delayed time to peak, with no difference in the area under the curve compared to pure BA in solution. Further, this slow-release profile resulted in a reduced urinary BA loss and improved retention, while at the same time, eliciting minimal paraesthesia symptoms. However, our complete understanding of optimizing in vivo delivery and dosing of BA is still in its infancy. Thus, this review will clarify our current knowledge of BA supplementation to augment muscle carnosine as well as highlight future research questions on the regulatory points of control for muscle carnosine synthesis.  相似文献   

16.

Background

It has been established that excellence in sports with short and long exercise duration requires a high proportion of fast-twitch (FT) or type-II fibers and slow-twitch (ST) or type-I fibers, respectively. Until today, the muscle biopsy method is still accepted as gold standard to measure muscle fiber type composition. Because of its invasive nature and high sampling variance, it would be useful to develop a non-invasive alternative.

Methodology

Eighty-three control subjects, 15 talented young track-and-field athletes, 51 elite athletes and 14 ex-athletes volunteered to participate in the current study. The carnosine content of all 163 subjects was measured in the gastrocnemius muscle by proton magnetic resonance spectroscopy (1H-MRS). Muscle biopsies for fiber typing were taken from 12 untrained males.

Principal Findings

A significant positive correlation was found between muscle carnosine, measured by 1H-MRS, and percentage area occupied by type II fibers. Explosive athletes had ∼30% higher carnosine levels compared to a reference population, whereas it was ∼20% lower than normal in typical endurance athletes. Similar results were found in young talents and ex-athletes. When active elite runners were ranked according to their best running distance, a negative sigmoidal curve was found between logarithm of running distance and muscle carnosine.

Conclusions

Muscle carnosine content shows a good reflection of the disciplines of elite track-and-field athletes and is able to distinguish between individual track running distances. The differences between endurance and sprint muscle types is also observed in young talents and former athletes, suggesting this characteristic is genetically determined and can be applied in early talent identification. This quick method provides a valid alternative for the muscle biopsy method. In addition, this technique may also contribute to the diagnosis and monitoring of many conditions and diseases that are characterized by an altered muscle fiber type composition.  相似文献   

17.
The endogenous dipeptide carnosine (beta-alanyl-L-histidine), at 0.1-10 mM, can provoke sustained contractures n rabbit saphenous vein rings with greater efficacy than noradrenaline. The effects are specific; anserine and homocarnosine are ineffective, as are carnosine's constituent amino acids histidine and beta-alanine. Zinc ions enhance the maximum carnosine-induced tension (to 127 +/- 13% of control at 10 microM Zn(total)) and muscle sensitivity is potentiated (mean K(0.5) reduced from 1.23 mM to 17 microM carnosine with 15 microM Zn(total)). The dipeptide acts as a Zn-carnosine complex (Zn. Carn). The effects of carnosine at 1 microM-10 mM (total) in the presence of 1-100 microM Zn(2+) (total) can be described as a unique function of [Zn.Carn] with an apparent K(0.5) for the complex of [7.4)(10(-8)] M. Contractures are reduced at low [Ca(2+)], unaffected by adrenoceptor antagonists, but can be blocked by antagonists to several receptor types. The most specific effect is by mepyramine, the H(1) receptor antagonist. With Zn present, carnosine can inhibit the H(1)-specific binding of [(3)H]mepyramine to isolated Guinea pig cerebella membranes. This effect of carnosine can be described as a function of the concentration of Zn.Carn with an apparent IC(50) of 2.45 microM. Like histamine, carnosine evoked an H2-mediated (cimetidine-sensitive) relaxation in the presence of mepyramine, but was less potent (10.8 +/- 3.1% of initial tension remaining at 10 mM carnosine compared with 13.4 +/- 7.5% remaining at 0.1 mM histamine). Preliminary studies with a Zn-selective fluorescent probe indicate that functionally significant levels of Zn can be released from adventitial mast cells that could modulate actions of carnosine in the extravascular space as well as those of histamine itself. We conclude that carnosine can act at the smooth muscle H(1)-receptor to provoke vasoconstriction and that it also has the potential to act at H(1)-receptors in the central nervous system. Carnosine's mode of action is virtually unique: a vascular muscle receptor apparently transduces the action of a dipeptide in the form of a metal chelate. The functional relationship of carnosine with histamine and the possible physiological relevance of Zn ions for the activity of both agents have not previously been reported.  相似文献   

18.
Carnosine (β-alanyl-l-histidine) is one of the bioactive dipeptides and has antioxidant, antiglycation, and cytoplasmic buffering properties. In this study, to synthesize carnosine from nonprotected amino acids as substrates, we cloned the carnosinase (CN1) gene and constructed a whole-cell biocatalyst displaying CN1 on the yeast cell surface with α-agglutinin as the anchor protein. The display of CN1 was confirmed by immunofluorescent labeling, and CN1-displaying yeast cells showed hydrolytic activity for carnosine. When carnosine was synthesized by the reverse reaction of CN1, organic solvents were added to the reaction mixture to reduce the water content. The CN1-displaying yeast cells were lyophilized and examined for organic solvent tolerance. Results showed that the CN1-displaying yeast cells retained their original hydrolytic activity in hydrophobic organic solvents. In the hydrophobic organic solvents and hydrophobic ionic liquids, the CN1-displaying yeast cells catalyzed carnosine synthesis, and carnosine was synthesized from nonprotected amino acids in only one step. The results of this research suggest that the whole-cell biocatalyst displaying CN1 on the yeast cell surface can be used to synthesize carnosine with ease and convenience.  相似文献   

19.
肌肽是一种发现于脊椎动物骨骼肌和大脑中的二肽(β-丙氨酰-L-组氨酸).为了探讨肌肤的抗氧化性与其结构之间的关系,试验研究了肌肽、丙氨酸和组氨酸对DPPH自由基的清除作用和对牛血清白蛋白(BSA)氧化修饰的抑制作用.结果表明肌肽对DPPH自由基有显著的清除效果(P<0.01),组氨酸清除率低于肌肤,而丙氨酸基本无清除自...  相似文献   

20.
Carnosine (beta-alanyl-L-histidine) is a dipeptide with antioxidant properties. Free radicals are involved in the pathogenesis of acute liver injury induced by thioacetamide (TAA). In this study, we investigated the effect of carnosine treatment on TAA-induced oxidative stress and hepatotoxicity. Rats were injected intraperitoneally with TAA (500 mg/kg) and carnosine (250 mg/kg, intraperitoneal) was co-administered with TAA. All animals were killed 24 h after injections. TAA administration resulted in hepatic necrosis, significant increases in plasma transaminase activities as well as hepatic lipid peroxide levels. In addition, hepatic antioxidant system was found to be depressed following TAA administration. When carnosine was co-administered with TAA in rats, plasma transaminase activities were found to approach to normal values in rats. Histological findings also suggested that carnosine has preventive effect on TAA-induced hepatic necrosis. Carnosine treatment caused significant decreases in lipid peroxide levels in TAA-treated rats without any changes in enzymatic and non-enzymatic antioxidants except vitamin E in the liver of rats. Our findings indicate that carnosine, in vivo may have a preventive effect on TAA-induced oxidative stress and hepatotoxicity by acting as an non-enzymatic antioxidant itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号