首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two aminotransferases from Escherichia coli were purified to homogeneity by the criterion of gel electrophoresis. The first (enzyme A) is active on L-aspartic acid, L-tyrosine, L-phenylalanine, and L-tryptophan; the second (enzyme B) is active on the aromatic amiono acids. Enzyme A is identical in substrate specificity with transaminase A and is mainly an aspartate aminotransferase; enzyme B has never been described before and is an aromatic amino acid aminotransferase. The two enzymes are different in the Vmax and Km values with their common substrates and pyridoxal phosphate, in heat stability (enzyme A being heat-stable and enzyme B being heat-labile at 55 degrees) and in pH optima with the amino acid substrates. They are similar in their amino acid composition, each enzyme appears to consist of two subunits, and enzyme B may be converted to enzyme A by controlled proteolysis with subtilsin. The conversion was detected by the generation of new aspartate aminotransferase activity from enzyme B and was further verified by identification by acrylamide gel electrophoresis of the newly formed enzyme A. The two enzymes appear to be products of two genes different in a small, probably terminal, nucleotide sequence.  相似文献   

2.
Crude extracts of human lung tissue were examined for cyclic adenosine- and guanosine-3',5'-monophosphate (cAMP and cGMP) phosphodiesterase activities. Nonlinear reciprocal plots were observed for each substrate. DEAE-Sephadex chromatography of the extracts revealed four main fractions of activity, which were further purified by Sephadex gel filtration. The phosphodiesterase activity of the resulting individual fractions was partially characterized with respect to substrate specificity, kinetic parameters, apparent molecular weight (gel filtration), thermal stability at 30 and 37 degrees C, effect of the cyclic nucleotide not utilized as substrate, and the possible influence of Ca2+-dependent protein activator. The results indicate that the tissue contains phosphodiesterases with strict specificity and a high apparent affinity for each of the two cyclic nucleotides (the Km values determined were approximately 0.3-0.4 muM). The high affinity cAMP phosphodiesterase activity was enriched in two of the purified fractions; both activities probably represent fragments of the native high affinity cAMP specific enzyme. A third purified phosphodiesterase showed mixed substrate specificity. The Km value recorded for hydrolysis of either substrate with this enzyme was approximately 25 muM. A fourth, irregularly occurring, phosphodiesterase activity also showed mixed substrate specificity. The Km value registered for hydrolysis of either substrate with this fraction was approximately 0.4 muM. There was no evidence for a Ca2+-dependent specific activation by a boiled lung tissue supernatant of any of the purified enzymes.  相似文献   

3.
The procedure developed for purification of the N-ethylmaleimide-activated microsomal glutathione transferase was applied successfully to isolation of this same enzyme in unactivated form. The microsomal glutathione transferases, the unactivated and activated forms, were shown to be identical in terms of molecular weight, immunochemical properties, and amino acid composition. In addition the microsomal glutathione transferase purified in unactivated form could be activated 15-fold with N-ethylmaleimide to give the same specific activity with 1-chloro-2,4-dinitrobenzene as that observed for the enzyme isolated in activated form. This activation involved the binding of one molecule N-ethylmaleimide to the single cysteine residue present in each polypeptide chain of the enzyme, as shown by amino acid analysis, determination of sulfhydryl groups by 2,2'-dithiopyridyl and binding of radioactive N-ethylmaleimide. Except for the presence of only a single cysteine residue and the total absence of tryptophan, the amino acid composition of the microsomal glutathione transferase is not remarkable. The contents of aspartic acid/asparagine + glutamic acid/glutamine, of basic amino acids, and of hydrophobic amino acids are 15%, 12% and 54% respectively. The isoelectric point of the enzyme is 10.1. Microsomal glutathione transferase conjugates a wide range of substrates with glutathione and also demonstrates glutathione peroxidase activity with cumene hydroperoxide, suggesting that it may be involved in preventing lipid peroxidation. Of the nine substrates identified here, the enzymatic activity towards only two, 1-chloro-2,4-dinitrobenzene and cumene hydroperoxide, could be increased by treatment with N-ethylmaleimide. This treatment results in increases in both the apparent Km values and V values for 1-chloro-2,4-dinitrobenzene and cumene hydroperoxide. Thus, although clearly distinct from the cytosolic glutathione transferases, the microsomal enzyme shares certain properties with these soluble enzymes, including a relative abundance, a high isoelectric point and a broad substrate specificity. The exact role of the microsomal glutathione transferase in drug metabolism, as well as other possible functions, remains to be established.  相似文献   

4.
The review describes two major groups of α-amino acid ester hydrolases (AEHs)—enzymes with a similar active center structure, which determines their unique specificity to esters containing an amino group in the α position to the carbonyl. The first group comprises microbial AEHs of the β-lactam acylase type. Technical biocatalysts based on this group of enzymes are used for the production of semi-synthetic amino-β-lactam antibiotics. The second AEH group includes eukaryotic valacyclovirases, which activate in vivo a number of antiviral and anticancer prodrugs. The directed activity of these enzymes is used for the development of target pharmaceutical preparations for the therapy of viral and oncological diseases. The review summarizes and compares the available data on the structure and properties, substrate specificity, and the kinetic parameters of enzymes of these two groups. Experiments identifying the AEH active site and providing the molecular basis for the unique specificity of these enzymes are discussed. The data from the available scientific and patent publications concerning the aminopenicillin and aminocephalosporin synthesis catalyzed by β-lactam acylase AEHs are reviewed and systematized.  相似文献   

5.
The bifunctional folate-dependent enzyme, 10-formyltetrahydrofolate dehydrogenase-hydrolase (10-formyltetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.6), has been purified to homogeneity from pig liver. Its amino acid composition was determined and gave a calculated v of 0.735 ml/g; a molecular weight of 92500 for the protein subunit was determined as well. Spectrophotometric, fluorescence emission and radiochemical methods were devised to assay the activities. Quantitative separation of carbon dioxide and formate produced by the dehydrogenase and the hydrolase reactions, respectively, demonstrated that both activities occur simultaneously. This fact, together with a 5-fold difference in the Km values for the folate substrate, strongly suggests that these two activities are functions of different sites. The possible role of polyglutamate specificity for the preferential selection of one of the activities under physiological conditions was ruled out when both proved to have similar specificities, as determined by sensitivity to inhibition by tetrahydropteroylpolyglutamates.  相似文献   

6.
Tanaka K  Suzuki T 《FEBS letters》2004,573(1-3):78-82
The purpose of this study is to elucidate the mechanisms of guanidine substrate specificity in phosphagen kinases, including creatine kinase (CK), glycocyamine kinase (GK), lombricine kinase (LK), taurocyamine kinase (TK) and arginine kinase (AK). Among these enzymes, LK is unique in that it shows considerable enzyme activity for taurocyamine in addition to its original target substrate, lombricine. We earlier proposed several candidate amino acids associated with guanidine substrate recognition. Here, we focus on amino-acid residue 95, which is strictly conserved in phosphagen kinases: Arg in CK, Ile in GK, Lys in LK and Tyr in AK. This residue is not directly associated with substrate binding in CK and AK crystal structures, but it is located close to the binding site of the guanidine substrate. We replaced amino acid 95 Lys in LK isolated from earthworm Eisenia foetida with two amino acids, Arg or Tyr, expressed the modified enzymes in Escherichia coli as a fusion protein with maltose-binding protein, and determined the kinetic parameters. The K95R mutant enzyme showed a stronger affinity for both lombricine (Km=0.74 mM and kcat/Km=19.34 s(-1) mM(-1)) and taurocyamine (Km=2.67 and kcat/Km=2.81), compared with those of the wild-type enzyme (Km=5.33 and kcat/Km=3.37 for lombricine, and Km=15.31 and kcat/ Km=0.48for taurocyamine). Enzyme activity of the other mutant, K95Y, was dramatically altered. The affinity for taurocyamine (Km=1.93 and kcat/Km=6.41) was enhanced remarkably and that for lombricine (Km=14.2 and kcat/Km=0.72) was largely decreased, indicating that this mutant functions as a taurocyamine kinase. This mutant also had a lower but significant enzyme activity for the substrate arginine (Km=33.28 and kcat/Km=0.01). These results suggest that Eisenia LK is an inherently flexible enzyme and that substrate specificity is strongly controlled by the amino-acid residue at position 95.  相似文献   

7.
使用DEAE纤维素柱层析、PBE-94层析聚焦、NADP~+-Sepharose 4B亲合层析及SephadexG-100凝胶过滤分离纯化了人脑醛糖还原酶。在DEAE层析中,用咪唑-HCI缓冲液替代了磷酸缓冲液,改善了分离效果。在聚丙烯酰胺及SDS聚丙烯酰胺凝胶电泳中,纯化的人脑醛糖还原酶均呈一条区带。它的pI为5.6,最适pH为6.5,分子量为36,000,底物特异性和氨基酸组成与其它哺乳动物的醛糖还原酶有相似性。开链式醛糖是醛糖还原酶的真正底物,它在开链式和半缩醛的平衡体系中占比例极小,因而推知醛糖还原酶对此底物有很高的K_(cat)和K_(cat)/K_m值,能有效地将它们还原成相应的醇。  相似文献   

8.
Pig liver phosphomevalone kinase. 1. Purification and properties   总被引:2,自引:0,他引:2  
Pig liver phosphomevalonate kinase (EC 2.7.4.2) has been purified to homogeneity as shown by polyacrylamide gel electrophoresis. The molecular weight estimates range from 21,000 to 22,500. Each molecule is composed of one polypeptide chain. The presence of SH-containing reagents is essential for the preservation of enzymes activity at all steps in the purification. The enzyme shows absolute specificity for ATP and requires for activity a divalent metal cation, Mg2+ being most effective. The optimum pH for the enzyme ranges from 7.5 to over 9.5. Kinetics are hyperbolic for both substrates, showing a sequential mechanism; true Km values of 0.075 mM and 0.46 mM have been obtained for phosphomevalonate and ATP, respectively. Amino acid composition shows a high content of acid amino acids, one cysteine residue per molecule of enzyme, and the absence of methionine. The results obtained suggest that the enzyme plays no regulatory function in cholesterol biosynthesis in pig liver, although a variable enzyme content was detected in different livers.  相似文献   

9.
Peptide substrates of the general structure acetyl-Alan (n = 2-5), acetyl-Pro-Ala-Pro-Phe-Alan-NH2 (n = 0-3), and acetyl-Pro-Ala-Pro-Phe-AA-NH2 (AA = various amino acids) were synthesized and used to investigate the enzyme-substrate interactions of the microbial serine proteases thermitase, subtilisin BPN', and proteinase K on the C-terminal side of the scissile bond. The elongation of the substrate peptide chain up to the second amino acid on the C-terminal side (P'2) enhances the hydrolysis rate of thermitase and subtilisin BPN', whereas for proteinase K an additional interaction with the third amino acid (P'3) is possible. The enzyme subsite S'1 specificity of the proteases investigated is very similar. With respect to kcat/Km values small amino acid residues such as Ala and Gly are favored in this position. Bulky residues such as Phe and Leu were hydrolyzed to a lower extent. Proline in P'1 abolishes the hydrolysis of the substrates. Enzyme-substrate interactions on the C-terminal side of the scissile bond appear to affect kcat more than Km for all three enzymes.  相似文献   

10.
Rat liver microsomes contain many serine hydrolases, which can be demonstrated in electropherograms with carboxylesterase stain and with an active-site-directed radioactive organophosphate. Five of the most prominent of these enzymes plus dipeptidyl aminopeptidase IV, a microsomal serine hydrolase without activity against simple esters, have been highly purified with a simultaneous procedure after solubilization with saponin. The five carboxylesterases belong to at least three groups of chemically different proteins. Terminal amino acids, amino acid composition, and substrate specificity are different, while the subunit molecular weight of all esterases is very similar (about 60,000). All purified carboxylesterases have monooleylglycerol-cleaving capacity. The subunit weight (84,000) and the N-terminal amino acid (serine) of the peptidase differ from those of all isolated carboxylesterases. The data are correlated to other reports on individual serine hydrolases from rat liver.  相似文献   

11.
Two kinds of methylglyoxal reductases were purified to apparent homogeneity from Aspergillus niger and designated MGR I and MGR II. Both enzymes consisted of a single polypeptide chain with a relative molecular mass of 36,000 (MGR I) and 38,000 (MGR II). NADPH was specifically required for the activities of both enzymes and Km values for NADPH were 54 microM (MGR I) and 6.8 microM (MGR II). MGR I was specific to 2-oxoaldehydes [glyoxal, methylglyoxal (Km = 15.4 mM) and phenylglyoxal], whereas MGR II was active on both 2-oxoaldehydes [glyoxal (Km = 10 mM), methylglyoxal (Km = 1.43 mM), phenylglyoxal (Km = 4.35 mM) and 4,5-dioxovalerate] and some aldehydes (propionaldehyde and acetaldehyde). Optimal pH values for MGR I and MGR II activities were 9.0 and 6.5 respectively. Both enzymes were inactivated by a brief incubation with 2-oxoaldehydes (glyoxal, methylglyoxal and phenylglyoxal) in the absence of NADPH. MGR I activity was competitively inhibited by NADP+ and the Ki value for NADP+ was calculated to be 0.49 mM. On the other hand, the inhibition of MGR II activity by NADP+ was of mixed type, the Ki value for NADP+ being 45 microM. MGR I was different from MGR II in amino acid composition.  相似文献   

12.
Thiamine pyrophosphatase and nucleoside diphosphatase in rat brain   总被引:3,自引:0,他引:3  
Two types of nucleoside diphosphatase were found in rat brain. One (Type L) had similar properties to those of the liver microsomal enzyme with respect to its isoelectric point, substrate specificity, Km values, optimum pH, activation by ATP and molecular weight. The other (Type B), which separated into multiple forms on isoelectric focusing, had lower Km values and a smaller molecular weight than the Type L enzyme, and was inhibited by ATP. The Type B enzyme catalyzed the hydrolysis of thiamine pyrophosphate as well as those of various nucleoside diphosphates at physiological pH, while Type L showed only nucleoside diphosphatase activity at neutral pH. These findings suggest that the two enzymes play different physiological roles in the brain.  相似文献   

13.
Alcohol dehydrogenase [EC 1.1.1.1] was purified to homogeneity from rabbit liver by water extraction, DEAE-cellulose treatment, affinity chromatography on 5'-AMP-Sepharose and gel filtration on Sephadex G-150 using dithiothreitol as a stabilizer. The purified enzyme has an estimated molecular weight of 72,000 and consists of two subunits with a molecular weight of about 36,000 each. The enzyme contains 4 g-atoms of zinc and 18 sulfhydryl groups per mol of protein and exhibits maximal activity at pH 10.8, with a second maximum at pH 7.5. The apparent Km values for ethanol and NAD+ are 0.45 mM and 53.19 microM, respectively, at pH 10.8 and 3.33 mM and 6.94 microM, respectively, at pH 7.5. The enzyme oxidizes ethanol most readily among the aliphatic alcohols studied and has very low substrate specificity for methanol. Among steroid alcohols, 5 beta-androstan-3 beta-ol-17-one serves as a substrate for the enzyme. Pyrazole and 4-methylpyrazole (which are well known alcohol dehydrogenase inhibitors), sulfhydryl reagents, heavy metal ions and metal-chelating agents inactivate the enzyme.  相似文献   

14.
Fructose-diphosphate aldolase [ED 4.1.2.13] was isolated from horseshoe crab ( living fossil) muscle and some molecular and enzymatic properties were examined. The enzyme was a tetramer with a molecular weight of about 160,000. The enzyme activity was inhibited by reduction with borohydride in the presence of the substrate and was inactivated by carboxypeptidase A [EC 3.4.12.2] digestion. The pH optima for fructose-diphosphate (FDP) and fructose-1-phosphate (F1P) activities were 6.5--8 and 7.5--8.2, respectively. The ratio of FDP/F1P activities was 30 and Km values were 1.7 times 10- minus 5 M and 2.5 times 10- minus 3 M, respectively, for the two substrates. The horseshoe crab aldolase was classified as class 1, type A, based on the results obtained. Extensive homology in various properties of the enzyme was observed when it was compared with enzymes from other sources, though some differences could be found in the amino acid composition and in the kinetic properties.  相似文献   

15.
The Arabidopsis genome contains two genes predicted to code for bifunctional aspartate kinase-homoserine dehydrogenase enzymes (isoforms I and II). These two activities catalyze the first and the third steps toward the synthesis of the essential amino acids threonine, isoleucine, and methionine. We first characterized the kinetic and regulatory properties of the recombinant enzymes, showing that they mainly differ with respect to the inhibition of the homoserine dehydrogenase activity by threonine. A systematic search for other allosteric effectors allowed us to identify an additional inhibitor (leucine) and 5 activators (alanine, cysteine, isoleucine, serine, and valine) equally efficient on aspartate kinase I activity (4-fold activation). The six effectors of aspartate kinase I were all activators of aspartate kinase II activity (13-fold activation) and displayed a similar specificity for the enzyme. No synergy between different effectors could be observed. The activation, which resulted from a decrease in the Km values for the substrates, was detected using low substrates concentrations. Amino acid quantification revealed that alanine and threonine were much more abundant than the other effectors in Arabidopsis leaf chloroplasts. In vitro kinetics in the presence of physiological concentrations of the seven allosteric effectors confirmed that aspartate kinase I and II activities were highly sensitive to changes in alanine and threonine concentrations. Thus, physiological context rather than enzyme structure sets the specificity of the allosteric control. Stimulation by alanine may play the role of a feed forward activation of the aspartate-derived amino acid pathway in plant.  相似文献   

16.
The substrate specificities of monoamine oxidase (MAO) A isolated from human placenta and of human liver expressed in yeast have been compared in homogeneous preparations with respect to Vmax and Km values for natural and synthetic substrates and Ki values for competitive inhibitors. MAO A from these two sources is known to differ in at least 5 amino acid residues. While the Km and Ki values were found to be nearly identical in the enzymes from these two sources, the Vmax differed significantly on bulky synthetic substrates.  相似文献   

17.
A new enzyme, NAD+-dependent 4-N-trimethylamino-1-butanol dehydrogenase from Pseudomonas sp. 13CM, was purified 526-fold to apparent homogeneity in 5 chromatographic steps. The enzyme had a molecular mass of 45 kDa and appeared to be a monomer enzyme. The isoeletric point was found to be 4.8. The optimum temperature was 50 degrees C, and the optimum pHs for the oxidation and reduction reactions were 9.5 and 6.0 respectively. The purified enzyme was further characterized with respect to substrate specificity, kinetic parameters, and amino acid terminal sequence. The Km values for trimethylamino-1-butanol and NAD+ were 0.54 mM and 0.22 mM respectively. In the reduction reaction, the apparent Km values for trimethylaminobutylaldehyde and NADH were 0.67 mM and 0.04 mM, respectively. The enzyme was inhibited by SH reagents, chelating reagents, and heavy metal ions. The N-terminal 12 amino acid residues were sequenced.  相似文献   

18.
The membrane-bound enzyme 3 beta-hydroxysteroid dehydrogenase/delta 5 -delta 4 isomerase (3 beta-HSD) catalyzes the conversion of delta 5 -3 beta-hydroxysteroid precursors into delta 4-ketosteroids, thus representing an essential step in the biosynthesis of all classes of hormonal steroids. We have recently characterized two types of cDNA clones encoding rat 3 beta-HSD proteins, the rat type I protein being much more active than type II. In order to characterize further the functional difference between these two 3 beta-HSD types, transient expression of type I and type II 3 beta-HSD cDNAs was performed in HeLa human cervical carcinoma cells. The present study demonstrates that the type I 3 beta-HSD protein has a relative specificity 64- and 46-fold higher than type II protein for pregnenolone (PREG) and dehydroepiandrosterone (DHEA) as substrates, respectively. The Km values of type I and type II enzymes were calculated at 0.74 and 14.3 microM, respectively, using PREG as substrate whereas the respective Km values were 0.68 and 12.9 microM when DHEA was used, thus showing that their different relative specificity results largely from a different affinity for substrates. Since the change of 4 amino acid residues in type II could prevent the formation of a putative membrane-spanning domain (MSD) predicted between amino acid residues 75 and 91, chimeric cDNAs containing either type I MSD in type II (II + MSD) or an absence of this MSD in type I (I-MSD) were constructed and transiently expressed. The addition of MSD intype II 3 beta-HSD markedly increased the affinity leading to Km values similar to those found in type I 3 beta-HSD, namely 0.36 and 0.40 microM for PREG and DHEA, respectively. II + MSD chimera thus encodes a protein having a relative specificity for PREG and DHEA of 58 and 73%, respectively, to that of native type I 3 beta-HSD. Moreover, removal of MSD in the type I protein (I-MSD chimera) decreased the relative specificity of type I 3 beta-HSD protein for PREG and DHEA to only 0.37 and 0.48%, with respective Km values of 11.7 and 11.0 microM, thus strongly indicating the functional importance of this putative MSD which is predicted in wild type rat type I as well as in macaque and human 3 beta-HSD proteins.  相似文献   

19.
Sphingomyelinase, purified to apparent homogeneity from human placenta, is an acidic protein, as judged from its amino acid composition and by isoelectric focusing of the carboxymethylated protein. The amino acid composition is characterized by an approximately equal content of hydrophobic and polar amino acid residues. The reduced-alkylated polypeptides were separated into two groups. Most of the polypeptides were heterogeneous with pI values of 4.4-5.0, but an additional more minor component was observed at pI 5.4. Liquid isoelectric focusing resolved the purified enzyme into a single major component (pI 4.7-4.8), a minor component (pI 5.0-5.4) and a plateau region of activity (pI 6-7). On thin-layer isoelectric focusing, the protein profile obtained from each of these regions was the same. In addition, the substrate specificity, Km values and effect of inhibitory substances were identical. We conclude that sphingomyelinase is an acidic, microheterogeneous protein that likely exists as a holopolymer of a single major polypeptide chain. the heterogeneity of the intact protein on isoelectric focusing appears to reflect this microheterogeneity, which is influenced by a tendency to associate with itself and with detergents such as Triton X-100.  相似文献   

20.
1. Dihydrodiol dehydrogenase activities were investigated in rabbit liver. Using a five-step purification scheme, eight isoenzymes of dihydrodiol dehydrogenase with isoelectric points of 5.55-9.3 and promoter molecular masses of 34-35 kDa were purified to apparent homogeneity and designated CF-1 to CF-6, CM-1 and CM-2. 2. CF-1 and CF-2 had near-neutral isoelectric points of 7.4 and 6.8 and molecular masses of about 125 kDa in the native state. Both enzymes readily accepted NAD+ as well as NADP+ as coenzymes, had relatively low Km values of 0.33 mM and 0.47 mM for benzene dihydrodiol and resembled previously described carbonyl reductases in their substrate specificity towards ketones and quinones. 3. CF-5 and CF-6 had acidic isoelectric points of 5.9 and 5.55 and native molecular masses of approximately 60 kDa. They displayed a strong preference for NADP(H) as coenzyme and had high Km and Vmax with benzene dihydrodiol. Since these enzymes reduced p-nitrobenzaldehyde and glucuronic acid efficiently, they appeared to be closely related to aldehyde reductase. 4. CF-4 had a high 3 alpha-hydroxysteroid dehydrogenase activity for the diagnostic substrate androsterone, a moderate activity for other 3 alpha-hydroxysteroids as well as 17 alpha-hydroxysteroids, and relatively low activities for 3 beta-hydroxysteroids and 17 beta-hydroxysteroids. CF-5 and CM-1 had high 17 beta-hydroxysteroid dehydrogenase activity for the diagnostic substrate 5 alpha-dihydrotestosterone, and low to moderate activities for other 17 beta-hydroxysteroids as well as 3 alpha-hydroxysteroids. 5. The isoenzyme CM-2 had an isoelectric point of 9.3 and was a very active quinone reductase with phenanthrene-9,10-quinone as substrate. It was potently inhibited by phenobarbital. 6. We conclude that the dihydrodiol dehydrogenase activities of rabbit liver are associated with aldehyde and carbonyl reductase and with 3 alpha-hydroxysteroid and 17 beta-hydroxysteroid dehydrogenases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号