首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The callose synthase (UDP-glucose: 1,3-β-d-glucan 3-β-d-glucosyl transferase; EC 2.4.1.34) enzyme (CalS) from pollen tubes of Nicotiana alata Link et Otto is responsible for developmentally regulated deposition of the cell wall polysaccharide callose. Membrane preparations from N. alata pollen tubes grown in liquid culture were fractionated by density-gradient centrifugation. The CalS activity sedimented to the denser regions of the gradient, approximately 1.18 g · ml−1, away from markers for Golgi, endoplasmic reticulum and mitochondria, and into fractions enriched in ATPase activity and in membranes staining with phosphotungstic acid at low pH. This suggests that pollen-tube CalS is localised in the plasma membrane. Callose synthase activity from membranes enriched by downward centrifugation was solubilised with digitonin, which gave a 3- to 4-fold increase in enzyme activity, and the solubilised activity was then enriched a further 10-fold by product entrapment. The complete procedure gave final CalS specific activities up to 1000-fold higher than those of pollen-tube homogenates. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that several polypeptides co-fractionated with CalS activity through purification, with a polypeptide of 190 kDa being enriched in product-entrapment pellets. Received: 24 September 1997 / Accepted: 12 November 1997  相似文献   

2.
The protein NaGSL1 (Nicotiana alata glucan synthase-like 1) is implicated in the synthesis of callose, the 1,3-beta-glucan that is the major polysaccharide in the walls of N. alata (flowering tobacco) pollen tubes. Here we examine the production, intracellular location and post-translational processing of NaGSL1, and relate each of these to the control of pollen-tube callose synthase (CalS). The 220 kDa NaGSL1 polypeptide is produced after pollen-tube germination and accumulates during pollen-tube growth, as does CalS. A combination of membrane fractionation and immunoelectron microscopy revealed that NaGSL1 was present predominantly in the endoplasmic reticulum and Golgi membranes in younger pollen tubes when CalS was mostly in an inactive (latent) form. In later stages of pollen-tube growth, when CalS was present in both latent and active forms, a greater proportion of NaGSL1 was in intracellular vesicles and the plasma membrane, the latter location being consistent with direct deposition of callose into the wall. N. alata CalS is activated in vitro by the proteolytic enzyme trypsin and the detergent CHAPS, but in neither case was activation associated with a detectable change in the molecular mass of the NaGSL1 polypeptide. NaGSL1 may thus either be activated by the removal of a few amino acids or by the removal of another protein that inhibits NaGSL1. These findings are discussed in relation to the control of callose biosynthesis during pollen germination and pollen-tube growth.  相似文献   

3.
The effect of different external factors on pollen germination and pollen tube growth is well documented for several species. On the other hand the consequences of these factors on the division of the generative nucleus and the formation of callose plugs are less known. In this study we report the effect of medium pH, 2-[N-morpholino]ethanesulfonic acid (MES) buffer, sucrose concentration, partial substitution of sucrose by polyethyleneglycol (PEG) 6000, arginine (Arg), and pollen density on the following parameters: pollen germination, pollen tube length, division of the generative nucleus, and the formation of callose plugs. We also studied the different developmental processes in relation to time. The optimal pH for all parameters tested was 6.7. In particular, the division of the generative nucleus and callose plug deposition were inhibited at lower pH values. MES buffer had a toxic effect; both pollen germination and pollen tube length were lowered. MES buffer also influenced migration of the male germ unit (MGU), the second mitotic division, and the formation of callose plugs. A sucrose concentration of 10% was optimal for pollen germination, pollen tube growth rate and final pollen tube length, as well as for division of the generative nucleus and the production of callose plugs. Partial substitution of sucrose by PEG 6000 had no influence on pollen germination and pollen tube length. However, in these pollen tubes the MGU often did not migrate and no callose plugs were observed. Pollen tube growth was independent of the migration of the MGU and the deposition of callose plugs. In previous experiments Arg proved to be positive for the division of the generative nucleus in pollen tubes cultured in vitro. Here, we found that more pollen tubes had callose plugs and more callose plugs per pollen tube were produced on medium with Arg. After the MGU migrated into the pollen tube (1 h after cultivation), callose plugs were deposited (3 h). After 8 h the first sperm cells were produced. The MGU moved away from the active pollen tube tip until the second pollen mitosis occurred, thereafter the distance from the MGU to the pollen tube tip diminished. Callose plug deposition never started prior to MGU migration into the pollen tube. Pollen tubes without a MGU also lack callose plugs (±30% of the total number of pollen tubes). Furthermore, we found a correlation between the occurrence of sperm cells in pollen tubes and the synthesis of callose plugs.  相似文献   

4.
The distribution of cellulose and callose in the walls of pollen tubes and grains of Nicotiana tabacum L. was examined by electron microscopy using gold-labelled cellobiohydrolase for cellulose and a (1,3)-β-D-glucan-specific monoclonal antibody for callose. These probes provided the first direct evidence that cellulose co-locates with callose in the inner, electron-lucent layer of the pollen-tube wall, while both polymers are absent from the outer, fibrillar layer. Neither cellulose nor callose are present in the wall at the pollen-tube tip or in cytoplasmic vesicles. Cellulose is first detected approximately 5–15 μm behind the growing tube tip, just before a visible inner wall layer commences, whereas callose is first observed in the inner wall layer approximately 30 μm behind the tip. Callose was present throughout transverse plugs, whereas cellulose was most abundant towards the outer regions of these plugs. This same distribution of cellulose and callose was also observed in pollen-tube walls of N. alata Link et Otto, Brassica campestris L. and Lilium longiflorum Thunb. In pollen grains of N. tabacum, cellulose is present in the intine layer of the wall throughout germination, but no callose is present. Callose appears in grains by 4 h after germination, increasing in amount over at least the first 18 h, and is located at the interface between the intine and the plasma membrane. This differential distribution of cellulose and callose in both pollen tubes and grains has implications for the nature of the β-glucan biosynthetic machinery. Received: 20 February 1988 / Accepted: 25 March 1998  相似文献   

5.
H Li  A Bacic    S M Read 《Plant physiology》1997,114(4):1255-1265
In pollen tubes of Nicotiana alata, a membrane-bound, Ca(2+)-independent callose synthase (CalS) is responsible for the biosynthesis of the (1,3)-beta-glucan backbone of callose, the main cell wall component. Digitonin increases CalS activity 3- to 4-fold over a wide range of concentrations, increasing the maximum initial velocity without altering the Michaelis constant for UDP-glucose. The CalS activity that requires digitonin for assay (the latent CalS activity) is not inhibited by the membrane-impermeant, active site-directed reagent UDP-pyridoxal when the reaction is conducted in the absence of digitonin. This is consistent with digitonin increasing CalS activity by the permeabilization of membrane vesicles. A second group of detergents, including 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonate (CHAPS), Zwittergent 3-16, and 1-alpha-lysolecithin, activate pollen tube CalS 10- to 15-fold, but only over a narrow range of concentrations just below their respective critical micellar concentrations. This activation could not be attributed to any particular chemical feature of these detergents. CHAPS increases maximum initial velocity and decreases the Michaelis constant for UDP-glucose and activates CalS even in the presence of permeabilizing concentrations of digitonin. Inhibition studies with UDP-pyridoxal indicate that activation by CHAPS occurs by recruitment of previously inactive CalS molecules to the pool of active enzyme. The activation of pollen tube CalS by these detergents therefore resembles activation of the enzyme by trypsin.  相似文献   

6.

Background  

Callose (β-1,3 glucan) separates developing pollen grains, preventing their underlying walls (exine) from fusing. The pollen tubes that transport sperm to female gametes also contain callose, both in their walls as well as in the plugs that segment growing tubes. Mutations in CalS5, one of several Arabidopsis β-1,3 glucan synthases, were previously shown to disrupt callose formation around developing microspores, causing aberrations in exine patterning, degeneration of developing microspores, and pollen sterility.  相似文献   

7.
Callose (beta-1,3-glucan) is produced at different locations in response to biotic and abiotic cues. Arabidopsis contains 12 genes encoding callose synthase (CalS). We demonstrate that one of these genes, CalS5, encodes a callose synthase which is responsible for the synthesis of callose deposited at the primary cell wall of meiocytes, tetrads and microspores, and the expression of this gene is essential for exine formation in pollen wall. CalS5 encodes a transmembrane protein of 1923 amino acid residues with a molecular mass of 220 kDa. Knockout mutations of the CalS5 gene by T-DNA insertion resulted in a severe reduction in fertility. The reduced fertility in the cals5 mutants is attributed to the degeneration of microspores. However, megagametogenesis is not affected and the female gametes are completely fertile in cals5 mutants. The CalS5 gene is also expressed in other organs with the highest expression in meiocytes, tetrads, microspores and mature pollen. Callose deposition in the cals5 mutant was nearly completely lacking, suggesting that this gene is essential for the synthesis of callose in these tissues. As a result, the pollen exine wall was not formed properly, affecting the baculae and tectum structure and tryphine was deposited randomly as globular structures. These data suggest that callose synthesis has a vital function in building a properly sculpted exine, the integrity of which is essential for pollen viability.  相似文献   

8.
It has been known for more than a century that sieve plates in the phloem in plants contain callose, a β-1,3-glucan. However, the genes responsible for callose deposition in this subcellular location have not been identified. In this paper we examine callose deposition patterns in T-DNA insertion mutants (cs7) of the Callose Synthase 7 (CalS7) gene. We demonstrated here that the CalS7 gene is expressed specifically in the phloem of vascular tissues. Callose deposition in the phloem, especially in the sieve elements, was greatly reduced in cs7 mutants. Ultrastructural analysis of developing sieve elements revealed that callose failed to accumulate in the plasmodesmata of incipient sieve plates at the early perforation stage of phloem development, resulting in the formation of sieve plates with fewer pores. In wild-type Arabidopsis plants, callose is present as a constituent polysaccharide in the phloem of the stem, and its accumulation can also be induced by wounding. Callose accumulation in both conditions was eliminated in mature sieve plates of cs7 mutants. These results demonstrate that CalS7 is a phloem-specific callose synthase gene, and is responsible for callose deposition in developing sieve elements during phloem formation and in mature phloem induced by wounding. The mutant plants exhibited moderate reduction in seedling height and produced aberrant pollen grains and short siliques with aborted embryos, suggesting that CalS7 also plays a role in plant growth and reproduction.  相似文献   

9.
Summary The wall ofPinus sylvestris pollen and pollen tubes was studied by electron microscopy after both rapid-freeze fixation and freeze-substitution (RF-FS) and chemical fixation. Fluorescent probes and antibodies (JIM7 and JIM5) were used to study the distribution of esterified pectin, acidic pectin and callose. The wall texture was studied on shadow-casted whole mounts of pollen tubes after extraction of the wall matrix. The results were compared to current data of angiosperms. TheP. sylvestris pollen wall consists of a sculptured and a nonsculptured exine. The intine consists of a striated outer layer, that stretches partly over the pollen tube wall at the germination side, and a striated inner layer, which is continuous with the pollen tube wall and is likely to be partly deposited after germination. Variable amounts of callose are present in the entire intine. No esterified pectin is detected in the intine and acidic pectin is present in the outer intine layer only. The wall of the antheridial cell contains callose, but no pectin is detectable. The wall between antheridial and tube cell contains numerous plasmodesmata and is bordered by coated pits, indicating intensive communication with the tube cell. Callose and esterified pectin are present in the tip and the younger parts of the pollen tubes, but both ultimately disappear from the tube. Sometimes traces in the form of bands remain present. No acidic pectin is detected in either tip or tube. The wall of the pollen tube tip has a homogenous appearance, but gradually attains a fibrillar character at aging, perhaps because of the disappearance of callose and pectin. No secondary wall formation or callose lining can be seen wilh the electron microscope. The densily of the cellulose microfibrils (CMF) is much lower in the tip than in the tube. Both show CMF in all but axial and nontransverse orientations. In conclusion,P. sylvestris and angiosperm pollen tubes share the presence of esterified pectin in the tip, the oblique orientations of the CMF, and the gradual differentiation of the pollen tube wall, indicating a possible relation to tip growth. The presence of acidic pectin and the deposition of a secondary-wall or callose layer in angiosperms but not inP. sylvestris indicales that these characteristics are not related to tip growth, but probably represent adaptations to the fast and intrastylar growth of angiosperms.Abbreviations CMF cellulose microfibrils - II inner intine - NE nonsculptured exine - OI outer intine - RF-FS rapid-freeze fixation freeze-substitution - SE sculptured exine - SER smooth endoplasmic reliculum - SV secretory vesicles  相似文献   

10.
Bo Xie  Xiaomin Wang  Zonglie Hong 《Planta》2010,231(4):809-823
Pollination is essential for seed reproduction and for exchanges of genetic information between individual plants. In angiosperms, mature pollen grains released from dehisced anthers are transferred to the stigma where they become hydrated and begin to germinate. Pollen grains of wild-type Arabidopsis thaliana do not germinate inside the anther under normal growth conditions. We report two Arabidopsis lines that produced pollen grains able to in situ precociously germinate inside the anther. One of them was a callose synthase 9 (cs9) knockout mutant with a T-DNA insertion in the Callose Synthase 9 gene (CalS9). Male gametophytes carrying a cs9 mutant allele were defective and no homozygous progeny could be produced. Heterozygous mutant plants (cs9/+) produced approximately 50% defective pollen grains with an altered male germ unit (MGU) and aberrant callose deposition in bicellular pollen. Bicellular pollen grains germinated precociously inside the anther. Another line, a transgenic plant expressing callose synthase 5 (CalS5) under the CaMV 35S promoter, also contained abnormal callose deposition during microsporogenesis and displaced MGUs in pollen grains. We also observed that precocious pollen germination could be induced in wild-type plants by incubation with medium containing sucrose and calcium ion and by wounding in the anther. These results demonstrate that precocious pollen germination in Arabidopsis could be triggered by a genetic alteration and a physiological condition.  相似文献   

11.
Callose, a ß, 1–3 glucan as a component of plantcells has received sporadic attention. Here, we report an attemptto determine whether aniline blue and lacmoid are indeed specificfor visualizing callose. We also re-evaluate, based on a checkfor stain specificity, the localization of callose in elongatingLilium longiflorum, cv. ‘Ace’ pollen tubes. Specificityof these stains was checked by chemical and enzymatic extractionprocedures which solubilize proteins and polysaccharides. Resultsherein question the generally accepted validity of the fluorescent-anilineblue method for detecting callose. Lacmoid either possessesan affinity for both callose and protein or for callose as aglycoprotein. As for callose localization, the walls of thenon-growing region of the lily pollen tube contain callose,probably as a glycoprotein. Presence of the callosicglycoproteinin the wall of the growing tube-tip is dependent on tube length.Callose plugs exhibiting an affinity for aniline blue or lacmoidwere never seen. Phase-contrast microscopy revealed non-stainablewall ingrowths in fixed-tubes and free-moving cytoplasmic masseswithin living tubes.  相似文献   

12.
As part of the Brassicaceae self-incompatibility response, callose is deposited in the stigma papillar cells. To determine if callose plays an important role in the rejection of incompatible pollen by the stigma, transgenic Brassica napus. L. plants were produced which express the tobacco β-1,3-glucanase cDNA (the enzyme which degrades callose) in the stigma papillae. Using aniline blue fluorescence, little or no callose was detected in the papillar cells of transgenic stigmas. However, the self-incompatibility system appeared to be unaffected based on the lack of pollen tube growth and the subsequent lack of seed set. The transgene had no effect on compatible pollinations. Thus, while callose deposition is associated with the B. napus self-incompatibility response, it is not required for the rejection of incompatible pollen. Received: 14 March 1997 / Accepted: 15 April 1997  相似文献   

13.
Tucker MR  Paech NA  Willemse MT  Koltunow AM 《Planta》2001,212(4):487-498
Callose accumulates in the walls of cells undergoing megasporogenesis during embryo sac formation in angiosperm ovules. Deficiencies in callose deposition have been observed in apomictic plants and causal linkages between altered callose deposition and apomictic initiation proposed. In apomictic Hieracium, embryo sacs initiate by sexual and apomictic processes within an ovule, but sexual development terminates in successful apomicts. Callose deposition and the events that lead to sexual termination were examined in different Hieracium apomicts that form initials pre- and post-meiosis. In apomictic plants, callose was not detected in initial cell walls and deficiencies in callose deposition were not observed in cells undergoing megasporogenesis. Multiple initial formation pre-meiosis resulted in physical distortion of cells undergoing megasporogenesis, persistence of callose and termination of the sexual pathway. In apomictic plants, callose persistence did not correlate with altered spatial or temporal expression of a β-1,3-glucanase gene (HpGluc) encoding a putative callose-degrading enzyme. Expression analysis indicated HpGluc might function during ovule growth and embryo sac expansion in addition to callose dissolution in sexual and apomictic plants. Initial formation pre-meiosis might therefore limit the access of HpGluc protein to callose substrate while the expansion of aposporous embryo sacs is promoted. Callose deposition and dissolution during megasporogenesis were unaffected when initials formed post-meiosis, indicating other events cause sexual termination. Apomixis in Hieracium is not caused by changes in callose distribution but by events that lead to initial cell formation. The timing of initial formation can in turn influence callose dissolution. Received: 18 April 2000 / Accepted: 10 July 2000  相似文献   

14.
Monoclonal antibodies that recognize pectins were used for the localization of esterified (JIM7) and acidic, unesterified (JIM5) forms of pectin in pollen tube walls of Ornithogalum virens L. (x = n = 3). The results indicated that the distribution of the two forms of pectin in the pollen tube wall depended on the medium (liquid or solid) used for pollen germination. In pollen tubes grown in the liquid medium, the localization of JIM7 was limited to the very tip of the pollen tube, whereas the localization of JIM5 indicated a uniform distribution of unesterified pectins in the very tip of the tube and along the subapical parts of the tube wall. In tubes germinated on the medium stabilized with agar (1–2%) the localization of JIM7 and JIM5 indicated the presence of both forms of pectin in the tube tip and along the whole length of the pollen tube wall in a ring-like pattern. Thus, the localization of esterified pectins in the sub-apical part of the pollen tube wall, below the apex of the tube, is described for the first time. Measurements of the growth rates of pollen tubes growing on the two types of medium indicated that oscillations in tube growth rate occur but these do not coincide with the pattern of pectin distribution in the tube wall. Our results complement the previous data obtained for the localization of JIM5 and JIM7 in pollen tube walls of other plant species. (Y.-Q. Li et al. 1994, Sex Plant Reprod 7: 145–150) and provide new insight into an understanding of the construction of the pollen tube wall and the physiology of pollen grain germination. Received: 25 January 1999 / Accepted: 23 June 1999  相似文献   

15.
Pollen-tube cell walls are unusual in that they are composed almost entirely of callose, a (1,3)--linked glucan with a few 6-linked branches. Regulation of callose synthesis in pollen tubes is under developmental control, and this contrasts with the deposition of callose in the walls of somatic plant cells which generally occurs only in response to wounding or stress. The callose synthase (uridine-diphosphate glucose: 1,3--d-glucan 3--d-glucosyl transferase, EC 2.4.1.34) activities of membrane preparations from cultured pollen tubes and suspension-cultured cells of Nicotiana alata Link et Otto (ornamental tobacco) exhibited different kinetic and regulatory properties. Callose synthesis by membrane preparations from pollen tubes was not stimulated by Ca2+ or other divalent cations, and exhibited Michaelis-Menten kinetics only between 0.25 mM and 6 mM uridine-diphosphate glucose (K m 1.5–2.5 mM); it was activated by -glucosides and compatible detergents. In contrast, callose synthesis by membrane preparations from suspension-cultured cells was dependent on Ca2+, and in the presence of 2 mM Ca2+ exhibited Michaelis-Menten kinetics above 0.1 mM uridine-diphosphate glucose (K m 0.45 mM); it also required a -glucoside and low levels of compatible detergent for full activity, but was rapidly inactivated at higher levels of detergent. Callose synthase activity in pollen-tube membranes increased ten fold after treatment of the membranes with trypsin in the presence of detergent, with no changes in cofactor requirements. No increase in callose synthase activity, however, was observed when membranes from suspension-cultured cells were treated with trypsin. The insoluble polymeric product of the pollen-tube enzyme was characterised as a linear (1,3)--d-glucan with no 6-linked glucosyl branches, and the same product was synthesised irrespective of the assay conditions employed.Abbreviations Ara l-arabinose - CHAPS 3-[(3-cholamidopropyl)dimethylammonia]-1-propane sulphonic acid - DAP diphenylamine-aniline-phosphoric acid stain - Gal d-galactose - Glc d-glucose - Man d-mannose - Mes 2-(N-morpholino)ethane sulphonic acid - Rha d-rhamnose - Rib d-ribose - TFA trifluoroacetic acid - UDPGlc uridine-diphosphate glucose - Xyl d-xylose This research was supported by funds from a Special Research Centre of the Australian Research Council. H.S. was funded by a Melbourne University Postgraduate Scholarship and an Overseas Postgraduate Research Studentship; S.M.R. was supported by a Queen Elizabeth II Research Fellowship. We thank Bruce McGinness and Susan Mau for greenhouse assistance, and Deborah Delmer and Adrienne Clarke for advice and encouragement throughout this project.  相似文献   

16.
Chen KM  Wu GL  Wang YH  Tian CT  Samaj J  Baluska F  Lin JX 《Protoplasma》2008,233(1-2):39-49
Two potent drugs, neomycin and TMB-8, which can block intracellular calcium release, were used to investigate their influence on pollen tube growth and cell wall deposition in Picea wilsonii. Apart from inhibiting pollen germination and pollen tube growth, the two drugs largely influenced tube morphology. The drugs not only obviously disturbed the generation and maintenance of the tip-localized Ca(2+) gradient but also led to a heavy accumulation of callose at the tip region of P. wilsonii pollen tubes. Fourier transform infrared (FTIR) spectroscopy analysis showed that the deposition of cell wall components, such as carboxylic acid, pectins, and other polysaccharides, in pollen tubes was changed by the two drugs. The results obtained from immunolabeling with different pectin and arabinogalactan protein antibodies agreed well with the FTIR results and further demonstrated that the generation and maintenance of the gradient of cross-linked pectins, as well as the proportional distribution of arabinogalactan proteins in tube cell walls, are essential for pollen tube growth. These results strongly suggest that intracellular calcium release mediates the processes of pollen germination and pollen tube growth in P. wilsonii and its inhibition can lead to abnormal growth by disturbing the deposition of cell wall components in pollen tube tips.  相似文献   

17.
18.
The NaGSL1 gene has been proposed to encode the callose synthase (CalS) enzyme from Nicotiana alata pollen tubes based on its similarity to fungal 1,3-beta-glucan synthases and its high expression in pollen and pollen tubes. We have used a biochemical approach to link the NaGSL1 protein with CalS enzymic activity. The CalS enzyme from N. alata pollen tubes was enriched over 100-fold using membrane fractionation and product entrapment. A 220 kDa polypeptide, the correct molecular weight to be NaGSL1, was specifically detected by anti-GSL antibodies, was specifically enriched with CalS activity, and was the most abundant polypeptide in the CalS-enriched fraction. This polypeptide was positively identified as NaGSL1 using both MALDI-TOF MS and LC-ESI-MS/MS analysis of tryptic peptides. Other low-abundance polypeptides in the CalS-enriched fractions were identified by MALDI-TOF MS as deriving from a 103 kDa plasma membrane H+-ATPase and a 60 kDa beta-subunit of mitochondrial ATPase, both of which were deduced to be contaminants in the product-entrapped material. These analyses thus suggest that NaGSL1 is required for CalS activity, although other smaller (<30 kDa) or low-abundance proteins could also be involved.  相似文献   

19.
Effects of Yariv phenylglycoside on cell wall assembly in the lily pollen tube   总被引:18,自引:0,他引:18  
Arabinogalactan-proteins (AGPs) are proteoglycans with a high level of galactose and arabinose. Their current functions in plant development remain speculative. In this study, (β-D-glucosyl)3 Yariv phenylglycoside [(β-D-Glc)3] was used to perturb AGPs at the plasmalemma-cell wall interface in order to understand their functional significance in cell wall assembly during pollen tube growth. Lily (Lilium longiflorum Thunb.) pollen tubes, in which AGPs are deposited at the tip, were used as a model. Yariv phenylglycoside destabilizes the normal intercalation of new cell wall subunits, while exocytosis of the secretory vesicles still occurs. The accumulated components at the tip are segregated between fibrillar areas of homogalacturonans and translucent domains containing callose and AGPs. We propose that the formation of AGP/(β-D-Glc)3 complexes is responsible for the lack of proper cell wall assembly. Pectin accumulation and callose synthesis at the tip may also change the molecular architecture of the cell wall and explain the lack of proper cell wall assembly. The data confirm the importance of AGPs in pollen tube growth and emphasize their role in the deposition of cell wall subunits within the previously synthesized cell wall. Received: 14 August 1997 / Accepted: 9 September 1997  相似文献   

20.
Hydration of pollen of Narcissus pseudonarcissus was retardedand germination blocked in media with supra-optimal concentrationsof osmoticum. Activation of the grains, expressed in circulatorymovement in the vegetative cell, was not blocked. Wall developmentwas disrupted, and pectic material and callose were depositedthroughout. In the absence of calcium many grains burst on hydration.The survivors showed evidence of activation, but few tubes wereformed. In medium with supra-optimal Ca2+, activation proceeded,but where tube tips were produced they became occluded withcallose, which eventually formed a general lining to the intine.Nifedipine, a Ca2+-blocker, did not prevent activation at 10–4M, but reduced callose deposition and inhibited polarized movementin the vegetative cell. Prominences formed at the germinationsites were mostly low and rounded. During recovery in normalmedium, tube tips with normal callose linings were formed. Colchicine,a microtubule inhibitor, had no effect on activation or germination.Cytochalasin D, an actin inhibitor, prevented activation ofthe vegetative cell, but did not arrest all wall deposition.Movement began soon after transfer to normal medium, and somegrains produced adventitious tube tips. While Ca2+ appears notto be essential for activation, these results may be interpretedas indicating links in the normal course of germination betweenthe initial Ca2+ influx at the potential germination sites and:(a) polarization of movement in the vegetative cell, probablyrelated to re-orientation of the actin cytoskeleton; and (b)patterned deposition of callose, which appears to have an importantmorphogenetic role. Narcissus pseudonarcissus, pollen activation, pollen germination, osmotic effects, actin cytoskeleton, nifedipine, cytochalasin D, colchicine, role of Ca2+ flux  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号