首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural genomics projects have been accumulating an increasing number of protein structures, many of which remain functionally unknown. In parallel effort to experimental methods, computational methods are expected to make a significant contribution for functional elucidation of such proteins. However, conventional computational methods that transfer functions from homologous proteins do not help much for these uncharacterized protein structures because they do not have apparent structural or sequence similarity with the known proteins. Here, we briefly review two avenues of computational function prediction methods, i.e. structure-based methods and sequence-based methods. The focus is on our recent developments of local structure-based and sequence-based methods, which can effectively extract function information from distantly related proteins. Two structure-based methods, Pocket-Surfer and Patch-Surfer, identify similar known ligand binding sites for pocket regions in a query protein without using global protein fold similarity information. Two sequence-based methods, protein function prediction and extended similarity group, make use of weakly similar sequences that are conventionally discarded in homology based function annotation. Combined together with experimental methods we hope that computational methods will make leading contribution in functional elucidation of the protein structures.  相似文献   

2.
Structural genomics projects are producing many three-dimensional structures of proteins that have been identified only from their gene sequences. It is therefore important to develop computational methods that will predict sites involved in productive intermolecular interactions that might give clues about functions. Techniques based on evolutionary conservation of amino acids have the advantage over physiochemical methods in that they are more general. However, the majority of techniques neither use all available structural and sequence information, nor are able to distinguish between evolutionary restraints that arise from the need to maintain structure and those that arise from function. Three methods to identify evolutionary restraints on protein sequence and structure are described here. The first identifies those residues that have a higher degree of conservation than expected: this is achieved by comparing for each amino acid position the sequence conservation observed in the homologous family of proteins with the degree of conservation predicted on the basis of amino acid type and local environment. The second uses information theory to identify those positions where environment-specific substitution tables make poor predictions of the overall amino acid substitution pattern. The third method identifies those residues that have highly conserved positions when three-dimensional structures of proteins in a homologous family are superposed. The scores derived from these methods are mapped onto the protein three-dimensional structures and contoured, allowing identification clusters of residues with strong evolutionary restraints that are sites of interaction in proteins involved in a variety of functions. Our method differs from other published techniques by making use of structural information to identify restraints that arise from the structure of the protein and differentiating these restraints from others that derive from intermolecular interactions that mediate functions in the whole organism.  相似文献   

3.
The prokaryotic hlyB gene product is a member of a superfamily of ATP-binding transport proteins that include the eukaryotic multidrug-resistance P-glycoprotein, the yeast STE6, and the cystic fibrosis CFTR gene products (Juranka, P. F., Zastawny, R. L., and Ling, V. (1989) FASEB J. 3, 2583-2592). Previous genetic studies have indicated that HlyB is involved in the transport of the 107-kDa HlyA protein from Escherichia coli; however, the HlyB protein has not been purified for biochemical studies due to its low abundance. In this study, we have engineered a monoclonal antibody epitope into the C-terminal end of HlyB that did not destroy its function. This has allowed us to use immunological methods to identify and localize various molecular forms of the HlyB protein present in vivo.  相似文献   

4.
Functional genomics by mass spectrometry   总被引:10,自引:0,他引:10  
Andersen JS  Mann M 《FEBS letters》2000,480(1):25-31
Systematic analysis of the function of genes can take place at the oligonucleotide or protein level. The latter has the advantage of being closest to function, since it is proteins that perform most of the reactions necessary for the cell. For most protein based ('proteomic') approaches to gene function, mass spectrometry is the method of choice. Mass spectrometry can now identify proteins with very high sensitivity and medium to high throughput. New instrumentation for the analysis of the proteome has been developed including a MALDI hybrid quadrupole time of flight instrument which combines advantages of the mass finger printing and peptide sequencing methods for protein identification. New approaches include the isotopic labeling of proteins to obtain accurate quantitative data by mass spectrometry, methods to analyze peptides derived from crude protein mixtures and approaches to analyze large numbers of intact proteins by mass spectrometry directly. Examples from this laboratory illustrate biological problem solving by modern mass spectrometric techniques. These include the analysis of the structure and function of the nucleolus and the analysis of signaling complexes.  相似文献   

5.
The classic structure–function paradigm holds that a protein exhibits a single well-defined native state that gives rise to its biological function. Nonetheless, over the past few decades, numerous examples of proteins exhibiting biological function arising from multiple structural states of varying disorder have been identified. Most recently, several examples of ‘metamorphic proteins’, able to interconvert between vastly different native-like topologies under physiological conditions, have been characterised with multiple functions. In this review, we look at the concept of protein metamorphosis in relation to the current understanding of the protein structure–function landscape. Although structural dynamism observed for metamorphic proteins provides a novel source of functional versatility, the dynamic nature of the metamorphic proteins generally makes them difficult to identify and probe using conventional protein structure determination methods. However, as the existence of metamorphic proteins has now been established and techniques enabling the analysis of multiple protein conformers are improving, it is likely that this class will continue to grow in number.  相似文献   

6.
7.
Immunoglobulin superfamily proteins in Caenorhabditis elegans   总被引:2,自引:0,他引:2  
  相似文献   

8.
Several methods based on the use of transposons allow the efficient generation of relatively short (e.g., <35 residues) in-frame insertions in proteins. The analysis of such insertions has provided a simple means to identify sites that tolerate dramatic sequence changes without loss of function ("permissive" sites) and to dissect protein structure-function relationships. In addition, epitope and protease cleavage site "tags" introduced in such insertions have made it possible to analyze the oligomerization state and transmembrane topologies of several proteins. Finally, the DNA inserted by these methods generally carries restriction sites which may facilitate the construction of in-frame deletions and gene fusions encoding a variety of chimeric proteins.  相似文献   

9.
Proteomic methods have been used to monitor changes in protein synthesis in the first 4 h following stimulation of human lung fibroblasts with endothelin-1. Using pulsed [(35)S]methionine labeling, about 70 proteins with altered protein synthesis could be detected, and the 35 proteins showing the largest changes were identified by mass spectrometry. The observed proteins included unexpected proteins such as Sox5, two isoforms of Rab14, Rab3A, translationally controlled tumor protein, and one protein of previously unknown function. There was a wide range of different kinetic behavior, and groups of functionally linked proteins such as Rab14, nucleophosmin,and cyclin-dependent kinase inhibitor 1B could be detected from similar kinetics. We propose that the functional proteomic methods are competitive with and have some advantages compared to expression profiling methods for monitoring gene expression.  相似文献   

10.
To address the need for new antibacterials, a number of bacterial genomes have been systematically disrupted to identify essential genes. Such programs have focused on the disruption of single genes and may have missed functions encoded by gene pairs or multiple genes. In this work, we hypothesized that we could predict the identity of pairs of proteins within one organism that have the same function. We identified 135 putative protein pairs in Bacillus subtilis and attempted to disrupt the genes forming these, singly and then in pairs. The single gene disruptions revealed new genes that could not be disrupted individually and other genes required for growth in minimal medium or for sporulation. The pairwise disruptions revealed seven pairs of proteins that are likely to have the same function, as the presence of one protein can compensate for the absence of the other. Six of these pairs are essential for bacterial viability and in four cases show a pattern of species conservation appropriate for potential antibacterial development. This work highlights the importance of combinatorial studies in understanding gene duplication and identifying functional redundancy.  相似文献   

11.
12.
13.
Summary: Studies of the functional proteins encoded by the poxvirus genome provide information about the composition of the virus as well as individual virus-virus protein and virus-host protein interactions, which provides insight into viral pathogenesis and drug discovery. Widely used proteomic techniques to identify and characterize specific protein-protein interactions include yeast two-hybrid studies and coimmunoprecipitations. Recently, various mass spectrometry techniques have been employed to identify viral protein components of larger complexes. These methods, combined with structural studies, can provide new information about the putative functions of viral proteins as well as insights into virus-host interaction dynamics. For viral proteins of unknown function, identification of either viral or host binding partners provides clues about their putative function. In this review, we discuss poxvirus proteomics, including the use of proteomic methodologies to identify viral components and virus-host protein interactions. High-throughput global protein expression studies using protein chip technology as well as new methods for validating putative protein-protein interactions are also discussed.  相似文献   

14.
Few mammalian proteins involved in chromosome structure and function during meiosis have been characterized. As an approach to identify such proteins, cDNA clones expressed in mouse testis were analyzed by sequencing and Northern blotting. Various cDNA library screening methods were used to obtain the clones. First, hybridization with cDNA from testis or brain allowed selection of either negative or differentially expressed plaques. Second, positive plaques were identified by screening with polyclonal antisera to prepubertal testis nuclear proteins. Most clones were selected by negative hybridization to correspond to a low abundance class of mRNAs. A PCR-based solid-phase DNA sequencing protocol was used to rapidly obtain 306 single-pass cDNA sequences totaling more than 104 kb. Comparison with nucleic acid and protein databases showed that 56% of the clones have no significant match to any previously identified sequence. Northern blots indicate that many of these novel clones are testis-enriched in their expression. Further evidence that the screening strategies were appropriate is that a high proportion of the clones which do have a match encode testisenriched or meiosis-specific genes, including the mouse homolog of a rat gene that encodes a synaptonemal complex protein.The nucleotide sequence data reported in this paper have been submitted to Genbank and have been assigned the accession numbers L26606–1.26848.  相似文献   

15.
Cai XH  Jaroszewski L  Wooley J  Godzik A 《Proteins》2011,79(8):2389-2402
The protein universe can be organized in families that group proteins sharing common ancestry. Such families display variable levels of structural and functional divergence, from homogenous families, where all members have the same function and very similar structure, to very divergent families, where large variations in function and structure are observed. For practical purposes of structure and function prediction, it would be beneficial to identify sub-groups of proteins with highly similar structures (iso-structural) and/or functions (iso-functional) within divergent protein families. We compared three algorithms in their ability to cluster large protein families and discuss whether any of these methods could reliably identify such iso-structural or iso-functional groups. We show that clustering using profile-sequence and profile-profile comparison methods closely reproduces clusters based on similarities between 3D structures or clusters of proteins with similar biological functions. In contrast, the still commonly used sequence-based methods with fixed thresholds result in vast overestimates of structural and functional diversity in protein families. As a result, these methods also overestimate the number of protein structures that have to be determined to fully characterize structural space of such families. The fact that one can build reliable models based on apparently distantly related templates is crucial for extracting maximal amount of information from new sequencing projects.  相似文献   

16.
Prediction of protein function from protein sequence and structure   总被引:1,自引:0,他引:1  
The sequence of a genome contains the plans of the possible life of an organism, but implementation of genetic information depends on the functions of the proteins and nucleic acids that it encodes. Many individual proteins of known sequence and structure present challenges to the understanding of their function. In particular, a number of genes responsible for diseases have been identified but their specific functions are unknown. Whole-genome sequencing projects are a major source of proteins of unknown function. Annotation of a genome involves assignment of functions to gene products, in most cases on the basis of amino-acid sequence alone. 3D structure can aid the assignment of function, motivating the challenge of structural genomics projects to make structural information available for novel uncharacterized proteins. Structure-based identification of homologues often succeeds where sequence-alone-based methods fail, because in many cases evolution retains the folding pattern long after sequence similarity becomes undetectable. Nevertheless, prediction of protein function from sequence and structure is a difficult problem, because homologous proteins often have different functions. Many methods of function prediction rely on identifying similarity in sequence and/or structure between a protein of unknown function and one or more well-understood proteins. Alternative methods include inferring conservation patterns in members of a functionally uncharacterized family for which many sequences and structures are known. However, these inferences are tenuous. Such methods provide reasonable guesses at function, but are far from foolproof. It is therefore fortunate that the development of whole-organism approaches and comparative genomics permits other approaches to function prediction when the data are available. These include the use of protein-protein interaction patterns, and correlations between occurrences of related proteins in different organisms, as indicators of functional properties. Even if it is possible to ascribe a particular function to a gene product, the protein may have multiple functions. A fundamental problem is that function is in many cases an ill-defined concept. In this article we review the state of the art in function prediction and describe some of the underlying difficulties and successes.  相似文献   

17.
Establishing the linkage between an individual biochemical activity and the gene(s) specifying that activity has been facilitated by advances in mass spectrometry and affinity purification methods. In addition, a genomic protein array has been produced in yeast by fusing each yeast open reading frame to glutathione-S-transferase, thus linking each protein with its cognate gene. Purification and biochemical assay of pools of glutathione-S-transferase-open-reading-frame proteins allows analysis of the entire proteome for biochemical activities, followed by simple deconvolution to identify the responsible open reading frame. An alternative method to analyze large sets of proteins is the use of protein microarrays in which over 10,000 individual proteins can be immobilized and assayed on a single slide.  相似文献   

18.
Elevated protein oxidation is a widely reported hallmark of most major diseases. Historically, this 'oxidative stress' has been considered causatively detrimental, as the protein oxidation events were interpreted simply as damage. However, recent advances have changed this antiquated view; sensitive methodology for detecting and identifying proteins susceptible to oxidation has revealed a fundamental role for this modification in physiological cell signalling during health. Reversible protein oxidation that is dynamically coupled with cellular reducing systems allows oxidative protein modifications to regulate protein function, analogous to phosphoregulation. However, the relatively labile nature of many reversible protein oxidation states hampers the reliable detection and identification of modified proteins. Consequently, specialized methods to stabilize protein oxidation in combination with techniques to detect specific types of modification have been developed. Here, these techniques are discussed, and their sensitivity, selectivity and ability to reliably identify reversibly oxidized proteins are critically assessed.  相似文献   

19.
Our understanding of how obligate intracellular pathogens co-opt eukaryotic cellular functions has been limited by their intractability to genetic manipulation and by the abundance of pathogen-specific genes with no known functional homologues. In this report we describe a gene expression system to characterize proteins of unknown function from the obligate intracellular bacterial pathogen Chlamydia trachomatis. We have devised a homologous recombination-based cloning strategy to construct an ordered array of Saccharomyces cerevisiae strains expressing all Chlamydia-specific genes. These strains were screened to identify chlamydial proteins that impaired various yeast cellular functions or that displayed tropism towards eukaryotic organelles. In addition, to identify bacterial factors that are secreted into the host cell, recombinant chlamydial proteins were screened for reactivity towards antisera raised against vacuolar membranes purified from infected mammalian cells. We report the identification of 34 C. trachomatis proteins that impact yeast cellular functions or are tropic for a range of eukaryotic organelles including mitochondria, nucleus and cytoplasmic lipid droplets, and a new family of Chlamydia-specific proteins that are exported from the parasitopherous vacuole. The versatility of molecular manipulations and protein expression in yeast allows for the rapid construction of comprehensive protein expression arrays to explore the function of pathogen-specific gene products from microorganisms that are difficult to genetically manipulate, grow in culture or too dangerous for routine analysis in the laboratory.  相似文献   

20.
A phylogenomic study of the MutS family of proteins.   总被引:23,自引:4,他引:19       下载免费PDF全文
The MutS protein of Escherichia coli plays a key role in the recognition and repair of errors made during the replication of DNA. Homologs of MutS have been found in many species including eukaryotes, Archaea and other bacteria, and together these proteins have been grouped into the MutS family. Although many of these proteins have similar activities to the E.coli MutS, there is significant diversity of function among the MutS family members. This diversity is even seen within species; many species encode multiple MutS homologs with distinct functions. To better characterize the MutS protein family, I have used a combination of phylogenetic reconstructions and analysis of complete genome sequences. This phylogenomic analysis is used to infer the evolutionary relationships among the MutS family members and to divide the family into subfamilies of orthologs. Analysis of the distribution of these orthologs in particular species and examination of the relationships within and between subfamilies is used to identify likely evolutionary events (e.g. gene duplications, lateral transfer and gene loss) in the history of the MutS family. In particular, evidence is presented that a gene duplication early in the evolution of life resulted in two main MutS lineages, one including proteins known to function in mismatch repair and the other including proteins known to function in chromosome segregation and crossing-over. The inferred evolutionary history of the MutS family is used to make predictions about some of the uncharacterized genes and species included in the analysis. For example, since function is generally conserved within subfamilies and lineages, it is proposed that the function of uncharacterized proteins can be predicted by their position in the MutS family tree. The uses of phylogenomic approaches to the study of genes and genomes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号