首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In order to detect the product of dnaB gene in B. subtilis, a gene which is involved in the initiation of DNA replication and the formation of the DNA-membrane complex, we synthesized an origopeptide of 15 amino acids which corresponds to a region near the carboxyl-terminal of the gene product, and raised antibody against the synthetic peptide. We have also employed a filter binding assay to measure the predicted DNA binding activity of the product of the dnaB gene, using the plasmid pUB110. The binding activity was detected after fractionation of cell lysates of B. subtilis on sucrose-density gradients. When the active fraction was prepared from a mutant which was temperature-sensitive for the dnaB gene, the DNA binding activity in the fraction showed significant thermolability. Furthermore, the binding activity was inhibited by the purified antibody raised against the synthetic peptide. These results suggest that the product of the dnaB gene does indeed have DNA binding activity, and that the filter binding assay and the antibody can be used for the detection and characterization of the gene product.  相似文献   

3.
The dnaB gene of Bacillus subtilis is involved in the initiation of DNA replication and also in the binding of the chromosomal origin to the bacterial membrane. We studied the effect of temperature-sensitive dnaB mutants (dnaB1 and dnaB19) on the replication and on the DNA-membrane binding of the plasmid pKW1, which was derived from the low-copy-number plasmid pBS2. In the dnaB19 mutant, pKW1 was not able to replicate at the restrictive temperature. In the dnaB1 mutant, however, the dimeric form of pKW1 DNA was preferentially produced as the restrictive temperature, but the replication of the monomeric form was totally blocked. We also examined the effects of the dnaB(Ts) gene on the DNA-membrane binding of both the double-stranded and single-stranded DNA from pKW1. The single-stranded DNA from pKW1 was prepared from the DNA of the phage M13 mp19, which contained the origin of replication of pKW1. In the dnaB1 mutant, pKW1 DNA in both the double-stranded and single-stranded form was released from the membrane at the restrictive temperature. On the other hand, in the dnaB19 mutant, only double-stranded DNA, and not single-stranded DNA, was released from the membrane at the restrictive temperature. These results suggest that the product of the dnaB gene has at least two domains which influence the replication of DNA and the binding of DNA to the cell membrane in separate ways.  相似文献   

4.
The nature of the deoxyribonucleic acid synthesis reported by others to occur at 45 degrees C in germinating spores of the temperature-sensitive deoxyribonucleic acid initiation mutant of Bacillus subtilis 168, TsB134, has been investigated. Density transfer experiments, using 5-bromouracil, show that a normal round of replication can occur in a significant fraction of the spore population under such conditions. No repair synthesis is detectable. The possibility raised by this finding, that initiation of the first round of replication during spore outgrowth is unique in that its initiation is determined prior to germination, has been investigated by comparing the behavior of germinating spores of isogenic strains of B. subtilis 168, one carrying and the other without the dnaB (Ts)134 mutation. It is shown that deoxyribonucleic acid synthesis in the Ts strain is very sensitive to temperature in the vicinity of 45 degrees C. At a slightly higher temperature, 49 degrees C, initiation of the first round of replication in the Ts strain is completely (greater than 96%) blocked, but it proceeds normally in the Ts(+) strain. Thus, it is concluded that, after the germination of a spore, the action of the dnaB134 gene product is an obligatory requirement for initiation of the first round of replication. The initiation of replication that can occur in spores of the original TsB134 strain germinating at 45 degrees C is presumably due to incomplete inactivation of the dnaB134 gene product under such conditions.  相似文献   

5.
Initiation of spore formation in Bacillus subtilis appears to depend on initiation of DNA replication. This regulation was first identified using a temperature-sensitive mutation in dnaB. We found that mutations in the replication initiation genes dnaA and dnaD also inhibit sporulation, indicating that inhibition of sporulation is triggered by general defects in the function of replication initiation proteins.  相似文献   

6.
The Bacillus subtilis proteins DnaD and DnaB are essential for replication initiation and are conserved in low G+C content Gram-positive bacteria. Previous work indicated that DnaD and DnaB are involved in helicase loading during the process of restarting stalled replication forks. We have investigated the roles of DnaD and DnaB in replication initiation at oriC in vivo. Using chromatin immunoprecipitation (ChIP), we found that DnaD and DnaB functions are needed to load the replicative helicase at oriC. To investigate further the functions of DnaD and DnaB in replication initiation, we isolated and characterized suppressors of the temperature sensitivity of dnaD and dnaB mutant cells. In both cases, we isolated the identical missense mutation in dnaB, dnaBS371P. Using yeast two-hybrid analysis, we found that dnaBS371P uncovers a previously undetected physical interaction between DnaD and DnaB. We also found that DnaBS371P constitutively recruits DnaD to the membrane fraction of cells, where DnaB and oriC are enriched. Phenotypes of cells expressing DnaBS371P are consistent with aberrant replication control. We hypothesize that B. subtilis regulates replication initiation by regulating a physical interaction between two proteins essential for helicase loading at chromosomal origins.  相似文献   

7.
The Escherichia coli dnaB252 allele is the only dnaB mutation which confers a deoxyribonucleic acid initiation-defective phenotype on the cell. The presence of a multicopy hybrid plasmid containing the dnaC+ gene in a dnaB252 strain completely suppressed the temperature-sensitive phenotype. It is suggested that at high temperature the dnaB252 protein has a lowered affinity for dnaC protein, and that the formation of a dnaB-dnaC complex is mandatory for initiation.  相似文献   

8.
When the Bacillus subtilis dnaB37 mutant, defective in initiation, is returned to permissive temperature after growth at 45 degrees C, DNA replication is synchronized. Under these conditions, we have shown previously that DNA replication is inhibited when the Stringent Response is induced by the amino acid analogue, arginine hydroxamate. We have now shown, using DNA-DNA hybridization analysis, that substantial replication of the oriC region nevertheless occurs during the Stringent Response, and that replication inhibition is therefore implemented downstream from the origin. On the left arm, replication continues for at least 190 x 10(3) base-pairs to the gnt gene and for a similar distance on the right arm to the gerD gene. When the Stringent Response is lifted, DNA replication resumed downstream from oriC on both arms, confirming that DNA replication is regulated at a post-initiation level during the Stringent Response in B. subtilis. Resumption of DNA synthesis following the lifting of the Stringent Response did not require protein or RNA synthesis or the initiation protein DnaB. We suggest, therefore, that a specific control region, involving Stringent Control sites, facilitate reversible inhibition of fork movement downstream from the origin via modifications of a replisome component during the Stringent Response. In contrast, in Escherichia coli, induction of the Stringent Response appears to block initiation of DNA replication at oriC itself. No DNA synthesis was detected in the oriC region and, upon lifting the Stringent Response, replication occurred from oriC. Post-initiation control in B. subtilis therefore results in duplication of many key genes involved in growth and sporulation. We discuss the possibility that such a control might be linked to differentiation in this organism.  相似文献   

9.
10.
Eleven single strand initiation sequences (ssi) were isolated from various plasmid genomes using a plaque-morphology assay. Out of seven ssi that require dnaB and dnaC functions for replication in a crude in vitro system, six use a phi X174 type priming mechanism, and a phi X174 type primosome is assembled at these sequences from the purified proteins, n'(priA), n(priB), n"(priC), dnaT, dnaB, dnaC, and primase. The same ssi potentiate dATPase activity of n' protein, and thus represent new n' protein recognition sequences (n'-pas). Based on sequence homology, two structural groups are evident. Two sequences show a strong homology with the phi X174 site, whereas three share extensive homology with the previously characterized n'-pas of ColE1, ssiA(ColE1). All the n'-pas have a potential to form stem and loop structures, although sequence homology between the two classes is absent. In addition to the phi X174 type priming, three ssi do not require either dnaB or dnaC function for replication, and use a G4 type priming, requiring only SSB and primase. The 5' ends of primer RNA synthesized by primase are localized within the vicinity of one of the three blocks of highly conserved nucleotide sequences. Deletions of parts of these conserved sequences result in loss of priming activity, suggesting that they are important for priming on the G4 type ssi, which are termed G site. The general significance of these two types of priming in initiation of lagging or leading strand synthesis as well as various modes of initiation at origins of replication are proposed.  相似文献   

11.
The plasmid pBS2 has a low copy number and is endogenous to Bacillus subtilis. The replication of this plasmid depends on the function of most of the host's dna genes including dnaB, which is unique to B. subtilis and is required for both the initiation of chromosome replication and the DNA-membrane association. We have identified the region that is essential for the replication of pBS2 and determined the complete 2279-bp nucleotide sequence of this region. In this region, there are two stretches of sequence homologous to the 18-bp consensus sequence which commonly appears at the origin of replication of plasmids pUB110 and pC194. The entire region contains six sizable open reading frames. Two of them are probably translated. One open reading frame, designated ORF A, coding for 269 amino acids, has significant homology, in terms of amino acid sequence, with the open reading frame of the gene for the Rep U protein of plasmid pUB110. The similarities between pBS2 and other plasmids suggest that the pBS2 may also replicate as a rolling circle, which appears to be the salient feature of a mechanism of replication that is common to small plasmids in gram-positive bacteria.  相似文献   

12.
Phenotypes of Bacillus subtilis priA mutants suggest that they are deficient in the restart of stalled chromosomal replication forks. The presumed activity of PriA in the restart process is to promote the assembly of a multiprotein complex, the primosome, which functions to recruit the replication fork helicase onto the DNA. We have proposed previously that three proteins involved in the initiation of replication at oriC in B. subtilis, DnaB, DnaD and DnaI, are components of the PriA primosome in this bacterium. However, the involvement of these proteins in replication restart has not yet been studied. Here, we describe dnaB mutations that suppress the phenotypes of B. subtilis priA mutants. In a representative mutant, the DnaC helicase is loaded onto single-stranded DNA in a PriA-independent, DnaD- and DnaI-dependent manner. These observations confirm that DnaB, DnaD and DnaI are primosomal proteins in B. subtilis. Moreover, their involvement in the suppression of priA phenotypes shows that they participate in replication fork restart in B. subtilis.  相似文献   

13.
The tif-1 mutation in the Escherichia coli recA gene is known to cause induction of the various "SOS" functions at high temperature, including massive synthesis of the recA protein, lethal filamentation, elevated mutagenesis, and, in lambda lysogens, induction of prophage. It is shown here that the deoxyribonucleic acid initiation mutation dnaB252 suppresses all these manifestations of tif expression. Induction of lambda by ultraviolet irradiation, however, is not affected by the dnaB252 mutation. No similar suppression of tif is observed with other dnaB mutations affecting deoxyribonucleic acid elongation or with other deoxyribonucleic acid initiation mutations at the dnaA and dnaC loci. The fact that an alteration of the dnaB protein specifically suppresses tif-mediated SOS induction implies a role of the replication apparatus in this process, as has been suggested for ultraviolet induction. The induction of lambda is known to proceed via repressor cleavage, presumably promoted by an activated (protease) form of the recA protein. Since lambda induction is normal after ultraviolet irradiation of the tif-1 dnaB252(lambda) strain, tif-mediated induction in this strain may be blocked in a tif-specific step leading to activation of the recA (tif) protein. It is possible that the recA (tif) mutant protein may be directly involved in the replication complex in processes leading to this activation.  相似文献   

14.
The dnaB protein of Escherichia coli, a multifunctional DNA-dependent ribonucleotide triphosphatase and dATPase, cross-links to ATP on ultraviolet irradiation under conditions that support rNTPase and dATPase activities of dnaB protein. The covalent cross-linking to ATP is specifically inhibited by ribonucleotides and dATP. Tryptic peptide mapping demonstrates that ATP cross-links to only the 33-kDa tryptic fragment (Fragment II) of dnaB protein. The presence of single-stranded DNA alters the covalent labeling of dnaB protein by ATP, suggesting a possible role of DNA on the mode of nucleotide binding by dnaB protein. Present studies demonstrate that the dnaC gene product binds ribonucleotides independent of dnaB protein. On dnaB-dnaC protein complex formation, covalent incorporation of ATP to dnaB protein decreases approximately 70% with a concomitant increase of ATP incorporation to dnaC protein by approximately 3-fold. The mechanism of this phenomenon has been analyzed in detail by titrating dnaB protein with increasing amounts of dnaC protein. The binding of dnaC protein to dnaB protein appears to be a noncooperative process. The lambda P protein, which interacts with dnaB protein in the bacteriophage lambda DNA replication, does not bind ATP in the presence or absence of dnaB protein. However, lambda P protein enhances the covalent incorporation of ATP to dnaB protein approximately 4-fold, suggesting a direct physical interaction between lambda P and dnaB proteins with a probable change in the modes of nucleotide binding to dnaB protein. The lambda P protein likely forms a lambda P-dnaB-ATP dead-end ternary complex. The implications of these results in the E. coli and bacteriophage lambda chromosomal DNA replication are discussed.  相似文献   

15.
We have directly tested the effects of host cell DNA synthesis mutations on bacteriophage phiK replicative-form (RF) DNA replication in vivo. We observed that phiK RF DNA replication continued at normal rates in both dnaB and dnaC mutant hosts under conditions in which the activities of the dnaB and dnaC gene products were shown to be markedly reduced. This suggests that these two host proteins are not essential for normal phiK RF DNA replication. In control experiments we observed markedly reduced rates of phiK RF DNA replication in temperature-sensitive dnaG and dnaE host mutants, indicating that the products of these genes are essential. Thus, the mechanism of DNA chain initiation in vivo on the duplex RF DNA templates of isometric phages such as phiK apparently is different from that on the similar templates of isometric phages such as phiX174. The implications of this difference are discussed in the text.  相似文献   

16.
Suppressor mutations located within dnaA can suppress the temperature sensitivity of a dnaZ polymerization mutant, indicating in vivo interaction of the products of these genes. The suppressor allele of dnaA [designated dnaA(SUZ, Cs)] could not be introduced, even at the permissive temperature, by transduction into temperature-sensitive (Ts) dnaC or dnaG recipients; it was transduced into dnaB(Ts) and dnaE(Ts) strains but at very low frequency. Recipient cells which were dnaA+ dnaE(Ts) were killed by the incoming dnaA(SUZ, Cs) allele, and it is presumed that combinations of dnaA(SUZ, Cs) with dnaB(Ts), dnaC(Ts), or dnaG(Ts) are lethal also. In one specific case, the lethality required the presence of three alleles: the incoming dnaA suppressor mutation, the resident dnaA+ gene, and the dnaB(Ts) gene. This was shown by the fact that dnaB(Ts) could readily be introduced into a dnaA(SUZ, Cs) dnaB+ recipient. That is, in the absence of dnaA+, the dnaA suppressor and dnaB(Ts) double mutant was stable. One model to explain these results proposes that the dnaA protein functions not only in initiation but also in the replication complex which contains multiple copies of dnaA and other replication factors.  相似文献   

17.
The initiation process of deoxyribonucleic acid (DNA) replication in Escherichia coli has been studied using the thermoreversible dna initiation mutant E. coli HfrHl65/120/6 dna-252. This dna mutation was incorrectly classed as a dnaA mutation. Biochemical and genetic evidence suggests that the dna-252 mutant is a novel dnaB mutant, possessing phenotypic properties which distinguish it from other dnaB mutants. Sensitivity of reinitiation in the dna-252 mutant to specific inhibitors of protein, ribonucleic acid (RNA), and DNA synthesis was studied. Reinitiation is shown to be sensitive to rifampin and streptolydigin but not to cholramphenicol. Thus, the dna-252 gene product appears to be required during the initiation process for a step occurring either before or during synthesis of an RNA species (origin-RNA). Using reversible inhibition of RNA synthesis by streptolydigin of a streptolydigin-sensitive derivative of the dna-252 mutant, the dna-252 gene product is shown to be directly involved in the synthesis of an orgin-RNA species. These results are included in a schematic model presented in the accompanying paper of the temporal sequence of events occurring during the initiation process.  相似文献   

18.
Two separable structural domains were identified in the Escherichia coli dnaB protein (Mr = 52,000) by partial proteolytic cleavage under nondenaturing conditions. The hydrolysis of dnaB protein by trypsin proceeded in two distinct stages in the presence of ATP or ADP. In the first stage, 14 amino acid residues at the NH2-terminal end were removed and dnaB protein was converted into a fragment with a molecular weight of 50,000 (Fragment I). Fragment I retained about 60% of the original activity in priming DNA replication and was fully active in DNA-dependent ATPase activity. In the second stage, Fragment I was further cleaved into two separable polypeptides with molecular weights of 33,000 (Fragment II) and 12,000 (Fragment III), respectively. Fragment II, as a hexamer, retained DNA-dependent ATPase activity comparable to the intact protein but was totally inactive in priming DNA replication. No known activity of dnaB protein was detected in Fragment III alone. NH2 termini of Fragments I and III and COOH termini of dnaB protein and Fragment II were identical indicating that Fragments III and II were located at the NH2 and COOH termini of Fragment I, respectively. These results indicate that dnaB protein is composed of at least two distinct domains. 1) Fragment III, the rigid domain, is essential for protein interaction, i.e. association with dnaC protein and primase in priming DNA replication in the primosome. 2) A 14-amino acid residue fragment, at the NH2-terminal end adjacent to Fragment III, probably required to stabilize the protein interaction involved in priming DNA replication. 3) Fragment II, the flexible COOH-terminal domain, contains the active sites for DNA binding, ATP binding, and protein oligomerization. Fragment II is cleaved by trypsin at many sites in the absence of ATP or ADP ligands. The rate of conversion of Fragment I into the yield of Fragments II and III was decreased approximately by 2 orders of magnitude by changing the ligand from ADP to the nonhydrolyzed ATP analog, adenosine 5'-O-(3-thiotriphosphate). These results indicate that the conformation of the COOH-terminal domain in the dnaB protein is stabilized by ATP or ADP. Such a nucleotide-induced conformational change was also demonstrated by circular dichroism spectroscopy. Moreover, the data suggest that the conformation of the dnaB protein complexed with adenosine 5'-O-(3-thiotriphosphate) is different from that complexed with ADP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
An Escherichia coli mutant, ts121, was isolated following random insertional mutagenesis using phage lambda Mu transposition. The mutant phenotype includes inability to form colonies at temperatures above 38 degrees C and inability to propagate phage lambda at all temperatures. A lambda i434 cI- (ts121)+ transducing phage was isolated on the basis of its ability to form plaques on ts121 mutant bacteria. Using this transducing phage, it was shown through complementation and protein analyses, that the ts121 mutation is located in the dnaB gene. The exact insertion event was identified by polymerase chain reaction amplification of the DNA sequences containing the insertion junction. The mutational insertion event in ts121 was mapped precisely between base pairs 1514 and 1515 of the dnaB gene. This result predicts that the mutant dnaB protein has lost its six terminal amino acids. The reading frame shifts into Mu-specific DNA sequences resulting in an additional 20 amino acid residues. The E. coli wild type dnaB protein participates in host replication and interacts with lambda P protein to initiate phage lambda DNA replication. Our results demonstrate that the extreme carboxyl end of the dnaB protein is required for productive interaction with the lambda P replication protein at all temperatures, and is important for dnaB function at temperatures above 38 degrees C. Cold-sensitive extragenic suppressors of the ts121 mutation were isolated on the basis of their ability to restore colony formation at 42 degrees C. One of these extragenic suppressors was mapped at 54 min on the E. coli genetic map and localized to the suhB gene, whose product may affect the expression of a number of genes at the translational level.  相似文献   

20.
Primosome assembly site in Bacillus subtilis.   总被引:4,自引:0,他引:4       下载免费PDF全文
C Bruand  S D Ehrlich    L Jannière 《The EMBO journal》1995,14(11):2642-2650
A single-strand initiation site was detected on the Enterococcus faecalis plasmid pAM beta 1 by its ability to prevent accumulation of single stranded DNA of a rolling circle plasmid, both in Bacillus subtilis and Staphylococcus aureus. This site, designated ssiA, is located on the lagging strand template, approximately 150 bp downstream from the replication origin. ssiA priming activity requires the DnaE primase, the DnaC replication fork helicase, as well as the products of the dnaB, dnaD and dnaI genes of B.subtilis, but not the RNA polymerase. The primase and the replication fork helicase requirements indicate that ssiA is a primosome assembly site. Interestingly, the pAM beta 1 lagging strand synthesis is inefficient when any of the proteins involved in ssiA activity is mutated, but occurs efficiently in the absence of ssiA. This suggests that normal plasmid replication requires primosome assembly and that the primosome can assemble not only at ssiA but also elsewhere on the plasmid. This work for the first time describes a primosome in a Gram-positive bacterium. Involvement of the B.subtilis proteins DnaB, DnaD and DnaI, which do not have any known analogue in Escherichia coli, raises the possibility that primosome assembly and/or function in B.subtilis differs from that in E.coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号