首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2,4-Diaminotoluene (2,4-DAT) is a mutagenic and hepatocarcinogenic aromatic amine, requiring metabolic activation. We have found that the mutagenic potency of 2,4-DAT in Salmonella TA98 is similar when activated by either Aroclor-1254-induced rat primary hepatocytes or 9000 x g supernatant. Previous work has demonstrated that 2,4-DAT is activated by cytochrome P450. The present report describes an investigation of the role of acetyltransferase in 2,4-DAT activation. Substitution of TA98 with the acetyltransferase-deficient strain TA98/1,8-DNP6 resulted in an approximately 90% decrease in the mutagenic potency for 2,4-DAT using S9 activation. The newly engineered acetyltransferase-enhanced Salmonella tester strain YG1024 (TA98(pYG219] demonstrated greatly enhanced sensitivity to the mutagenicity of 2,4-DAT. Inhibition of O-acetyltransferase activity, either with the selective acetyltransferase inhibitor thiolactomycin, or by competitive inhibition with an alternative substrate for the enzyme, reduced the mutagenicity of 2,4-DAT in this acetyltransferase-enhanced bacterial strain. From these data we conclude that following 2,4-DAT activation by N-hydroxylation by cytochrome P450, the resulting hydroxylamino intermediate is further activated in the bacteria via O-acetylation to form the ultimate reactive intermediate, which is postulated to be 4-acetoxyamino-2-aminotoluene.  相似文献   

2.
A highly sensitive fluorometric assay for the determination of monooxygenase activity in liver microsomes is described. The assay is based on the use of 3-chloro-7-methoxy-4-methylcoumarin which is demethylated to 3-chloro-7-hydroxy-4-methylcoumarin. The rate of formation of 3-chloro-7-hydroxy-4-methylcoumarin was recorded as an increase of fluorescence (lambdaA = 380 nm, lambdaF = 480 nm) with time. When 3-chloro-7-methoxy-4-methylcoumarin was incubated in the presence of MgCl2 and NADPH with rat liver microsomes, a continuous increase of the fluorescence could be measured. The reaction proceeded linearly for about 10 min and at least up to a concentration of 0.1 mg/ml of microsomal protein. Besides 3-chloro-7-hydroxy-4-methylcoumarin a hydroxylated derivative of the substrate was formed as a second metabolite during the incubation. Using an excitation wavelength of 380 nm and a fluorescence/emission wavelength of 480 nm, the fluorescence of this substance (lambdaA = 338 nm, lambdaF = 422 nm) amounted only to about 1% of the fluorescence of the main product. The use of 3-chloro-7-methoxy-4-methylcoumarin as substrate enables the fluorometric determination of the O-dealkylation activity of a cytochrome P450-dependent monooxygenase system in rat liver which is inducible by phenobarbital but not by 3-methylcholanthrene.  相似文献   

3.
  • 1.1. The enzymatic nature of human liver, bone, placental and intestinal alkaline phosphatases (ALPs) were investigated with phosphorylcholine (PC), phosphoryl-ethanolamine, pyridoxal-5'-phosphate and p-nitrophenylphosphate at a weakly alkaline pH.
  • 2.2. The apparent Km value of the intestinal ALP with PC was the highest of all ALPs tested. Intestinal ALP hydrolyzes PC the most and has higher affinity for choline as a transphorsphorylating acceptor than the other ALPs. In addition, the intestinal ALP activity with PC was most susceptible to Na2HPO4, in the tested ALPs.
  • 3.3. The present results suggest that PC is a unique substrate for human intestinal ALP, which may be related to the metabolism of PC or choline as part of phosphatidylcholine.
  相似文献   

4.
5.
Renal microsomes from male mice (BALB/c, DBA/2 and BALB/c x DBA/2 F1) showed about 10-fold greater activity for mediating mutagenic activation of 3-methoxy-4-aminoazobenzene (3-MeO-AAB) toward Salmonella typhimurium TA98 than did the corresponding hepatic microsomes, as compared on the basis of nmol of microsomal cytochrome P-450. On the other hand, female renal microsomes and other extrahepatic microsomes (lung, small intestine and colon) in both sexes of mice showed little or no activity for converting 3-MeO-AAB to mutagen(s). The mutagenic activation of 3-MeO-AAB with the male renal enzyme(s) was definitely inhibited by cytochrome P-450 inhibitors, 7,8-benzoflavone and SKF 525A. All these findings suggest that in mice, there is a male-specific renal 3-MeO-AAB activation enzyme(s), a cytochrome P-450 isozyme(s), which is different, at least in proportion and/or in nature, from hepatic cytochrome P-450 isozymes.  相似文献   

6.
Cytochrome P450 3A4 (CYP3A4) plays a critical role in the metabolism of many drugs. CYP3A4 exhibits extraordinary substrate promiscuity and unusual allosteric kinetics. In addition, many CYPs catalyze sequential oxidations on a single substrate, but in most cases, mechanistic details of these processes are not well-established. As a result, in vivo clearance of many drugs and their metabolites is difficult to predict on the basis of the complex in vitro kinetics, and new in vitro probes are required to understand these behaviors. The near-IR fluorescent probe Nile Red, which has strong solvatochromic behavior, was investigated as a probe of allostery and sequential metabolism with CYP3A4. Nile Red binds with apparent Kd values of 0.05 and 2.3 muM, based on a sigmoidal dependence of heme spin state on Nile Red concentration, where the first equivalent of Nile Red increased the high-spin fraction by only 13% of the total change at saturation. Mass spectrometry analysis indicates that Nile Red is metabolized sequentially by CYP3A4 to the N-monoethyl and N-desethyl products, confirming that the immediate vicinity of the heme iron is one binding site. In the presence of CYP3A4, steady-state fluorescence emission and excitation spectra, as well as excited-state lifetimes at varying Nile Red concentrations, indicate a high-affinity site that modulates the fluorescent properties of Nile Red. The Nile Red binding site is competitively eliminated by itraconazole, which is a high-affinity ligand known to coordinate to the heme iron. Together, the data suggest that Nile Red binds to the active site with high affinity ( approximately 50 nM), where it is desolvated in a low-dielectric environment. In addition, Nile Red is sequentially oxidized at rates comparable to or faster than those of other in vitro probes, which emphasizes its utility in the further examination of this important kinetic phenomenon in vitro.  相似文献   

7.
Leukotriene B4 (LTB4), a potent chemotactic agent, was catabolized to 20-hydroxyleukotriene B4 (20-OH-LTB4) by the 150,000 x g pellet (microsomal fraction) of human neutrophil sonicate. The reaction required molecular oxygen and NADPH, and was significantly inhibited by carbon monoxide, suggesting that a cytochrome P-450 is involved. The neutrophil microsomal fraction showed a carbon monoxide difference spectrum with a peak at 450 nm in the presence of NADPH or dithionite, indicating the presence of a cytochrome P-450. The addition of LTB4 to the microsomal fraction gave a type-I spectral change with a peak at around 390 nm and a trough at 422 nm, indicating a direct interaction of LTB4 with the cytochrome P-450. The dissociation constant of LTB4, determined from the difference spectra, is 0.40 microM, in agreement with the kinetically determined apparent Km value for LTB4 (0.30 microM). Such a spectral change was not observed with prostaglandins A1, E1 and F2 alpha or lauric acid, none of which inhibited the LTB4 omega-hydroxylation. The inhibition of the LTB4 omega-hydroxylation by carbon monoxide was effectively reversed by irradiation with monochromatic light of 450 nm wavelength. The photochemical action spectrum of the light reversal of the inhibition corresponded remarkably well with the carbon monoxide difference spectrum. These observations provide direct evidence that the oxygen-activating component of the LTB4 omega-hydroxylase system is a cytochrome P-450. Ferricytochrome c inhibited the hydroxylation of LTB4 and the inhibition was fortified by cytochrome oxidase. An antibody raised against rat liver NADPH-cytochrome-P-450 reductase inhibited both LTB4 omega-hydroxylase activity and the NADPH-cytochrome-c reductase activity of human neutrophil microsomal fraction. These observations indicate that NADPH-cytochrome-P-450 reductase acts as an electron carrier in LTB4 omega-hydroxylase. On the other hand, an antibody raised against rat liver microsomal cytochrome b5 inhibited the NADH-cytochrome-c reductase activity but not the LTB4 omega-hydroxylase activity of human neutrophil microsomal fraction, suggesting that cytochrome b5 does not participate in the LTB4-hydroxylating system. These characteristics indicate that the isoenzyme of cytochrome P-450 in human neutrophils, LTB4 omega-hydroxylase, is different from the ones reported to be involved in omega-hydroxylation reactions of prostaglandins and fatty acids.  相似文献   

8.
Mutagenicity of the hepatocarcinogen 3'-hydroxymethyl-N, N-dimethyl-4-aminoazobenzene (3'-CH2OH-DAB) and its N-demethylated compounds was examined. Rat-liver 9000 X g supernatant (S9) fraction was used together with Salmonella typhimurium TA98 or TA100 as a tester strain. The expression of mutagenicity of 3'-CH2OH-DAB, 3'-hydroxymethyl-N-methyl-4-aminoazobenzene (3'-CH2OH-MAB) and 3'-hydroxymethyl-4-aminoazobenzene (3'-CH2OH-AB) required the presence of both microsomes and cytosol as sources of enzymes as well as NADPH as a cofactor. 3'-CH2OH-AB showed positive mutagenicity on both strains in the presence of liver S9 from untreated rats whereas 3'-CH2OH-DAB and 3'-CH2OH-MAB were negative. The treatment of rats with polychlorinated biphenyls (PCB) or 3-methylcholanthrene (3-MC) resulted in a marked increase in the ability of S9 to activate these three compounds, whereas phenobarbital (PB) induction was not effective, except for the activation of 3'-CH2OH-AB. The mutagenic activities of the three compounds in strain TA98 were considerably decreased by adding cytochrome c to the S9 mixture, but the activation reactions were insensitive to 1-(1-naphthyl)-2-thiourea (NTU) and methimazole, high-affinity flavin-containing monooxygenase (FMO) substrates. Metyrapone and 2-diethylaminoethyl-2,2-diphenylvalerate hydrochloride (SKF-525A, potent inhibitors of cytochrome P450, had no inhibitory effect on the activation of these compounds by S9 from PCB-treated rat livers. In contrast, 7,8-benzoflavone (BF), a specific inhibitor of cytochrome P448, decreased the activities of 3'-CH2OH-DAB and 3'-CH2OH-MAB by 88 and 78%, respectively, but the inhibition was negligible for 3'-CH2OH-AB.  相似文献   

9.
A sensitive HPLC-tandem mass spectrometry method was developed for determination of buspirone levels in human plasma. After solid phase extraction and reversed phase HPLC separation, detection of buspirone and the internal standard (prazosin) was performed using eletrospray ionization and selected reaction monitoring in the positive ion mode. Linear calibration curves were established over a concentration range of 0.025-2.5 ng/ml when 0.5 ml aliquots of plasma were used. Satisfactory results of within-day precision (RSD of 1.9-7.7%) and accuracy (% difference of 0.5-6.6%) and between-day precision (RSD of 3.7-11.1%) and accuracy (% difference of 2.2-6.8%) were obtained. The assay has been successfully applied to the analysis of buspirone levels in more than 500 human plasma samples collected from a drug interaction study.  相似文献   

10.
The nitrogenous pi -acceptor ligand 4-cyanopyridine (4CNPy) exhibits reversible ligation to ferrous heme in the flavocytochrome P450 BM3 (Kd=1.8 microm for wild type P450 BM3) via its pyridine ring nitrogen. The reduced P450-4CNPy adduct displays unusual spectral properties that provide a useful spectroscopic handle to probe particular aspects of this P450. 4CNPy is competitively displaced upon substrate binding, allowing a convenient route to the determination of substrate dissociation constants for ferrous P450 highlighting an increase in P450 substrate affinity on heme reduction. For wild type P450 BM3, Kd(red)(laurate)=82.4 microm (cf. Kd(ox)=364 microm). In addition, an unusual spectral feature in the red region of the absorption spectrum of the reduced P450-4CNPy adduct is observed that can be assigned as a metal-to-ligand charge transfer (MLCT). It was discovered that the energy of this MLCT varies linearly with respect to the P450 heme reduction potential. By studying the energy of this MLCT for a series of BM3 active site mutants with differing reduction potential (Em), the relationship EMLCT + (3.53 x = Em 17,005 cm)(-1) was derived. The use of this ligand thus provides a quick and accurate method for predicting the heme reduction potentials of a series of P450 BM3 mutations using visible spectroscopy, without the requirement for redox potentiometry.  相似文献   

11.
Abstract: A gas chromatographic-mass spectrometric assay, which allowed simultaneous measurement of 3-methoxy-4-hydroxyphenylglycol (MHPG) and 3,4-dihydroxyphenylglycol (DHPG), was used to show that the concentration of MHPG in primate CNS far exceeded that of DHPG and that both metabolites were mainly in the unconjugated form. In rat brain, DHPG concentration was generally higher than that of MHPG, and both existed predominantly as conjugates. Rat and primate plasma contained more MHPG than DHPG. In plasma of primates but not of rats, higher proportions of the metabolites were conjugated, compared to those in brain. Significant correlations existed between MHPG and DHPG in rat brain, monkey brain, human plasma, and both monkey CSF and plasma. In monkeys, a significant CSF-plasma correlation was found for MHPG, but not for DHPG. Acute administration of piperoxane raised rat brain MHPG and DHPG concentration; desipramine prevented this rise in DHPG, but not in MHPG. Desipramine alone decreased DHPG, but not MHPG, concentration. Piperoxane increased monkey brain MHPG, but not DHPG, concentration. These data suggest that DHPG is a valuable metabolite to measure when assessing norepinephrine metabolism in the rat. Under certain conditions, measurement of rat brain MHPG and DHPG may provide information concerning the site of norepinephrine metabolism. However, in primates the importance of monitoring DHPG, in addition to MHPG, is uncertain.  相似文献   

12.
13.
Cytochrome P450cin catalyzes the monooxygenation of 1,8-cineole, which is structurally very similar to d-camphor, the substrate for the most thoroughly investigated cytochrome P450, cytochrome P450cam. Both 1,8-cineole and d-camphor are C(10) monoterpenes containing a single oxygen atom with very similar molecular volumes. The cytochrome P450cin-substrate complex crystal structure has been solved to 1.7 A resolution and compared with that of cytochrome P450cam. Despite the similarity in substrates, the active site of cytochrome P450cin is substantially different from that of cytochrome P450cam in that the B' helix, essential for substrate binding in many cytochrome P450s including cytochrome P450cam, is replaced by an ordered loop that results in substantial changes in active site topography. In addition, cytochrome P450cin does not have the conserved threonine, Thr252 in cytochrome P450cam, which is generally considered as an integral part of the proton shuttle machinery required for oxygen activation. Instead, the analogous residue in cytochrome P450cin is Asn242, which provides the only direct protein H-bonding interaction with the substrate. Cytochrome P450cin uses a flavodoxin-like redox partner to reduce the heme iron rather than the more traditional ferredoxin-like Fe(2)S(2) redox partner used by cytochrome P450cam and many other bacterial P450s. It thus might be expected that the redox partner docking site of cytochrome P450cin would resemble that of cytochrome P450BM3, which also uses a flavodoxin-like redox partner. Nevertheless, the putative docking site topography more closely resembles cytochrome P450cam than cytochrome P450BM3.  相似文献   

14.
3-hydroxykynurenine as a substrate/activator for mushroom tyrosinase   总被引:1,自引:0,他引:1  
3-Hydroxykynurenine is a tryptophan metabolite with an o-aminophenol structure. It is both a tyrosinase activator and a substrate, reducing the lag phase, stimulating the monophenolase activity, and being oxidized to xanthommatin. In the early stage of monophenol hydroxylation, catechol accumulation takes place, whereas 3-hydroxykynurenine is substantially unchanged and no significant amounts of the o-quinone are produced. These results suggest an activating action of 3-hydroxykynurenine toward o-hydroxylation of monophenols. 3-Hydroxykynurenine could therefore well act as a physiological device to control phenolics metabolism to catechols and quinonoids.  相似文献   

15.
Selective glycosidation of 2,4-dihydroxybenzaldehyde with either 2,3,4, 6-tetra-O-acetyl-alpha-D-glucopyranosyl bromide, 2-acetamido-3,4,6-tri-O-acetyl-alpha-D-glucopyranosyl chloride, or 2,3,4,6-tetra-O-acetyl-alpha-D-galactopyranosyl bromide afforded the corresponding 4-O-glycosyl derivatives. Subsequent O-methylation, O-deacetylation, and condensation with nitromethane afforded the appropriate beta-glycoside of 3-methoxy-4-(2-nitrovinyl)phenol. The phenol is highly coloured at alkaline pH so that these glycosides may be suitable as chromogenic substrates for the assay of glycosidases.  相似文献   

16.
Understanding the detailed metabolic mechanisms of membrane-associated cytochromes P450 is often hampered by heterogeneity, ill-defined oligomeric state of the enzyme, and variation in the stoichiometry of the functional P450.reductase complexes in various reconstituted systems. Here, we describe the detailed characterization of a functionally homogeneous 1:1 complex of cytochrome P450 3A4 (CYP3A4) and cytochrome P450 reductase solubilized via self-assembly in a nanoscale phospholipid bilayer. CYP3A4 in this complex showed a nearly complete conversion from the low- to high-spin state when saturated with testosterone (TS) and no noticeable modulation due to the presence of cytochrome P450 reductase. Global analysis of equilibrium substrate binding and steady-state NADPH consumption kinetics provided precise resolution of the fractional contributions to turnover of CYP3A4 intermediates with one, two, or three TS molecules bound. The first binding event accelerates NADPH consumption but does not result in significant product formation due to essentially complete uncoupling. Binding of the second substrate molecule is critically important for catalysis, as the product formation rate reaches a maximum value with two TS molecules bound, whereas the third binding event significantly improves the coupling efficiency of redox equivalent usage with no further increase in product formation rate. The resolution of the fractional contributions of binding intermediates of CYP3A4 into experimentally observed overall spin shift and the rates of steady-state NADPH oxidation and product formation provide new detailed insight into the mechanisms of cooperativity and allosteric regulation in this human cytochrome P450.  相似文献   

17.
The Atg8 family protein LC3 is indispensible for autophagy and plays critical roles in multiple steps of the process. Despite this functional significance, the regulation of LC3 activity at the posttranslational level remains poorly understood. In a recent study, we report that the conserved Ste20 kinases STK3 and STK4, the mammalian orthologs of Hippo kinase, are essential for autophagy in diverse organisms, and both can phosphorylate LC3 on amino acid Thr50. STK3/STK4-mediated phosphorylation is critical for fusion of autophagosomes with lysosomes, as well as the ability of cells to clear intracellular bacteria, an established cargo for autophagy. Our discovery of a novel mode of autophagy regulation involving direct phosphorylation of LC3 by STK3/STK4 significantly enhances our molecular understanding of the autophagy process. Moreover, our findings raise the exciting possibility that STK3/STK4''s known roles in immunity are exerted through their ability to regulate autophagy via LC3 phosphorylation.  相似文献   

18.
19.
In order to determine K(m) values of substrates for CYP3A4-mediated metabolism, an in silico model has been developed in the present work. Using electrotopological state (E-state) indices, together with Bayesian-regularized neural network (BRNN), we have described an in silico method to model log(1/K(m)) values of various substrates. The relative importance of the E-state indices is analyzed by principal component analysis. By using an additional external test set, which is independent of the training set, the robustness and predictivity of the model are also validated.  相似文献   

20.
Bacillus subtilis cells grown in yeast extract medium accumulated 3-fluoro-l-erythro-[1,2-(14)C(2)]malate more than 30-fold from the surrounding medium. No metabolic products derived from 3-fluoro-l-erythro-malate could be detected in these cells. l-Malate competitively inhibited transport of 3-fluoro-l-erythro-malate. This malate analogue was itself a competitive inhibitor of l-malate uptake. Cells that had been grown in yeast extract supplemented with 5 mM l-malate showed a 10-fold increased affinity towards 3-fluoro-l-erythro-malate relative to cells grown in yeast extract medium with no added malate. Our results suggest that two transport systems for l-malate can be induced in B. subtilis. The first of these systems seems to effect uptake of C(4)-dicarboxylates (l-malate, succinate, and fumarate) in yeast extract medium. The second transport system (or possibly a modification of the first transport system) seems to be induced by addition of l-malate to this medium and is also functioning in malate minimal medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号