首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mutation causing Huntington disease (HD) has been identified as an expansion of a polymorphic (CAG) n repeat in the 5 part of the huntingtin gene. The specific neuropathology of HD, viz. selective neuronal loss in the caudate nucleus and putamen, cannot be explained by the widespread expression of the gene. Since somatic expansion is observed in affected tissue in myotonic dystrophy, we have studied the length of the (CAG) n repeat in various regions of the brain. Although we have not found clear differences when comparing severely and mildly affected regions, we have observed a minor increase in repeat length upon comparison of affected brain samples with cerebellum or peripheral blood. Hence, although further somatic amplification seems to occur in affected areas of the brain, the differences between affected and unaffected regions are too small to make this mechanism an obvious candidate for the cause of differential neuronal degeneration in HD.  相似文献   

2.
3.
4.
Huntington’s disease (HD) is caused by a CAG repeat expansion in the HD gene, but how this mutation causes neuronal dysfunction and degeneration is unclear. Inhibition of glutamate uptake, which could cause excessive stimulation of glutamate receptors, has been found in animals carrying very long CAG repeats in the HD gene. In seven HD patients with moderate CAG expansions (40–52), repeat expansion and HD grade at autopsy were strongly correlated (r = 0.88, p = 0.0002). Uptake of [3H]glutamate was reduced by 43% in prefrontal cortex, but the level of synaptic (synaptophysin, AMPA receptors) and astrocytic markers (GFAP, glutamate transporter EAAT1) were unchanged. Glutamate uptake correlated inversely with CAG repeat expansion (r = −0.82, p = 0.015). The reducing agent dithiothreitol improved glutamate uptake in controls, but not in HD brains, suggesting irreversible oxidation of glutamate transporters in HD. We conclude that impairment of glutamate uptake may contribute to neuronal dysfunction and degeneration in HD. Special issue article in honor of Dr. Frode Fonnum.  相似文献   

5.
Huntington’s disease (HD) is caused by abnormal CAG repeat expansion in the 5′-end of the Huntingtin (HTT) gene. In addition to the canonical C-terminal full-length huntingtin (htt) nuclear export signal, a cytoplasmic localization-related domain (CLRD) in the N-terminus of htt has recently been reported. Here, we analyzed this domain by introducing deletion and substitution mutations in a truncated N-terminal htt protein and subsequently monitored htt expression, aggregation and subcellular localization by immunocytochemistry and Western blot analysis. We demonstrated that Htt4–17 was the essential sequence for htt cytoplasmic localization. We also found that the subcellular distribution of htt was altered when Htt1–17 was mutated to contain amino acids of different charges, suggesting a structural requirement of Htt1–17 for the cytoplasmic localization of htt. Deletion of the first three amino acids did not affect its association with mitochondria. We observed that defective cytoplasmic localization resulted in a reduction of total htt aggregates and increased nuclear aggregates, indicating that the subcellular distribution of the protein might influence the aggregation process. These studies provide new insight into the molecular mechanism of htt aggregation in HD.  相似文献   

6.
Huntington’s disease (HD) is a neurodegenerative disorder associated with CAG repeat expansion. We measured transglutaminase (TGase) activity in lymphocytes from 35 HD patients and from healthy individuals to ascertain whether it was altered in this condition. TGase activity was above maximum control levels in 25% of HD patients; it was correlated with the age of the patient and inversely correlated with the CAG repeat length. These results suggest that: (1) HD could be biochemically heterogeneous, and (2) the length of the CAG repeat expansion/TGase ratio could be important in the manifestation of HD. Received: 25 March 1996 / Revised: 23 June 1996  相似文献   

7.
Costa V  Scorrano L 《The EMBO journal》2012,31(8):1853-1864
Intense research on the pathogenesis of Huntington's disease (HD), a genetic neurodegenerative disease caused by a polyglutamine expansion in the Huntingtin (Htt) protein, revealed multiple potential mechanisms, among which mitochondrial alterations had emerged as key determinants of the natural history of the disease. Pharmacological and genetic animal models of mitochondrial dysfunction in the striatum, which is mostly affected in HD corroborated a key role for these organelles in the pathogenesis of the disease. Here, we will give an account of the recent evidence indicating that the mitochondria-shaping machinery is altered in HD models and patients. Since its correction can counteract HD mitochondrial dysfunction and cellular damage, drugs impacting on mitochondrial shape are emerging as a new possibility of treatment for this devastating condition.  相似文献   

8.
Huntington's disease (HD) is associated with an expansion in the CAG repeat sequence of a gene on chromosome 4, resulting in a neurodegenerative process particularly affecting the striatum and with profound but selective changes in content of various neurotransmitters. Recently, transgenic mice expressing a fragment of the human HD gene containing a large CAG expansion have been generated; these mice exhibit a progressive neurological phenotype that includes motor disturbances, as well as neuronal deficits. To investigate their underlying neurotransmitter pathology, we have determined concentrations of GABA, glutamate, and the monoamine neurotransmitters in several brain regions in these mice and control animals at times before and after the emergence of the behavioural phenotype. In contrast to the findings in HD, striatal GABA was unaffected, although a deficit was observed in the cerebellum, consistent with a dysfunction of Purkinje cells. Losses of the monoamine transmitters were observed, some of which are not seen in HD. Thus, 5-hydroxytryptamine and, to a greater extent, 5-hydroxyindoleacetic acid levels were diminished in all brain regions studied, and noradrenaline was particularly affected in the hippocampus. Dopamine was decreased in the striatum in older animals, parallelling evidence for diminished dopaminergic activity in HD.  相似文献   

9.
Huntington's disease (HD) is an inherited progressive neurodegenerative disease caused by the expansion of a polyglutamine repeat sequence within a novel protein. Recent work has shown that abnormal intranuclear inclusions of aggregated mutant protein within neurons is a characteristic feature shared by HD and several other diseases involving glutamine repeat expansion. This suggests that in each of the these disorders the affected nerve cells degenerate as a result of these abnormal inclusions. A transgenic mouse model of HD has been generated by introducing exon 1 of the HD gene containing a highly expanded CAG sequence into the mouse germline. These mice develop widespread neuronal intranuclear inclusions and neurodegeneration specifically within those areas of the brain known to degenerate in HD. We have investigated the sequence of pathological changes that occur after the formation of nuclear inclusions and that precede neuronal cell death in these cells. Although the relation between inclusion formation and neurodegeneration has recently been questioned, a full characterization of the pathways linking protein aggregation and cell death will resolve some of these controversies and will additionally provide new targets for potential therapies.  相似文献   

10.
11.
12.
13.
Huntington's disease (HD) is caused by a CAG expansion in the huntingtin gene. Expansion of the polyglutamine tract in the huntingtin protein results in massive cell death in the striatum of HD patients. We report that human induced pluripotent stem cells (iPSCs) derived from HD patient fibroblasts can be corrected by the replacement of the expanded CAG repeat with a normal repeat using homologous recombination, and that the correction persists in iPSC differentiation into DARPP-32-positive neurons in vitro and in vivo. Further, correction of the HD-iPSCs normalized pathogenic HD signaling pathways (cadherin, TGF-β, BDNF, and caspase activation) and reversed disease phenotypes such as susceptibility to cell death and altered mitochondrial bioenergetics in neural stem cells. The ability to make patient-specific, genetically corrected iPSCs from HD patients will provide relevant disease models in identical genetic backgrounds and is a critical step for the eventual use of these cells in cell replacement therapy.  相似文献   

14.
Huntington's disease (HD) is an inherited progressive neurodegenerative disorder associated with involuntary abnormal movements (chorea), cognitive deficits and psychiatric disturbances. The disease is caused by an abnormal expansion of a CAG repeat located in exon 1 of the gene encoding the huntingtin protein (Htt) that confers a toxic function to the protein. The most striking neuropathological change in HD is the preferential loss of medium spiny GABAergic neurons in the striatum. The mechanisms underlying striatal vulnerability in HD are unknown, but compelling evidence suggests that mitochondrial defects may play a central role. Here we review recent findings supporting this hypothesis. Studies investigating the toxic effects of mutant Htt in cell culture or animal models reveal mitochondrial changes including reduction of Ca2+ buffering capacity, loss of membrane potential, and decreased expression of oxidative phosphorylation (OXPHOS) enzymes. Striatal neurons may be particularly vulnerable to these defects. One hypothesis is that neurotransmission systems such as dopamine and glutamate exacerbate mitochondrial defects in the striatum. In particular, mitochondrial dysfunction facilitates impaired Ca2+ homeostasis linked to the glutamate receptor-mediated excitotoxicity. Also dopamine receptors modulate mutant Htt toxicity, at least in part through regulation of the expression of mitochondrial complex II. All these observations support the hypothesis that mitochondria, acting as “sensors” of the neurochemical environment, play a central role in striatal degeneration in HD.  相似文献   

15.
Huntington disease (HD) has been shown to be associated with an expanded CAG repeat within a novel gene on 4p16.3 (IT15). A total of 30 of 1,022 affected persons (2.9% of our cohort) did not have an expanded CAG in the disease range. The reasons for not observing expansion in affected individuals are important for determining the sensitivity of using repeat length both for diagnosis of affected patients and for predictive testing programs and may have biological relevance for the understanding of the molecular mechanism underlying HD. Here we show that the majority (18) of the individuals with normal sized alleles represent misdiagnosis, sample mix-up, or clerical error. The remaining 12 patients represent possible phenocopies for HD. In at least four cases, family studies of these phenocopies excluded 4p16.3 as the region responsible for the phenotype. Mutations in the HD gene that are other than CAG expansion have not been excluded for the remaining eight cases; however, in as many as seven of these persons, retrospective review of these patients' clinical features identified characteristics not typical for HD. This study shows that on rare occasions mutations in other, as-yet-undefined genes can present with a clinical phenotype very similar to that of HD.  相似文献   

16.
The mitochondrial DNA (mtDNA) may play an essential role in the pathogenesis of the respiratory chain complex activities in neurodegenerative disorders such as Huntington's disease (HD). Research studies were conducted to determine the possible levels of mitochondrial defect (deletion) in HD patients and consideration of interaction between the expanded Huntingtin gene as a nuclear gene and mitochondria as a cytoplasmic organelle. To determine mtDNA damage, we investigated deletions based in four areas of mitochondrial DNA, in a group of 60 Iranian patients clinically diagnosed with HD and 70 healthy controls. A total of 41 patients out of 60 had CAG expansion (group A). About 19 patients did not show expansion but had the clinical symptoms of HD (group B). MtDNA deletions were classified into four groups according to size; 9 kb, 7.5 kb, 7 kb, and 5 kb. We found one of the four-mtDNA deletions in at least 90% of samples. Multiple deletions have also been observed in 63% of HD patients. None of the normal control (group C) showed mtDNA deletions. The sizes or locations of the deletions did not show a clear correlation with expanded CAG repeat and age in our samples. The study presented evidence that HD patients had higher frequencies of mtDNA deletions in lymphocytes in comparison to the controls. It is thus proposed that CAG repeats instability and mutant Htt are causative factor in mtDNA damage.  相似文献   

17.
Huntington disease (HD) is caused by the expansion of a CAG repeat within the coding region of a novel gene on 4p16.3. Although the variation in age at onset is partly explained by the size of the expanded repeat, the unexplained variation in age at onset is strongly heritable (h2=0.56), which suggests that other genes modify the age at onset of HD. To identify these modifier loci, we performed a 10-cM density genomewide scan in 629 affected sibling pairs (295 pedigrees and 695 individuals), using ages at onset adjusted for the expanded and normal CAG repeat sizes. Because all those studied were HD affected, estimates of allele sharing identical by descent at and around the HD locus were adjusted by a positionally weighted method to correct for the increased allele sharing at 4p. Suggestive evidence for linkage was found at 4p16 (LOD=1.93), 6p21–23 (LOD=2.29), and 6q24–26 (LOD=2.28), which may be useful for investigation of genes that modify age at onset of HD.  相似文献   

18.
Huntington’s disease (HD) is an inherited neurodegenerative disorder characterized by motor, cognitive and behavioral disturbances, caused by the expansion of a CAG trinucleotide repeat in the HD gene. The CAG allele size is the major determinant of age at onset (AO) of motor symptoms, although the remaining variance in AO is highly heritable. The rs7665116 SNP in PPARGC1A, encoding the mitochondrial regulator PGC-1α, has been reported to be a significant modifier of AO in three European HD cohorts, perhaps due to affected cases from Italy. We attempted to replicate these findings in a large collection of (1,727) HD patient DNA samples of European origin. In the entire cohort, rs7665116 showed a significant effect in the dominant model (p value?=?0.008) and the additive model (p value?=?0.009). However, when examined by origin, cases of Southern European origin had an increased rs7665116 minor allele frequency (MAF), consistent with this being an ancestry-tagging SNP. The Southern European cases, despite similar mean CAG allele size, had a significantly older mean AO (p?<?0.001), suggesting population-dependent phenotype stratification. When the generalized estimating equations models were adjusted for ancestry, the effect of the rs7665116 genotype on AO decreased dramatically. Our results do not support rs7665116 as a modifier of AO of motor symptoms, as we found evidence for a dramatic effect of phenotypic (AO) and genotypic (MAF) stratification among European cohorts that was not considered in previously reported association studies. A significantly older AO in Southern Europe may reflect population differences in genetic or environmental factors that warrant further investigation.  相似文献   

19.
Somatic expansion of the CAG repeat tract that causes Huntington''s disease (HD) is thought to contribute to the rate of disease pathogenesis. Therefore, factors influencing repeat expansion are potential therapeutic targets. Genes in the DNA mismatch repair pathway are critical drivers of somatic expansion in HD mouse models. Here, we have tested, using genetic and pharmacological approaches, the role of the endonuclease domain of the mismatch repair protein MLH3 in somatic CAG expansion in HD mice and patient cells. A point mutation in the MLH3 endonuclease domain completely eliminated CAG expansion in the brain and peripheral tissues of a HD knock-in mouse model (HttQ111). To test whether the MLH3 endonuclease could be manipulated pharmacologically, we delivered splice switching oligonucleotides in mice to redirect Mlh3 splicing to exclude the endonuclease domain. Splice redirection to an isoform lacking the endonuclease domain was associated with reduced CAG expansion. Finally, CAG expansion in HD patient-derived primary fibroblasts was also significantly reduced by redirecting MLH3 splicing to the endogenous endonuclease domain-lacking isoform. These data indicate the potential of targeting the MLH3 endonuclease domain to slow somatic CAG repeat expansion in HD, a therapeutic strategy that may be applicable across multiple repeat expansion disorders.  相似文献   

20.
Dentatorubral and pallidoluysian atrophy (DRPLA), a neurological disorder thought to be rare in European populations, is caused by a triplet repeat expansion in the B37 gene on chromosome 12. This disorder can phenotypically mimic Huntington's disease (HD) which is also caused by a repeat expansion. We have analysed 139 affected individuals for the HD triplet repeat expansion and found 132 patients had one normal and one expanded allele. Two patients had an expansion on both chromosomes and five patients had two normal-size alleles. Of these five patients, two were considered to be atypical. Two patients who were father and daughter were found to have an expansion of the DRPLA triplet repeat. This therefore constitutes the second such family described in the United Kingdom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号