首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While glucocorticoids have been shown to exacerbate calcium-induced neuronal damage, little is known about the effects of these hormones on calcium-induced damage to glial cells. Here we examine the effect of synthetic glucocorticoid dexamethasone on calcium ionophore A23187 and serum deprivation-induced damage to rat C6 glioma cells. Treatment of the glioma cells with A23187 reduced cell viability, similar in extent to that observed with serum deprivation. Both A23187 and serum deprivation caused cell damage without degradation of the genomic DNA into nucleosomic fragments. In addition, the reduction in cell viability caused by A23187 was not significantly altered by DEX at concentrations enhancing serum deprivation-induced cell death. These results suggest that the cytotoxic effect of A23187 on glial cells may be mediated through a mechanism different from that underlying serum deprivation-induced cell death, and that, in contrast to calcium-induced neuronal damage, calcium-induced damage to glial cells is likely to be insensitive to glucocorticoids.  相似文献   

2.
Effects of Cell Density on Lipids of Human Glioma and Fetal Neural Cells   总被引:2,自引:2,他引:0  
Abstract: Gangliosides, phospholipids, and cholesterol of human glioma (12-18) and fetal neural cells (CH) were analyzed at specified cell densities, from sparse to confluent. Total ganglioside sialic acid, phospholipid phosphorus, and cholesterol increased in the glioma cells on a per cell, mg protein, or mg total lipid basis two- to threefold as cell density increased 25-fold. These same three constituents in the fetal cells increased with cell density on a per cell and mg protein basis but not on a per mg total lipid basis. In glioma cells, the di- and trisialogangliosides (GD2+ GDlb+ GT1) increased from 1–2% of total ganglioside sialic acid at sparse densities to 7–8% at intermediate (logarithmic phase) densities to 10–13% at confluent densities. The set of simpler gangliosides (GM4+ GM3+ GM2) decreased from 50% of total ganglioside sialic acid at sparse glioma cell densities, to 36% at intermediate and 30% at confluent densities. In the fetal neural cells, the set of gangliosides (GM4+ GM3+ GM2) had about 48% of total ganglioside sialic acid in both sparse and confluent preparations. The fetal cells were twofold higher in GM3 (32.4 ± 2.1%) than the glioma cells (16.8 ± 1.6%), but lower in GMt (9.1 ± 0.9% versus 18.2 ± 1.8%), cell densities notwithstanding. Confluent cell preparations of both cell lines were consistently higher in ethanolamine plasmalogen than sparse cells. We conclude that in these two neural cell lines quantitative changes in ganglioside and phospholipid species occurred correlatively as cell densities increased. Higher glioma cell densities were associated with greater proportions of complex ganglioside species. These changes in cell membrane constituents during growth may result from cell contact and may indicate a role for them in cell growth regulation and/or differentiation.  相似文献   

3.
P19 embryonal carcinoma cells can be induced to differentiate with a pulse of only 4 hr in retinoic acid (RA). The efficiency of RA-induced differentiation is independent of the position of P19 cells in the cell cycle but is critically dependent on the ratio between the number of cells and the number of moles of RA in the culture medium. P19 cultures at lower cell density are more efficiently induced to differentiate than cultures containing cells at higher cell densities. This effect is not mediated by cell-to-cell contact but may be related to the rapid metabolism of RA by the cells. Individual clones of differentiating P19 cells can develop into at least three different cell types suggesting that each cell in the population of embryonal carcinoma cells retains pluripotency.  相似文献   

4.
Glioma is the most common type of brain tumor, and has the worst prognosis in human malignancy. Experimental evidence suggests that the use of high concentrations of various amino acids may perturb neoplastic cell growth. Thus, the aim of this study was to investigate whether essential amino acids can alter the growth and proliferation of glioma cells. Studies were performed using C6 rat glioma cell lines. High concentration of L-leucine induced growth arrest of glioma cell lines. Terminal transferase uridyl nick end labeling assay and cell cycle analysis showed that the effect of L-leucine on glioma cells growth was not cytotoxic, but rather cytostatic. Additionally, the extracellular signal-regulated protein kinase was activated in L-leucine-treated glioma cells, and inhibition of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1 (MEK) enhanced the effect of L-leucine on glioma cell growth. These data suggest that high concentration L-leucine combined with inhibition of MEK is a potential strategy for glioma cell growth arrest.  相似文献   

5.
6.
The effect of vitamin E on proliferation, integrin expression, adhesion, and migration in human glioma cells has been studied. gamma-tocopherol at 50 microM concentration exerted more inhibitory effect than alpha-tocopherol at the same concentration on glioma cell proliferation. Integrin alpha5 and beta1 protein levels were increased upon both alpha- and gamma-tocopherol treatments. In parallel, an increase in the alpha5beta1 heterodimer cell surface expression was observed. The tocopherols inhibited glioma cell-binding to fibronectin where gamma-tocopherol treatment induced glioma cell migration. Taken together, the data reported here are consistent with the notion that the inhibition of glioma cell proliferation induced by tocopherols may be mediated, at least in part, by an increase in integrin alpha5 and beta1 expression. Cell adhesion is also negatively affected by tocopherols, despite a small increase in the surface appearance of the alpha5beta1 heterodimer. Cell migration is stimulated by gamma-tocopherol. It is concluded that alpha5 and beta1 integrin expression and surface appearance are not sufficient to explain all the observations and that other integrins or in general other factors may be associated with these events.  相似文献   

7.
It is well established that protein kinase C (PKC) isozymes are involved in the proliferation of glioma cells. However, reports differ on which PKC isozymes are responsible for glioma proliferation. As a means to further elucidate this, the objectives of our research were to determine how inhibition of PKC-alpha, PKC-beta and PKCmu with PD 406976 regulates the cell cycle, cell proliferation and PKC during glioma growth and development. To establish the cell cycle effects of PD 406976 on brain cells (SVG, U-138MG and U-373MG glioma cells), specimens were treated with either dimethylsulfoxide (DMSO; control) or PD 406976 (2 microm). Results from flow cytometry demonstrated that PD 406976 delayed the entry DNA synthesis phase in SVG cells and delayed the number of cells entering and exiting the DNA synthesis phase in both U-138MG and U-373MG cells, indicating that PD 406976 may inhibit G(1)/S and S phase progression. Assessment of cell viability demonstrated a cytostatic effect of PD 406976 on SVG, U-138MG and U-373MG glioma cell proliferation. The PD 406976-induced decreased proliferation was sustained at 48-96 h. A PKC activity assay was quantified and demonstrated that exposure of SVG and U-373MG glioma cells to PD 406976 suppressed PKC activity. Western blotting demonstrated reduced PKC-beta1, PKC-gamma and PKC-tau protein content in cells treated with PD 406976. We determined that the growth inhibitory effect of PD 406976 was not as a result of apoptosis.  相似文献   

8.
Extracellular ATP plays a pivotal role as a signaling molecule in physiological and pathological conditions in the CNS. In several glioma cell lines, ATP is a positive factor for one or more characteristics important for the abnormal growth and survival of these cells. This work presents immunofluorescence and biochemical analyses suggesting that an aerobic metabolism, besides mitochondria, is located also on the plasma membrane of C6 glioma cells. An ATP synthesis coupled to oxygen consumption was measured in plasma membrane isolated from C6 cells, sensitive to common inhibitors of respiratory chain complexes, suggesting the involvement of a putative surface ATP synthase complex. Immunofluorescence imaging showed that Cytochrome c oxydase colocalized with WGA, a typical plasma membrane protein, on the plasma membrane of glioma cells. Cytochrome c oxydase staining pattern appeared punctuate, suggesting the intriguing possibility that the redox chains may be expressed in discrete sites on C6 glioma cell membrane. Data suggest that the whole respiratory chain is localized on C6 glioma cell surface. Moreover, when resveratrol, an ATP synthase inhibitor, was added to culture medium, a cytostatic effect was observed, suggesting a correlation among the ectopic ATP synthesis and the tumor growth. So, a potential direction for the design of new targets for future therapies may arise.  相似文献   

9.
Rat C6 glioma cells contain two receptors for adrenocorticoids—the predominant glucocorticoid receptor and low densities of the Type I corticosteroid (mineralocorticoid) receptor. Nanomolar concentrations of deoxycorticosterone, corticosterone and aldosteceptor. Nanomolar concentrations of deoxycorticosterone, corticosterone and aldosterone, which fully occupy Type I receptors, produced a slight stimulatory effect on C6 cell growth in serum-free media. However, spironolactone, a Type I receptor antagonist, and pregnenolone, which does not bind to Type I receptors, had similar effects. Therefore, the slight growth stimulation produced by low steroid concentrations is not mediated by Type I or glucocorticoid receptors, but may be due to an effect on cell membrane properties or other receptor-independent action. Occupation of glucocorticoid receptors by higher concentrations of corticosteroids inhibited C6 cell growth.  相似文献   

10.
The effect was investigated of combinations of cytokines known to be cytostatic for some tumor cells, namely interleukin 1 alpha (IL-1 alpha), interferon-beta (IFN-beta), and tumor necrosis factor (TNF), on the growth and differentiation of the mouse myeloid leukemic cell line, M1, cells. IL-1 alpha, IFN-beta, and TNF by themselves are antiproliferative for M1 cells. Treatment of cells with a mixture of any two of the three cytokines resulted in at least additive growth inhibition. None of these cytokines by themselves induced differentiation of M1 cells as assessed by increased expression of Fc receptors (FcR), stimulation of phagocytic activity and by morphologic criteria. However, as little as 1 U/ml IL-1 alpha in conjunction with IFN-beta or TNF increased FcR expression, phagocytic activity and morphologic changes in addition to inhibiting the growth of M1 cells. The combination of IFN-beta and TNF did not induce differentiation, although the growth of the cells was markedly inhibited. Both TNF and lipopolysaccharide (LPS) induced the in vitro production of IFN activity by M1 cells. Furthermore, the induction of differentiation of M1 cells by a combination of IL-1 alpha with either IFN-beta, TNF, or LPS was inhibited by antibody against mouse IFN-beta. Therefore, it appears that IFN-beta provides one of the two required signals for differentiation of M1 cells by these combinations of stimulants, the other being IL-1. Furthermore, the cytostatic effect of TNF by itself on M1 cells was also partly blocked by anti-IFN-beta antibody, suggesting that IFN-beta is also involved in the growth inhibitory effect of TNF for M1 cells. In contrast, the cytostatic effect of IL-1 on M1 cells was not blocked by anti-IFN-beta antibody. In conclusion, both the cytostatic and differentiative effect of TNF appear to be mediated by IFN-beta. Thus, the combination of IL-1 and IFN-beta or inducers of IFN-beta resulted in terminal differentiation of M1 cells. Northern blot analysis using cDNAs for murine IFN-beta1 or human IFN-beta2 showed an increased expression of mRNA for IFN-beta1 but not for IFN-beta2 by stimulation with TNF or LPS, strongly suggesting that IFN-beta 1 rather than IFN-beta 2 is responsible for TNF or LPS effects.  相似文献   

11.
12.
Induction of apoptosis by penta-acetyl geniposide in rat C6 glioma cells   总被引:2,自引:0,他引:2  
Penta-acetyl geniposide, (Ac)(5)-GP, was produced by acetylation of a glycoside, isolated from an extract of Gardenia fructus. Previously, we have reported that C6 glioma cells could be inhibited in culturing as well as in bearing rats by treating with (Ac)(5)-GP. In this study, the effect and action of (Ac)(5)-GP on inducing cell death was examined in rat C6 glioma cells. Treatment of C6 glioma cells with (Ac)(5)-GP caused cell death, chromatin condensation, and internucleosomal DNA ladder. Also, cell cycle arrest at G(0)/G(1) phase revealed that (Ac)(5)-GP-induced cell death appears to be mediated by apoptosis. In addition, the results also showed that p53 and c-Myc increased due to treatment of (Ac)(5)-GP in a dose-response and time-dependent manner. Concomitant with the expression of p53 and c-Myc, decreased level of Bcl-2 and increased level of Bax protein were observed. These results suggest that cell death caused by (Ac)(5)-GP through apoptosis and cell cycle arrest at G(0)/G(1) may be associated with the induction of p53, c-Myc and may be mediated with apoptosis-related Bcl-2 family proteins.  相似文献   

13.
This paper reviews the relationships between the effects of glucocorticoids on rat pancreatic acinar AR42J cell polyamine levels and cellular growth and differentiation. Glucocorticoids inhibit the growth of AR42J cells. Glucocorticoids either stimulate or inhibit the formation of polyamines in a variety of cell types. Cells require polyamines for normal growth. Therefore, we tested the hypothesis that polyamines mediate the effects of glucocorticoids on AR42J cells. First, to confirm that AR42J cells required polyamines for growth we examined the effects of inhibiting ornithine decarboxylase (ODC). ODC is the most important and generally rate-limiting enzyme in the synthesis of the polyamines. As expected, the ODC inhibitor difluoromethylornithine (DFMO) inhibited AR42J cell DNA synthesis, and the addition of exogenous putrescine reversed this effect. The levels of growth inhibition by glucocorticoids and DFMO treatment were similar. Second, we examined the effects of glucocorticoids on ODC. Surprisingly, glucocorticoids increased levels of AR42J cell ODC mRNA, ODC activity, and putrescine. Glucocorticoids increased these parameters over a similar time-course as they decreased DNA synthesis. Analog specificity studies indicated that a glucocorticoid receptor mediated both the growth inhibitory and ODC stimulatory effects. Dose-response studies indicated, however, that growth inhibition was more sensitive to dexamethasone (DEX) than were ODC levels. Therefore, polyamines do not account for the effects of glucocorticoids on AR42J cell growth. In these cells, glucocorticoids have opposite and independent effects on ODC and growth.  相似文献   

14.
Abstract— Protein species from differentiating neuroblastoma, glioma, and hybrid neuroblastoma-glioma cell lines in cell culture were separated and identified initially in the first dimension by the use of isoelectric focusing gels and were further separated in the second dimension by SDS-acrylamide gels. There were two main classes of proteins identified: proteins which were dominantly expressed in neuroblastoma and also in hybrid cell cultures, and proteins which were expressed in glioma and also hybrid cell cultures. In general, proteins were identified which were significantly expressed in neuroblastoma cells and much reduced in glioma cultures, and also conversely so. The hybrid cell line expressed many of the neuroblastoma-type proteins and relatively fewer of the glioma type proteins. A specific protein species (2) was identified in hybrid cells and was not present in either parental neuroblastoma or glioma cultures. Protein z was expressed however by the co-culturing of neuroblastoma and glioma cells suggesting its induction is dependent on a soluble factor. Protein z in hybrid cells was demonstrated in both stained gels and by autoradiography. Chromosome analysis of hybrid cells confirmed the presence of both rat and mouse chromosomes. It is suggested that similar neuronal-glial interaction may be functional in the intact brain, and that similar reciprocal modulation between neurons and glia may be a central mechanism of differentiation in the nervous system.  相似文献   

15.
In order to investigate the mechanism through which glucocorticoids downregulate the number of their own receptors in the AtT-20 cell, the effect of glucocorticoids on cell protein metabolism was studied. Glucocorticoids were found to inhibit cellular protein accumulation when included in long-term cultures. The concentrations of agonists that cause a mid-maximal effect are similar to those needed to half-saturate the glucocorticoid receptor, suggesting that the growth-inhibiting effect is receptor-mediated. Two-dimensional electrophoresis of cytosolic extracts of treated and control cells suggested that the effect reflected a general suppression of overall protein accumulation rather than a selective effect on certain classes. Comparison of the protein to DNA ratio of control and dexamethasone-treated cells showed that the latter have higher ratios suggesting that cell composition may be altered by agonists. However, time-course studies of this effect indicated that this is basically an expression of a glucocorticoid effect on cell growth rather than a selective effect on protein metabolism. It is concluded that glucocorticoids inhibit overall AtT-20 cell growth and that this, in turn, manifests itself as a decrease in the rate of protein accumulation. It is suggested that this change in protein metabolism may be a minor component in the mechanism through which glucocorticoids decrease AtT-20 cell ACTH secretion and glucocorticoid receptor number.  相似文献   

16.
The proliferation of murine T cell clones can be supported by IL-2 or by IL-4. We present here evidence that glucocorticosteroids differentially affect these two pathways of proliferation. Dexamethasone (DEX) and other corticosteroids were observed to induce autocrine proliferation of the D10.G4.1 Th cell clone (D10) in the presence of the anti-clonotypic antibody 3D3. This effect was inhibited by the anti-murine IL-4 antibody 11B11, indicating that it is mediated by IL-4. Furthermore, on this cell line, representative of the Th2 group of helper cells, DEX had little effect on the proliferation induced by exogenous IL-4 but completely inhibited the growth-promoting effects of IL-2. In contrast, the effects of DEX on the proliferation of the cytotoxic IL-2-dependent CTLL-2 cell line are completely opposite. DEX blocked the IL-4-driven proliferation of CTLL-2 cells, while leaving unaffected their response to IL-2. It is also shown in this study that the effects of glucocorticoids in this system are totally antagonized by the high affinity anti-glucocorticosteroid RU 38486, indicating that they are mediated through the described intracellular glucocorticoid receptor. These data suggest that the growth effects of IL-2 and IL-4 may be mediated by distinct pathways that are strikingly different in their sensitivity to glucocorticoids. In addition, the regulation of lymphokine-dependent proliferation and the response to glucocorticoids appeared very different in helper and cytotoxic cells.  相似文献   

17.
18.
Intraepithelial lymphocytes (IEL) of the small murine bowel represent a unique population of mostly CD8(+) T lymphocytes that reside within the epithelial cell layer of the intestinal mucosa. The close interaction with epithelial cells appears to be crucial for IEL survival since isolation and ex vivo culture induces massive apoptosis in this lymphocyte population. Here, we provide evidence that this form of IEL cell death may be mediated at least in part by endogenously produced glucocorticoids since adrenalectomy or treatment of mice with a glucocorticoid receptor antagonist significantly enhanced ex vivo survival of IEL. We further demonstrate that ex vivo activation of IEL induces upregulation of anti-apoptotic gene products, compensates for the lack of survival cytokines and rescues from apoptotic cell death. Thus, similar to thymocytes and T cell hybridomas, IEL survival may be regulated by the antagonistic action of TCR activation and glucocorticoids.  相似文献   

19.
Gliomas remain to be an unresolved medical problem. Better understanding of complex regulation and key molecules involved in glioma pathology are needed for designing new and effective treatment modalities. Activation of mitogen-activated protein kinase/extracellular signal regulated kinase (ERK) pathway is known to be having a critical role in cell proliferation and differentiation during the invasion and metastasis of the tumor cells. In the present study, N-ethyl N-nitrosourea induced glioma rat model was used to understand the role of ERK1/2 and Akt pathways in the progression of tumor malignancy. Twenty-four glioma rat brains of early (P90) and progressive (P180) stages were used for histological and immunoblot analysis. Results have shown increased levels of activated ERK1/2, activated Akt or protein kinase B, Bcl-2 and pBad in the glioma rats. This study may indicate increased cell proliferation and angiogenesis, mediated through activation of both ERK and Akt pathways along with increased levels of pBad. Further, pAkt and Bcl-2 levels in the progressive stage glioma rats may indicate existence of sustained tumor cell survival signals. Moreover, enhanced pBad levels in tumor may indicate that there are anti-apoptotic mechanisms, further making the malignant cells resistant to apoptosis.  相似文献   

20.
Glucocorticoids influence post-natal mammary gland development by sequentially controlling cell proliferation, differentiation, and apoptosis. In the mammary gland, it has been demonstrated that glucocorticoid treatment inhibits epithelial apoptosis in post-lactating glands. In this study, our first goal was to identify new glucocorticoid target genes that could be involved in generating this effect. Expression profiling, by microarray analysis, revealed that expression of several cell-cycle control genes was altered by dexamethasone (DEX) treatment after lactation. Importantly, it was determined that not only the exogenous synthetic hormone, but also the endogenous glucocorticoids regulated the expression of these genes. Particularly, we found that the expression of cell cycle inhibitors p21CIP1, p18INK4c, and Atm was differentially regulated by glucocorticoids through the successive stages of mammary gland development. In undifferentiated cells, DEX treatment induced their expression and reduced cell proliferation, while in differentiated cells this hormone repressed expression of those cell cycle inhibitors and promoted survival. Therefore, differentiation status determined the effect of glucocorticoids on mammary cell fate. Particularly, we have determined that p21CIP1 inhibition would mediate the activity of these hormones in differentiated mammary cells because over-expression of this protein blocked DEX-induced apoptosis protection. Together, our data suggest that the multiple roles played by glucocorticoids in mammary gland development and function might be at least partially due to the alternative roles that these hormones play on the expression of cell cycle regulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号