首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The three-dimensional structures of chymotrypsin- and methylamine-treated negatively stained human α2-macroglobulin have been determined by weighted back projection from electron microscope data. Projections of the reconstructions show good concordance with two-dimensional averages of both stained and frozen-hydrated molecules. The reconstructions reveal that the H-shaped front projection of the molecule is related to the smaller ellipsoidal end view by a rotation of 90° about the crossbar (minor axis) of the H. This finding is in agreement with tilt studies. The reconstruction of the α2-macroglobulin-methylamine reveals an hour-glass shaped void which is filled by the two proteinase molecules in the reconstruction of α2-macroglobulin-chymotrypsin. Protein plugs which appear to block the exterior entrances to the cavity may function to prevent access of proteins to the encapsulated proteinase and serve to block its escape. Extensive thresholding of each reconstruction leaves a “backbone” consisting of two side-by-side rod-like structures, suggesting that this is the arrangement of the two protomeric units which form the molecule. Both structures show some departure from the expected symmetry. The asymmetries are robust features of the reconstructions and may reflect structurally asymmetric features of the transformation from the native to the chymotrypsin-treated form of the molecule.  相似文献   

2.
Three-dimensional electron microscopy reconstructions of the human alpha(2)-macroglobulin (alpha(2)M) dimer and chymotrypsin-transformed alpha(2)M reveal the structural arrangement of the two dimers that comprise native and proteinase-transformed molecules. They consist of two side-by-side extended strands that have a clockwise and counterclockwise twist about their major axes in the native and transformed structures, respectively. This and other studies show that there are major contacts between the two strands at both ends of the molecule that evidently sequester the receptor binding domains. Upon proteinase cleavage of the bait domains and subsequent thiol ester cleavages, which occur near the central region of the molecule, the two strands separate by 40 A at both ends of the structure to expose the receptor binding domains and form the arm-like extensions of the transformed alpha(2)M. During the transformation of the structure, the strands untwist to expose the alpha(2)M central cavity to the proteinase. This extraordinary change in the architecture of alpha(2)M functions to completely engulf two molecules of chymotrypsin within its central cavity and to irreversibly encapsulate them.  相似文献   

3.
Three-dimensional electron microscopy reconstructions of native, half-transformed, and transformed alpha2-macroglobulins (alpha2Ms) labeled with a monoclonal Fab Fab offer new insight into the mechanism of its proteinase entrapment. Each alpha2M binds four Fabs, two at either end of its dimeric protomers approximately 145 A apart. In the native structure, the epitopes are near the base of its two chisel-like features, laterally separated by 120 A, whereas in the methylamine-transformed alpha2M, the epitopes are at the base of its four arms, laterally separated by 160 A. Upon thiol ester cleavage, the chisels on the native alpha2M appear to split with a separation and rotation to give the four arm-like extensions on transformed alpha2M. Thus, the receptor binding domains previously enclosed within the chisels are exposed. The labeled structures further indicate that the two protomeric strands that constitute the native and transformed molecules are related and reside one on each side of the major axes of these structures. The half-transformed structure shows that the two Fabs at one end of the molecule have an arrangement similar to those on the native alpha2M, whereas on its transformed end, they have rotated. The rotation is associated with a partial untwisting of the strands and an enlargement of the openings to the cavity. We propose that the enlarged openings permit the entrance of the proteinase. Then cleavage of the remaining bait domains by a second proteinase occurs with its entrance into the cavity. This is followed by a retwisting of the strands to encapsulate the proteinases and expose the receptor binding domains associated with the transformed alpha2M.  相似文献   

4.
A three-dimensional reconstruction of a protein-engineered mutant alpha(2)-macroglobulin (alpha(2)M) in which a serine residue was substituted for the cysteine 949 (C949S), making it unable to form internal thiol ester moieties, was compared with native and methylamine-transformed alpha(2)Ms. The native alpha(2)M structure consists of two oppositely oriented Z-shaped strands. Thiol ester cleavage following an encounter with a proteinase or a nucleophilic attack by methylamine causes a structural transformation in which the strands assume an opposite handedness and a significant portion of the protein density migrates from the distal ends of the molecule toward the center. The C949S mutant showed a protein density distribution very similar to that of transformed alpha(2)M, with a compact central region of protein density connected to two receptor-binding arms on each end of the molecule. Since no particle shapes characteristic of native or half-transformed alpha(2)Ms were seen in electron micrographs and the C949S mutant and alpha(2)M-methylamine structures are highly similar, we conclude that the intact thiol esters maintain native alpha(2)M in a quasi-stable state. In their absence, alpha(2)M folds into the more stable transformed structure, which displays the functionally important receptor-binding domains and contains the proteinase-entrapping internal cavity.  相似文献   

5.
alpha 2-Macroglobulin, one of the major plasma proteinase inhibitors with Mr = 720,000, is known to inhibit proteinases of all four classes through the "trap mechanism" (Barrett, A. J., and Starkey, P. M. (1973) Biochem. J. 133, 709-724), but the proteinase binding site of alpha 2-macroglobulin has not been identified precisely. We localized bound proteinase molecules on the electron microscopic images of alpha 2-macroglobulin, using anti-proteinase IgG. Serratial Mr = 56,000 proteinase produced by Serratia marcescens was chosen as the antigenic probe in this study because its affinity to specific antibodies was retained in its bound state to alpha 2-macroglobulin. Dimers of alpha 2-macroglobulin/Mr = 56,000 proteinase complexes cross-linked with anti-Mr = 56,000 proteinase IgG were prepared and subjected to electron microscopic observations. The electron microscopic image of alpha 2-macroglobulin complexed with Mr = 56,000 proteinase had four straight arms with an overall shape looking like the character "H." From the way anti-Mr = 56,000 proteinase IgG linked two alpha 2-macroglobulins, it was concluded that the proteinase existed in the midregion of one of the arms. This result helps us to form a more concrete view of the trap mechanism in that one of the arms of alpha 2-macroglobulin wraps the trapped proteinase and holds it isolated from high molecular weight substrates in the surrounding medium.  相似文献   

6.
Adalimumab and Infliximab are recombinant IgG1 monoclonal antibodies (mAbs) that bind and neutralize human tumor necrosis factor alpha (TNFα). TNFα forms a stable homotrimer with unique surface‐exposed sites for Adalimumab, Infliximab, and TNF receptor binding. Here, we report the structures of Adalimumab‐TNFα and Infliximab‐TNFα complexes modeled from negative stain EM and cryo‐EM images. EM images reveal complex structures consisting of 1:1, 1:2, 2:2, and 3:2 complexes of Adalimumab‐TNFα and Infliximab‐TNFα. The 2:2 complex structures of Adalimumab‐TNFα and Infliximab‐TNFα show diamond‐shaped profiles and the 2D class averages reveal distinct orientations of the Fab domains, indicating different binding modes by Adalimumab and Infliximab to TNFα. After separation by size exclusion chromatography and analysis by negative stain EM, the 3:2 complexes of Adalimumab‐TNFα or Infliximab‐TNFα complexes are more complicated but retain features recognized in the 2:2 complexes. Preliminary cryo‐EM analysis of 3:2 Adalimumab‐TNFα complex generated a low‐resolution density consistent with a TNFα trimer bound with three Fab domains from three individual antibody molecules, while each antibody molecule binds to two molecules of TNFα trimer. The Fc domains are not visible in the reconstruction. These results show the two mAbs form structurally distinct complexes with TNFα.  相似文献   

7.
Three-dimensional reconstructions of the negatively stained thick filaments of tarantula muscle with a resolution of 50 A have previously suggested that the helical tracks of myosin heads are zigzagged, short diagonal ridges being connected by nearly axial links. However, surface views of lower contour levels reveal an additional J-shaped feature approximately the size and shape of a myosin head.We have modelled the surface array of myosin heads on the filaments using as a building block a model of a two-headed regulated myosin molecule in which the regulatory light chains of the two heads together form a compact head-tail junction. Four parameters defining the radius, orientation and rotation of each myosin molecule were varied. In addition, the heads were allowed independently to bend in a plane perpendicular to the coiled-coil tail at three sites, and to tilt with respect to the tail and to twist at one of these sites. After low-pass filtering, models were aligned with the reconstruction, scored by cross-correlation and refined by simulated annealing.Comparison of the geometry of the reconstruction and the distance between domains in the myosin molecule narrowed the choice of models to two main classes. A good match to the reconstruction was obtained with a model in which each ridge is formed from the motor domain of a head pointing to the bare zone together with the head-tail junction of a neighbouring molecule. The heads pointing to the Z-disc intermittently occupy the J-position. Each motor domain interacts with the essential and regulatory light chains of the neighbouring heads. A near-radial spoke in the reconstruction connecting the backbone to one end of the ridge can be identified as the start of the coiled-coil tail.  相似文献   

8.
The three-dimensional structure of the Na,K-ATPase from electron microscopy   总被引:2,自引:0,他引:2  
The structure of Na,K-ATPase has been studied by electron microscopy and image reconstruction. A three-dimensional structure of this enzyme has been obtained to an overall resolution of 2.5 nm using data from specimens of negatively stained dimer sheets tilted through a range of angles +/- 60 degrees. The reconstruction shows a complex mass distribution consisting of ribbons of paired molecules extending approximately 6.0 nm from the cytoplasmic side of the membrane. The molecular envelope consists of a massive "body" with "lobe" and "arm" structures projecting from it. The body has a columnar shape and is tilted with respect to the plane of the membrane. The region of interaction responsible for dimer formation is located between two bodies and is clearly visible in the reconstruction. It has been identified as a segment in the amino-terminal portion of the alpha subunit. The arms that interconnect the ribbons are located close to the membrane and are most probably formed by the beta subunits.  相似文献   

9.
The molecular shape of the extracellular hemoglobin of the annelid worm Eophila tellinii was investigated by electron microscopy of negatively stained single molecules and of two-dimensional crystalline arrays. While the single molecules show the characteristic double hexagons, approx 28 nm in diameter and 19 nm in height, the molecules in the crystals are only 7–8 nm in height according to the 3D reconstruction. This is attributed to a dissociation of the hemoglobin complex; we present evidence that dissociation may proceed to the level of the main subunit from which half-molecules are reassembled. 3D reconstructions of two different crystal forms yield almost identical results and provide some information about the mass distribution within the main subunit. The presence or absence of the “central subunit” is tentatively interpreted in terms of a gross conformational change which entails a redistribution of mass also in the main subunit.  相似文献   

10.
Hoechst 33258 fluorescent staining of Drosophila chromosomes   总被引:8,自引:2,他引:6  
Metaphase chromosomes of D. melanogaster, D. virilis and D. eopydei were sequentilly stained with quinacrine, 33258 Hoechst and Giemsa and photographed after each step. Hoechst stained chromosomes fluoresced much brighter and with different banding patterns than quinacrine stained ones. In contrast to mammalian chromosomes, Drosophia's quinacrine and Hoechst bright bands are all in centric heterochromatin and the banding patterns seem more taxonomically divergent than external morphological characteristics. Hoechst stained D. melanogaster chromosomes show unprecedented longitudinal differentiation by the heterochromatic regions; each arm of each autosome can be unambiguously identified and the Y shows eleven bright bands. The Hoechst stained Y can also be identified in polytene chromocenters. Centric alpha heterochromatin of each D. virilis autosome is composed of two blocks which can be differtiated by a combination of quinacrine and Hoechst staining. The distal block is always Q-H- while the proximal block is, for the various autosomes, either Q-H-, Q+H- or Q+H+. With these permutations of Hoechst and quinacrine staining, D. virilis autosomes can be unambiguously distinguished. The X and two autosomes have H+ heterochromatin which can easily be seen in polytene and interphase nuclei where it seems to aggregate and exclude H- heterochromatin. This affinity of fluorochrome similar heterochromatin was been seen in colcemide induced multiple somatic non-disjunctions where H+ chromosomes were distributed to one rosette and H- chromosomes were distributed to another. Knowing the base composition and base sequences of Drosophila satellites, we conclude that AT richness may be necessary but is certainly an insufficient requirement for quinacrine bright chromatin while GC richness may be a sufficient requirement for the absence of quinacrine or Hoechst brightness. Condensed euchromatin is almost as bright as Q+ heterochromatin. While chromatin condensation has little effect on Hoechst staining, it appears to be "the most important factor responsible for quinacrine brightness.' All existing data from D. virilis indicate that each fluorochrome distinct block of alpha heterochromatin may contain a single a single DNA molecule which is one heptanucleotide repeated two million times.  相似文献   

11.
From electron micrographs single molecules of alpha 2-macroglobulin in the "closed" form, the "open" form and as the trypsin complex have been computer averaged. The molecular images are discussed. Molecules of the electrophoretically fast migrating "F-form" have the "closed" form. In the case of the alpha 2-macroglobulin/trypsin complex the two attached trypsin molecules are located very near to each other and in the central part of the alpha 2-macroglobulin molecule.  相似文献   

12.
The mitochondrial protein frataxin plays a central role in mitochondrial iron homeostasis, and frataxin deficiency is responsible for Friedreich ataxia, a neurodegenerative and cardiac disease that affects 1 in 40000 children. Here we present a single-particle reconstruction from cryoelectron microscopic images of iron-loaded 24-subunit oligomeric frataxin particles at 13 and 17 A resolution. Computer-aided classification of particle images showed heterogeneity in particle size, which was hypothesized to result from gradual accumulation of iron within the core structure. Thus, two reconstructions were created from two classes of particles with iron cores of different sizes. The reconstructions show the iron core of frataxin for the first time. Compared to the previous reconstruction of iron-free particles from negatively stained images, the higher resolution of the present reconstruction allowed a more reliable analysis of the overall three-dimensional structure of the 24-meric assembly. This was done after docking the X-ray structure of the frataxin trimer into the EM reconstruction. The structure revealed a close proximity of the suggested ferroxidation sites of different monomers to the site proposed to serve in iron nucleation and mineralization. The model also assigns a new role to the N-terminal helix of frataxin in controlling the channel at the 4-fold axis of the 24-subunit oligomer. The reconstructions show that, together with some common features, frataxin has several unique features which distinguish it from ferritin. These include the overall organization of the oligomers, the way they are stabilized, and the mechanisms of iron core nucleation.  相似文献   

13.
The combination of high-resolution tantalum/tungsten (Ta/W) shadowing at very low specimen temperature (-250 degrees C) under ultrahigh vacuum (less than 2 x 10(-9) mbar) with circular harmonic image averaging revealed details on the surface structure of mitochondrial creatine kinase (Mi-CK) molecules with a resolution less than 2.5 nm. Mi-CK octamers exhibit a cross-like surface depression dividing the square shaped projection of 10 x 10 nm into four equally sized subdomains, which correspond to the four dimers forming the octameric Mi-CK molecule. By a combination of positive staining (with uranyl acetate) and heavy metal shadowing, internal structures as well as the surface relief of Mi-CK were visualized at the same time at high resolution. Computational image analysis revealed only a single projection class of molecules, but the ability of Mi-CK to form linear filaments, as well as geometrical considerations concerning the formation of octamers by four equal, asymmetric dimers, suggest the existence of at least two distinct faces on the molecule. By image processing of Mi-CK filaments a side view of the octamer differing from the top-bottom projections of single molecules became evident showing a funnel-like access each form the top and bottom of the octamer connected by a central channel. The general structure of the Mi-CK octamer described here is relevant to the localization of the molecule at the inner-outer mitochondrial contact sites and to the function of Mi-CK as an "energy channeling" molecule.  相似文献   

14.
Dihydrolipoamide acyltransferase (E2), a catalytic and structural component of the three functional classes of multienzyme complexes that catalyze the oxidative decarboxylation of alpha-keto acids, forms the central core to which the other components are attached. We have imaged by negative stain and cryoelectron microscopy the truncated dihydrolipoamide acetyltransferase core (60 subunits; M(r) = 2.7 x 10(6)) of the Saccharomyces cerevisiae pyruvate dehydrogenase complex. Using icosahedral particle reconstruction techniques, we determined its structure to 25 A resolution. Although the model derived from the negative stain reconstruction was approximately 20% smaller than the model derived from the frozen-hydrated data, when corrected for the effects of the electron microscope contrast transfer functions, the reconstructions showed excellent correspondence. The pentagonal dodecahedron-shaped macromolecule has a maximum diameter, as measured along the 3-fold axis, of approximately 226 A (frozen-hydrated value), and 12 large openings (approximately 63 A in diameter) on the 5-fold axes that lead into a large solvent-accessible cavity (approximately 76-140 A diameter). The 20 vertices consist of cone-shaped trimers, each with a flattened base on the outside of the structure and an apex directed toward the center. The trimers are interconnected by 20 A thick "bridges" on the 2-fold axes. These studies also show that the highest resolution features apparent in the frozen-hydrated reconstruction are revealed in a filtered reconstruction of the stained molecule.  相似文献   

15.
It is shown that non-proteolytic proteins can become covalently linked to alpha 2M (alpha 2-macroglobulin) during its reaction with proteinases, and that this probably occurs by the mechanism that leads to the covalent linking of proteinases described previously [Salvesen & Barrett (1980) Biochem. J. 187, 695-701]. The covalent linking of trypsin was at least partly dependent on the presence of unblocked lysine side chains on the protein. The covalent linking of proteinases was inhibited by nucleophiles of low Mr, and these compounds were themselves linked to alpha 2M in a molar ratio approaching one per quarter subunit. Peptide "mapping" indicated that the site of proteinase-mediated incorporation of the amines was the same as that at which methylamine is incorporated in the absence of a proteinase. The nucleophile-reactive site revealed in alpha 2M after reaction with a proteinase was shown to decay with a t1/2 of 112 s, at pH 7.5. After the reaction with a proteinase or with methylamine, a free thiol group was detectable on each subunit of alpha 2M. We propose that the site for incorporation of methylamine in each subunit is a thiol ester, which in S-alpha 2M (the electrophoretically "slow" form) is sterically shielded from reaction with large nucleophiles, but is revealed as a highly reactive group, free from steric hindrance, after the proteolytic cleavage. We have designated the activated species of the molecule "alpha 2M".  相似文献   

16.
The active thiol ester groups of alpha 2-macroglobulin (alpha 2M) were reacted with a biotin derivative and the sites labelled with avidin-ferritin complexes. Electron micrographs show a strong preference of attachment of the ferritins to the ends of the rods of the H-shaped molecules. A mutual "cross-labelling" was observed in an alpha 2M preparation which yielded dimers of the molecules which must have been formed during purification. The molecules were mostly attached to each other at the ends of the rods of the H-shaped molecules. It is concluded that the thiol esters responsible for the covalent attachment of the proteinases (and other molecules) may be located more in the distal parts of the alpha 2M molecules, while the proteinase molecules are finally trapped near to the centre of the alpha 2M molecules.  相似文献   

17.
The decameric human erythrocyte protein torin is identical to the thiol-specific antioxidant protein-II (TSA-II), also termed peroxiredoxin-II (Prx-II). Single particle analysis from electron micrographs of Prx-II molecules homogeneously orientated across holes in the presence of a thin film of ammonium molybdate and trehalose has facilitated the production of a >/=20 A 3-D reconstruction by angular reconstitution that emphasises the D5 symmetry of the ring-like decamer. The X-ray structure for Prx-II was fitted into the transmission electron microscopic reconstruction by molecular replacement. The surface-rendered transmission electron microscopy (TEM) reconstruction correlates well with the solvent-excluded surface of the X-ray structure of the Prx-II molecule. This provides confirmation that transmission electron microscopy of negatively stained specimens, despite limited resolution, has the potential to reveal a valid representation of surface features of protein molecules. 2-D crystallisation of the Prx-II protein on mica as part of a TEM study resulted in the formation of a p2 crystal form with parallel linear arrays of stacked rings. This latter 2-D form correlates well with that observed from the 2.7 A X-ray structure of Prx-II solved from a new orthorhombic 3-D crystal form.  相似文献   

18.
We have studied the structure of bovine heart mitochondrial NADH:ubiquinone (Q) oxidoreductase (EC 1.6.99.3) by image analysis of electron micrographs. A three-dimensional reconstruction was calculated from a tilt-series of a two-dimensional crystal of the molecule. Our interpretation of the position of the molecule in the unit cell of the crystal is supported by additional (low-resolution) analysis of images of single molecules. The three-dimensional reconstruction was calculated with the aid of an iterative real-space reconstruction algorithm. The various projections used as input to the algorithm were obtained by averaging the images of the tilted crystal through a Fourier-space peak-filtering procedure. The reconstructed unit cell measures 15.2 X 15.2 nm in the plane of the two-dimensional crystal and has a height of 10-11 nm. The unit cell contains one molecule consisting of four large subunits. At the present resolution of about 1.3 nm in the untilted projection, these four monomers are seen as two dimers related by a two-fold axis. Two views of the single particles have been recognized; they are the top and side view of the building block of the crystal. After computer image alignment and correspondence analysis, clusters of similar particles have been averaged. In the averages an uneven stain distribution is seen around the molecules, which may result from preferential staining of hydrophilic parts of the molecule. The molecular mass of the whole molecule was determined from scanning transmission electron microscopy measurements as (1.6 +/- 0.2) X 10(6) daltons.  相似文献   

19.
A new method to analyze the distribution of water molecules around the bases in DNA is presented. This method relies on the notion of a "hydrated building block," which represents the joint observed hydration around all bases of a particular type, in structures of a particular conformation type. The hydrated building blocks were constructed using atomic coordinates from 40 structures contained in the Nucleic Acid Database. Pseudoelectron densities were calculated for water molecules in each hydrated building block using standard crystallographic procedures. The electron densities were fitted to obtain "average building blocks," which represent bases with waters only at average or probable positions. Both types of building blocks were used to construct models of hydrated DNA oligomers. The essential features of the solvent structure around d(CGCGAATTCGCG)2 in the B form and d(CGCGCG)2 in the Z form were reproduced.  相似文献   

20.
P A Roche  G S Salvesen  S V Pizzo 《Biochemistry》1988,27(20):7876-7881
Human alpha 2-macroglobulin (alpha 2M) of Mr approximately 720,000 is a proteinase inhibitor whose four identical subunits are arranged to form two adjacent inhibitory units. At present, the spatial arrangement of the two subunits which form one inhibitory unit (the functional "half-molecule") is not known. Treatment of alpha 2M with either 0.5 mM dithiothreitol (DTT) or 4 M urea results in dissociation of the native tetramer into two half-molecules of Mr approximately 360,000. These half-molecules retain trypsin inhibitory activity, but in each case, the reaction results in reassociation of the half-molecules to produce tetramers of Mr approximately 720,000. However, when reacted with plasmin, the preparations of half-molecules have different properties. DTT-induced half-molecules protect the activity of plasmin from inhibition by soybean trypsin inhibitor (STI) without reassociation, while urea-induced half-molecules show no ability to protect plasmin from reaction with STI. High-performance size-exclusion chromatography and sedimentation velocity ultracentrifugation studies were then used to estimate the Stokes radius (Re) of alpha 2M and both DTT- and urea-induced half-molecules of alpha 2M. The Re of tetrameric alpha 2M was 88-94 A, while that of DTT-induced half-molecules was 57-60 A and urea-induced half-molecules 75-77 A. These results demonstrate that DTT- and urea-induced half-molecules have fundamentally different molecular dimensions as well as inhibitory properties. The hydrodynamic data suggest that the urea-induced half-molecule is a "rod"-like structure, although it is not possible to predict the three-dimensional structure of this molecule with the available data.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号