首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Storage proteins of interior spruce ( Picea glauca engelmanii complex) somatic embryos were compared to those of zygotic embryos by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. Somatic embryos contain the same storage proteins as zygotic embryos based on similarities of molecular weight, isoelectric variants, solubility characteristics and disulfide linkages. Storage protein levels varied among different somatic embryo genotypes; however, all genotypes tested accumulated significant amounts of storage proteins. Zygotic and somatic embryos display a similar developmental accumulation of storage proteins. The 22, 24, 33 and 35 kDa proteins appear in early stage embryos, while the 41 kDa protein begins to accumulate during mid cotyledon development. The 22, 24 and 41 kDa proteins accumulate continuously during cotyledon development in somatic embryos cultured on abscisic acid. In contrast, zygotic embryos display a more rapid and transient accumulation of these proteins.  相似文献   

3.
Summary In order to improve the late phases of Theobroma cacao L. embryogenesis from tissues of maternal origin, zygotic embryogenesis and somatic embryogenesis were compared, with respect to morphological, histological, and physiological parameters. Zygotic embryogenesis could be divided into three steps: (a) embryogenesis sensu stricto, (b) a growth period in which cotyledonary embryos reached their final dimensions, and (c) a maturation period in which embryos accumulated protein and starch reserves, dehydrated to a water content equal to 30%, and underwent a modification in soluble sugar composition. Monosaccharides and sucrose contents decreased to the benefit of the oligosaccharides raffinose and stachyose. The formation of somatic embryos by use of basic protocols was studied to define the limiting factors that could lie behind their poor development. Morphological abnormalities of somatic embryos, which represented 80% of the total population, were described. A histological study showed that somatic embryos lacked starch and protein reserves; moreover, their water content was much higher than that of their zygotic counterparts. Introducing a growth period into the culture protocol made for better embryo development. Adding sucrose and abscisic acid to the maturation medium was effective in increasing reserve synthesis and resulted in higher germination, conversion, and acclimatization rates.  相似文献   

4.
Embryo development and germination of Cyclamen persicum have been comparatively characterized for zygotic and somatic embryos with regard to mitotic activity and morphology in order to identify developmental abnormalities in somatic embryogenesis. Zygotic embryo development proved to be highly synchronous with distinct periods of cell division, cell elongation and embryo maturation within a total period of 17 weeks of seed development. Somatic embryo development was accomplished within only 3 weeks, resulting in a mixture of morphologically highly variable embryos. No distinct developmental periods could be identified and no reduction of the mitotic activity was discovered for non-desiccated somatic embryos. Controlled desiccation of somatic embryos severely reduced their germination rate, demonstrating resemblance of somatic embryos to recalcitrant seeds, whereas zygotic Cyclamen seeds could be characterized as typically orthodox.  相似文献   

5.
Conifer somatic embryo germination and early seedling growth are fundamentally different than in their zygotic counterparts in that the living maternal megagametophyte tissue surrounding the embryo is absent. The megagametophyte contains the majority of the seed storage reserves in loblolly pine and the lack of the megagametophyte tissue poses a significant challenge to somatic embryo germination and growth. We investigated the differences in seed storage reserves between loblolly pine mature zygotic embryos and somatic embryos that were capable of germination and early seedling growth. Somatic embryos utilized in this study contained significantly lower levels of triacylglycerol and higher levels of storage proteins relative to zygotic embryos. A shift in the ratio of soluble to insoluble protein present was also observed. Mature zygotic embryos had roughly a 3:2 ratio of soluble to insoluble protein whereas the somatic embryos contained over 5-fold more soluble protein compared to insoluble protein. This indicates that the somatic embryos are not only producing more protein overall, but that this protein is biased more heavily towards soluble protein, indicating possible differences in metabolic activity at the time of desiccation.  相似文献   

6.
Ultrastructural changes during zygotic and somatic embryogenesis in pearl millet (Pennisetum glaucum [L.] R. Br.) were quantified using morphometric techniques. The total area per cell profile and the cell volume percentage of the whole cell, endoplasmic reticulum (ER), Golgi bodies, mitochondria, nuclei, lipids, plastids, starch grains and vacuoles were measured and comparisons made between three zygotic and three somatic embryo developmental stages. All measurements were taken from scutellar or scutellar-derived cells. Zygotic embryogenesis was characterized by increases in cell size, lipids, plastids, starch, Golgi bodies, mitochondria and ER. Somatic embryogenesis was characterized by two phases of cell development: (1) the dedifferentiation of scutellar cells involving a reduction in cell and vacuole size and an increase in cell activity during somatic proembryoid formation and (2) the development of somatic embryos in which most cell organelle quantities returned to values found in late coleoptile or mature predesiccation zygotic stages. In summary, although their developmental pathways differed, the scutella of somatic embryos displayed cellular variations which were within the ranges observed for later stages of zygotic embryogenesis.  相似文献   

7.
The ultrastructure, morphology, and histology of somatic embryogenesis in pearl millet (Pennisetum glaucum) were examined using light and electron microscopic techniques. Somatic embryogenesis was initiated from zygotic embryo explants cultured 8 d after pollination. Formation of a ridge of tissue began 3–4 d after culture (DAC) by divisions in the epidermal and subepidermal cells of the scutellum. Ridge formation was accompanied by a decrease in vacuoles, lipid bodies, and cell size, and an increase in endoplasmic reticulum (ER). Proembryonic cell masses (proembryoids) formed from the scutellar ridge by 10 DAC. Proembryoid cells had abundant Golgi bodies and ER while the amounts of lipids and starch varied. Somatic embryos developed from the proembryonic masses 13 DAC and by 21 DAC had all the parts of mature zygotic embryos. Although shoot and root primordia of somatic embryos were always less differentiated than those of zygotic embryos, scutellar cells of somatic and zygotic embryos had similar amounts of lipids, vacuoles, and starch. Somatic scutellar epidermal cells were more vacuolated than their zygotic counterparts. In contrast, somatic scutellar nodal cells were smaller and not as vacuolated as in zygotic embryos. Somatic embryogenesis was characterized by three phases of cell development: first, scutellar cell dedifferentiation with a reduction in lipids and cell and vacuole size; second, proembryoid formation with high levels of ER; and third, the development of somatic embryos that were functionally and morphologically similar to zygotic embryos.  相似文献   

8.
ABSTRACT

Somatic embryogenesis from juvenile explants as an efficient way for oak clonal propagation is drastically limited by the low rate of embryo germination. A comparison of the development of immature somatic and zygotic embryos, and a study of the changes in sugar content and lignin accumulation during somatic versus zygotic embryo development were conducted in view of understanding the effect of reserve substance deficiency upon somatic embryo maturation. A morphological comparison of somatic and zygotic embryos led to the identification of 4 to 7 similar developmental stages in both types of embryos, thus indicating that the accumulation phase in both zygotic and somatic embryos occurs at the same stage, when the cotyledons became thicker and opaque. Carbohydrate analysis showed the presence of glycerol, inositol, mannitol, galactose, trehalose, xylose, arabinose, glucose, fructose and sucrose in all stages of zygotic and somatic embryo development, but in different amounts. The amount of glycerol, inositol, glucose and sucrose during the early stages is larger in zygotic embryos than in somatic ones, but the time course of their accumulation is similar in both types of embryos. Lignin content, which increased continuously during development, showed a similar behaviour in zygotic and somatic embryos. In somatic embryos which were able to germinate, lignin content was higher than in nongerminating embryos at the same stage.  相似文献   

9.
Anatomical study of zygotic and somatic embryos of Tilia cordata   总被引:1,自引:0,他引:1  
A comparative anatomical study was carried out on zygotic and somatic embryos of Tilia cordata Mill. to evaluate the effect of growth conditions on their development. Zygotic embryos (heart-shaped, torpedo, cotyledonary), collected during two autumn periods, were examined to investigate the effect of growing season on embryo development. In comparison, the influence of growth conditions on the development of somatic embryos in vitro was also studied. Treatment with abscisic acid (ABA) and polyethylene glycol-4000 induced the development of somatic cotyledonary embryos similar to zygotic embryos with respect to morphology and anatomy, as illustrated by the differentiation of the apical meristems and of the procambium. The pattern of accumulation of starch and protein was also similar in these embryos. Somatic cotyledonary embryos that developed spontaneously without ABA showed defective accumulation of storage material and a general failure to form the shoot apical meristem, leading to very low germination rates. Vacuolar phenolic deposits were observed along the procambium of both zygotic and somatic embryos regardless of the maturation stage. Tracheid formation was observed only in somatic embryos formed without ABA in the medium and in precociously germinated somatic embryos. Phenolic vacuolar inclusions were frequently observed in epidermal cells of these embryos. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Somatic embryos developed directly from 96 and 110 day post-anthesis Cercis canadensis L. (redbud) zygotic embryos from one of two trees sampled that were explanted onto modified Schenk and Hildebrandt medium amended with either 1, 2, 3 or 5 mg/1 2,4-D in combination with either 7.6 or 12. 6 mM ammonium ion. Although somatic embryogenesis was expressed on most media, the number of explants that produced somatic embryos and the mean number of embryos formed per explant were greatest on media that contained either 2 or 3 mg/1 2,4-D; 12.6 mM ammonium ion inhibited embryogenesis from 96 day post-anthesis explants. Zygotic embryos explanted 117 days after anthesis produced only callus and roots. Somatic embryos that were bottle-shaped or had distinct cotyledons organized roots on germination media, but only one embryo formed a shoot. No additional development occurred. Histological examination of somatic embryos showed that shoot apical meristems were poorly developed.Abbreviations 2,4-D 2, 4-dichlorophenoxyacetic acid - NAA 1-naphthaleneacetic acid - BAP 6-benzylaminopurine - FPA Formalin-propionic acid-ethanol (50%)  相似文献   

11.
Somatic embryogenesis is an in vitro morphogenetic route in which isolated cells or a small group of somatic cells give rise to bipolar structures resembling zygotic embryos. Lipids, carbohydrates, and proteins are major compounds in plant and animal metabolism. Comparative analysis along different developmental stages of Acca sellowiana (Myrtaceae) zygotic and somatic embryos, revealed a progressive increase in levels of total lipids. A high degree of similarity could be found in the total lipids composition between A. sellowiana somatic and zygotic embryos. High lipid levels were found in zygotic embryos in the torpedo and cotyledonary stages, and these levels increased according to the progression in the developmental stages. Somatic embryos obtained through direct embryogenesis route showed higher levels of lipids than in indirect somatic embryogenesis. The compounds most frequently were linoleic acid (C18:2), palmitic (C16:0) and oleic (C18:1). These results indicate a high similarity degree of accumulation of total lipids, regardless of zygotic or somatic embryogenesis.  相似文献   

12.
A simple and efficient protocol for direct somatic embryogenesis and plant regeneration of kohlrabi (Brassica oleracea var. gongylodes) was developed. Somatic embryos were induced from immature zygotic embryos at different developmental stages cultured on Murashige and Skoog medium supplemented with 0, 0.5, 1.0, or 1.5 mg/l 2,4-dichlorophenoxyacetic acid. Zygotic embryos at the early cotyledonary stage, which were cultured for 4 wk on plant growth regulator-free (PGR-free) medium, displayed the highest percentage of somatic embryogenesis (80.7%). Embryogenic tissue could be subcultured on the same medium for over 1 yr. Embryogenic lines derived from early cotyledonary stage zygotic embryos displayed the highest intensity of secondary embryogenesis (highest mean number of new somatic embryos per responsive somatic embryo explant). Histological analyses confirmed the direct origin of the secondary somatic embryos. Prolonged culturing of embryogenic tissue on PGR-free medium led to somatic embryo development into plantlets that were successfully acclimated in the greenhouse with a survival rate of 72.5%. Flow cytometry analysis showed no ploidy variation in 96.7% of the acclimated plants.  相似文献   

13.
14.
Somatic embryogenesis induction and somatic embryo development of the solanaceous tamarillo tree were previously established and successfully used for plant regeneration from different explants and varieties. Somatic embryogenesis was induced in Murashige and Skoog medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) or picloram and high sucrose concentrations (0.25 M). The embryogenic tissues were transferred to an auxin-free medium, with reduced sucrose levels, to permit embryo development and conversion into plantlets. This two-step protocol is often impaired by an ineffective transition from the proembryogenic masses to embryo development. In this work, attempts to optimize the somatic embryogenesis system of tamarillo by improving the quality of somatic embryo and embryo conversion were carried out. The results showed that the presence of a high number of abnormal somatic embryos did not significantly inhibit plant conversion, hence indicating that shoot apical meristem development was not affected in abnormal somatic embryos. It was also shown that the manipulation of sucrose concentration in the development medium (0.11 M) and dark conditions before conversion increased the number of morphologically normal somatic embryos. The comparison between mature cotyledonary zygotic and somatic embryos showed an inefficient accumulation of storage compounds, mainly lipids, in somatic embryos. These reduced levels of lipid storage could be responsible for the abnormal patterns of embryo development found in tamarillo somatic embryos.  相似文献   

15.
Endogenous levels of IAA, ABA and four types of CKs were analyzed in zygotic and indirect (ISE) and direct somatic embryogenesis of Acca sellowiana. Zygotic and somatic embryos at different developmental stages were sampled for morphological and hormonal analysis. Both embryo types showed substantial asymmetry in hormone levels. Zygotic embryos displayed a conspicuous peak of IAA in early developmental stages. The results outlined the hormonal variations occurring during zygotic and somatic embryogenesis regarding the timing, nature and hormonal status involved in both processes. The short transient pulse of IAA observed on the 3rd day in culture was suggested to be involved with the signaling for the induction of somatic embryogenesis. Fertilized ovule development was associated with increased IAA levels 21?C24?days after pollination, followed by a sharp decrease in the cotyledonary stage, both in zygotic and somatic embryos. There was a prominent increase in ABA levels in cultures which generated ISE 24?C30?days after pollination, a period that corresponds to the heart and torpedo stages. The levels of total CKs (Z, [9R]Z, iP and [9R]iP) were also always higher in zygotic than in somatic embryogenesis. While zygotic embryogenesis was dominated by the presence of zeatin, the somatic process, contrarily, was characterized by a large variation of the other cytokinin forms and amounts studied. The above results, when taken together, could be related to the previously observed high frequency formation of anomalous somatic embryos formed in A. sellowiana, as well as to their low germination ability.  相似文献   

16.
Summary The growth and development of white spruce somatic embryos was followed from the filamentous immature to the mature cotyledonary embryo stage. Histochemical examination of the various stages of embryo development showed that lipids, proteins, and polysaccharides were produced to varying degrees during the process. During early stages (1 to 2 wk on ABA), mostly polysaccharide was produced, whereas during later stages, polysaccharides, lipids, and protein accumulated. Electron microscopy indicated that lipid deposition in somatic embryos started during the first week after transfer to ABA-containing medium. Deposition of the storage products began at the basal end of the embryonal mass and within the proximal zone of the suspensors. Accumulation continued to the peripheral regions and then inward toward the cortex of the developing embryo. In all cases, polysaccharide accumulated first, followed by lipid and lastly, protein. Quantitatively, cotyledonary stage somatic embryos had less lipid and protein and more starch when compared to zygotic embryos at the same developmental stage. Total protein profiles elucidated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the majority of proteins were similar in zygotic and somatic embryos. Prominent protein bands were found at 30, 20, 19.5, 15, 14.4, 12, and 10 Kd. However, protein bands at 40, 15, and 12 Kd in total protein from somatic embryos were either absent or highly underexpressed.  相似文献   

17.
Summary The relative maturity and competence of somatic embryos is often estimated on the basis of their morphologic similarity to various stages of immature zygotic embryo development. Morphologic abnormalities noted in soybean [Glycine max (L.) Merr.] somatic embryos are similar to those observed in zygotic embryos maturing in vitro and may reflect common interruptions of normal developmental processes. We provide here a more objective means of assessing the point(s) at which cultured embryos deviate from the normal embryogenical pathway by comparing the accumulation of the embryo-specific marker proteins (11S and 7S storage globulins, soybean agglutinin, and seed lipoxygenase) between somatic and immature zygotic embryos maturing in culture to zygotic embryos maturingin planta. Immature (heart-stage) soybean (cv. ‘McCall’) zygotic embryos were removed from the testa and cultured for 5, 15, or 45 days in nien modified Linsmaer-Skoog salts, 5% sucrose liquid medium. Somatic embryos were induced from immature cotyledon explants on a medium containing either naphthalene acetic acid or 2,4 dichlorophenoxyacetic acid (10 mg·liter−1). The measured level of the marker proteins present in cultured embryos never exceeded those observed in mature soybean seeds. During the culture period, immature zygotic embryos accumulated significant levels of all marker proteins except a 29 kDa soybean agglutinin associated with the final stages of seed maturationin planta. Somatic embryos of all morphologic classes exhibited similar levels of the marker proteins suggesting that morphology may not accurately represent the developmental state of the culture-derived embryos. Somatic embryos induced on naphthalene acetic acid-containing medium accumulated detectable levels of all maturation-specific marker proteins except the 7S β and 29-kD soybean agglutinin antigen and seemed similar in most respects to the cultured zygotic embryos. Embryos induced on 2,4-dichlorophenoxyacetic acid accumulated none of the mature 7S or 11S storage globulin subunits nor any soybean agglutinin antigen, and yet the synthesis of 7S and 11S precursor polypeptides was similar in both naphthalene acetic acid-and 2,4-dichlorophenoxyacetic acid-induced somatic embryos. These observations are consistent with the view that embryos induced on high 2,4-dichlorophenoxyacetic are arrested at a relatively earlier developmental stage than naphthalene acetic acid-induced embryos of similar morphology and may indicate that some external signal (e.g., abscisic acid or desiccation or both) is necessary for the transition to the late maturation stage of seed ontogeny.  相似文献   

18.
Citrus exhibits polyembryonic seed development, an apomictic process in which many maternally derived embryos arise from the nucellus surrounding the developing zygotic embryo. Citrus seed storage proteins were used as markers to compare embryogenesis in developing seeds and somatic embryogenesis in vitro. The salt-soluble, globulin protein fraction (designated citrin) was purified from Citrus sinensis cv Valencia seeds. Citrins separated into two subunits averaging 22 and 33 kD under denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A cDNA clone was isolated representing a citrin gene expressed in seeds when the majority of embryos were at the early globular stage of embryo development. The predicted protein sequence was most related to the globulin seed storage proteins of pumpkin and cotton. Accumulation of 33-kD polypeptides was first detected in polyembryonic Valencia seeds when the majority of embryos were at the globular stage of development. Somatic Citrus embryos cultured in vivo were observed to initiate 33-kD polypeptide accumulation later in embryo development but accumulated these peptides at only 10 to 20% of the level observed in polyembryonic seeds. Therefore, factors within the seed environment must influence the higher quantitative levels of citrin accumulation in nucellar embryos developing in vivo, even though nucellar embryos, like somatic embryos, are not derived from fertilization events.  相似文献   

19.
Summary Somatic embryos of pineapple guava (Feijoa sellowiana Berg, Myrtaceae) were induced particularly well from the adaxial face of the cotyledons of zygotic embryos cultured on MS medium containing 1.0 mg/l 2,4-D and 0.3 M sucrose. Somatic embryos were never obtained from globular and heart-shaped zygotic embryos and embryos at the torpedo stage produced somatic embryos at lower frequencies than mature zygotic embryos. At the time of explantation, cotyledonary cells were rich in storage proteins and lipids but no starch was found. After the first 5 days of culture most of the reserves had been mobilized in cotyledons of germinating embryos, but were still present in large amounts in cotyledons undergoing embryogenie induction. In contrast to cotyledons following the normal pattern of development, cells of embryogenically-induced cotyledons accumulated starch, especially those cells not involved in the embryogenie process. Two patterns of somatic embryo differentiation were observed: (1) from single epidermal cells or (2) from groups of meristematic cells near the adaxial surface. Comparative observations on cotyledons from germinating embryos and those undergoing embryogenesis suggest that the meristematic layer arises as the result of successive divisions of cells that, under normal conditions, would form the palisade parenchyma. These were the only mesophyll cells that showed mitotic divisions during the normal development.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - FAA formalin/acetic acid/ethyl alcohol - PAS periodic acid-Schiff  相似文献   

20.
In order to evaluate the quality of Prunus avium somatic embryos, a comparison of lipid composition between somatic and zygotic embryos was undertaken. In both zygotic and somatic embryos, neutral glycerolipids (NL) and phosphatidylcholine (PC) were the 2 major lipid classes. The content of NL increased over the course of development in zygotic embryos and reached 490 μg per embryo, while the PC content reached 100 μg per embryo. However, the contents of NL and PC in somatic embryos were similar to immature zygotic embryos at stage 3. Fatty acid composition of NL from both zygotic and somatic embryos revealed more unsaturated than saturated fatty acids. In somatic embryos, the saturated/unsaturated fatty acid ratios of NL and phosphatidylinositol (PI) were similar to those observed in immature zygotic embryos up to stage 6. Conversely, in phosphatidylethanolamine (PE) the ratio was similar to the ratio observed in mature zygotic embryos, at stage 7. Histological studies confirmed the immaturity of somatic embryos: no protein or lipid reserves were observed in the vacuolated cotyledonary cells. Maturation of somatic embryos was improved by a 2-month cold period. In cold-treated somatic embryos, both NL and PC increased to levels comparable to those observed in mature zygotic embryos, and the PE content reached 10 times the level of that in mature zygotic embryos. The cold treatment induced a large increase in the saturated/unsaturated fatty acid ratio in phospholipids but only a slight increase in that of neutral glycerolipids. Histological studies revealed a lipid accumulation at cellular level. Lipid bodies surrounded by protein bodies were observed in cotyledonary cells of cold-treated somatic embryos. Furthermore, the cold-treated somatic embryos developed into plantlets with a frequency of 14%, whereas no development was obtained with the non-treated somatic embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号