首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Notch-mediated segmentation and growth control of the Drosophila leg.   总被引:2,自引:0,他引:2  
The possession of segmented appendages is a defining characteristic of the arthropods. By analyzing both loss-of-function and ectopic expression experiments, we show that the Notch signaling pathway plays a fundamental role in the segmentation and growth of the Drosophila leg. Local activation of Notch is necessary and sufficient to promote the formation of joints between segments. This segmentation process requires the participation of the Notch ligands, Serrate and Delta, as well as Fringe. These three proteins are each expressed in the developing leg and antennal imaginal discs in a segmentally repeated pattern that is regulated downstream of the action of Wingless and Decapentaplegic. Our studies further show that Notch activation is both necessary and sufficient to promote leg growth. We also identify target genes regulated both positively and negatively downstream of Notch signaling that are required for normal leg development. Together, these observations outline a regulatory hierarchy for the segmentation and growth of the leg. The Notch pathway is also deployed for segmentation during vertebrate somitogenesis, which raises the possibility of a common origin for the segmentation of these distinct tissues.  相似文献   

2.
Notch signaling controls formation of joints at leg segment borders and growth of the developing Drosophila leg. Here, we identify the odd-skipped gene family as a key group of genes that function downstream of the Notch receptor to promote morphological changes associated with joint formation during leg development. odd, sob, drm, and bowl are expressed in a segmental pattern in the developing leg, and their expression is regulated by Notch signaling. Ectopic expression of odd, sob, or drm can induce invaginations in the leg disc epithelium and morphological changes in the adult leg that are characteristic of endogenous invaginating joint cells. These effects are not due to an alteration in the expression of other genes of the developing joint. While odd or drm mutant clones do not affect leg segmentation, and thus appear to act redundantly, bowl mutant clones do perturb leg development. Specifically, bowl mutant clones result in a failure of joint formation from the distal tibia to tarsal segment 5, while more proximal clones cause melanotic protrusions from the leg cuticle. Together, these results indicate that the odd-skipped family of genes mediates Notch function during leg development by promoting a specific aspect of joint formation, an epithelial invagination. As the odd-skipped family genes are involved in regulating cellular morphogenesis during both embryonic segmentation and hindgut development, we suggest that they may be required in multiple developmental contexts to induce epithelial cellular changes.  相似文献   

3.
Antennapedia is one of the homeotic selector genes required for specification of segment identity in Drosophila. Dominant mutations that ectopically express Antennapedia cause transformation of antenna to leg. Loss-of-function mutations cause partial transformation of leg to antenna. Here we examine the role of Antennapedia in the establishment of leg identity in light of recent advances in our understanding of antennal development. In Antennapedia mutant clones in the leg disc, Homothorax and Distal-less are coexpressed and act via spineless to transform proximal femur to antenna. Antennapedia is negatively regulated during leg development by Distal-less, spineless, and dachshund and this reduced Antennapedia expression is needed for the proper development of distal leg elements. These findings suggest that the temporal and spatial regulation of the homeotic selector gene Antennapedia in the leg disc is necessary for normal leg development in Drosophila.  相似文献   

4.
For an appendage to regenerate distal elements, it has been thought that the stump must contain a full set of circumferential positional information. We have shown that this rule is not binding for tarsus regeneration in the male foreleg imaginal disc of Drosophila melanogaster. Distal transformation was not restricted to fragments containing complete proximal segments, but was also observed in pieces with small or even substantial deficiencies that were not regenerated in their proximal segments.  相似文献   

5.
During development of higher organisms, most patterning events occur in growing tissues. Thus, unraveling the mechanism of how growing tissues are patterned into final morphologies has been an essential subject of developmental biology. Limb or appendage development in both vertebrates and invertebrates has attracted great attention from many researchers for a long time, because they involve almost all developmental processes required for tissue patterning, such as generation of the positional information by morphogen, subdivision of the tissue into distinct parts according to the positional information, localized cell growth and proliferation, and control of adhesivity, movement and shape changes of cells. The Drosophila leg development is a good model system, upon which a substantial amount of knowledge has been accumulated. In this review, the current understanding of the mechanism of Drosophila leg development is described.  相似文献   

6.
V A Mglinets 《Ontogenez》1989,20(1):96-102
In Drosophila puparium is a cuticular mould of external structures formed by the larval cells and can, therefore, preserve traces of developmental defects which appeared in embryogenesis. In this way ontogenetic relationship between embryonic defects and developmental defects in adult individuals can be established. The normal pattern of segmentation in puparia of Drosophila melanogaster was established by comparing segmentation defects in adult flies and corresponding puparia. Boundaries of segment and compartments have been determined, imaginal rudiments of abdominal segments (nests of histoblasts) and rudiments of trachea have been localized on puparia.  相似文献   

7.
8.
Summary Drosophila embryos, exposed to ether between 1 and 4 h after oviposition, develop defects ranging from the complete lack of segmentation to isolated gaps in single segments. Between these extremes are varying extents of incomplete and abnormal segmentation. On the basis of both their temporal and spatial characteristics, five major phenotype classes may be distinguished: headless — unsegmented or incompletely segmented anteriorly; gap — interruptions of segmentation not obviously periodic; alternating segment gaps — interruptions with double segment periodicities; fused segments; and short segments — truncations with single segment periodicities. Many defects resemble known mutant phenotypes. The disturbances in segmentation are predominantly global and frequently accompanied by alterations in segment specification, such that the segments obtained show no resemblance to the normal homologues. These features, together with the distinctive spatiotemporal characteristics of the defects, all point to segmentation as a dynamic process. The regular spacing of the segments and the fact that the entire range of defects is inducible by ether are further consistent with the hypothesis that at least part of the segmentation process may consist of physicochemical reactions coordinated over the whole body. The relationship between our data and data from genetic and other analyses are briefly discussed.  相似文献   

9.
10.
Cellular interaction between the proximal and distal domains of the limb plays key roles in proximal-distal patterning. In Drosophila, these domains are established in the embryonic leg imaginal disc as a proximal domain expressing escargot, surrounding the Distal-less expressing distal domain in a circular pattern. The leg imaginal disc is derived from the limb primordium that also gives rise to the wing imaginal disc. We describe here essential roles of Wingless in patterning the leg imaginal disc. Firstly, Wingless signaling is essential for the recruitment of dorsal-proximal, distal, and ventral-proximal leg cells. Wingless requirement in the proximal leg domain appears to be unique to the embryo, since it was previously shown that Wingless signal transduction is not active in the proximal leg domain in larvae. Secondly, downregulation of Wingless signaling in wing disc is essential for its development, suggesting that Wg activity must be downregulated to separate wing and leg discs. In addition, we provide evidence that Dll restricts expression of a proximal leg-specific gene expression. We propose that those embryo-specific functions of Wingless signaling reflect its multiple roles in restricting competence of ectodermal cells to adopt the fate of thoracic appendages.  相似文献   

11.
The receptor encoded by the Notch gene plays a central role in preventing cells from making decisions about their fates until appropriate signals are present. This function of Notch requires the product of the Suppressor of Hairless gene. Loss of either Notch or Suppressor of Hairless function results in cells making premature and incorrect cell fate decisions, whilst increases in Notch signalling prevent cells from making these decisions. Here we find that the proneural clusters are not established correctly in certain Abruptex mutations of Notch and this failure to establish proneural clusters correctly is not due to increased Notch signalling during lateral inhibition. In addition we show that the overexpression of certain dominant negative Notch molecules can disrupt the initiation of proneural cluster development in a manner similar to the Abruptex mutants.  相似文献   

12.
The segmentation and homeotic gene network in early Drosophila development   总被引:45,自引:0,他引:45  
M P Scott  S B Carroll 《Cell》1987,51(5):689-698
  相似文献   

13.
14.
Most of our knowledge about the mechanisms of segmentation in arthropods comes from work on Drosophila melanogaster. In recent years it has become clear that this mechanism is far from universal, and different arthropod groups have distinct modes of segmentation that operate through divergent genetic mechanisms. We review recent data from a range of arthropods, identifying which features of the D. melanogaster segmentation cascade are present in the different groups, and discuss the evolutionary implications of their conserved and divergent aspects. A model is emerging, although slowly, for the way that arthropod segmentation mechanisms have evolved.  相似文献   

15.
M. Santos 《Genetica》1986,69(1):35-45
A model for explaining the establishment of newly arisen inversions in natural populations, in which the inverted segment may be selected for if its load of deleterious mutations is smaller than the average load of the noninverted segment in the population, is tested for Drosophila subobscura. The results show that for new inversions, originally with no deleterious alleles, the expected cumulative distribution of inversion lengths fits fairly well with the observed one. Therefore, genic selection may be an important cause of the establishment of newly arisen inversions in natural populations of D. subobscura. The applicability of the model to the maintenance of the inversion polymorphism present in this species; is discussed.  相似文献   

16.
Repression of the Drosophila fushi tarazu (ftz) segmentation gene.   总被引:7,自引:3,他引:4       下载免费PDF全文
J L Brown  S Sonoda  H Ueda  M P Scott    C Wu 《The EMBO journal》1991,10(3):665-674
  相似文献   

17.
18.
19.
D Maier  A Preiss    J R Powell 《The EMBO journal》1990,9(12):3957-3966
An evolutionary approach was applied to identify elements involved in the regulation of the segmentation gene fushi tarazu (ftz) by comparing the Drosophila melanogaster ftz gene with its Drosophila hydei homologue. The overall organization of the ftz gene is very similar in both species. Surprisingly, ftz proved to be inverted in the ANT-C of D. hydei with respect to D. melanogaster. Strong homologies extend over the entire 6 kb of the ftz upstream region with the best match in the 'upstream element'. We identified several highly conserved boxes embedded in unrelated sequences that correspond extremely well to two germ layer specific enhancers in the upstream element. Transformation experiments revealed that D. hydei ftz gene products can restore D. melanogaster ftz function and, furthermore, that trans-acting factors from D. melanogaster recognize and control D. hydei ftz regulatory elements. These findings indicate a conservation of the entire regulatory network among segmentation genes for several millions of years during the evolution of Drosophila.  相似文献   

20.
Dosage requirements for runt in the segmentation of Drosophila embryos   总被引:7,自引:0,他引:7  
J P Gergen  E Wieschaus 《Cell》1986,45(2):289-299
The runt gene is required in a Drosophila embryo for normal segmentation. We investigate this requirement by analyzing runt mutations of varying strength and by manipulating wild-type gene dosage. Elimination of runt causes periodic deletions in the segmentation pattern which are spaced at two segment intervals along the antero-posterior axis. The pattern deletions produced by partial loss of function mutations and by halving the normal wild-type gene dosage reveal a gradation in the requirement for runt, with the centers of the affected regions being most sensitive to deletion. Significantly, increased runt+ dosage causes an anti-runt phenotype consisting of periodic pattern deletions that are out of phase with those caused by runt mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号