共查询到20条相似文献,搜索用时 13 毫秒
1.
2.
3.
4.
Question: Is post‐fire, medium‐term vegetation dynamics determined by land‐use or fire history prior to fire? Location: South‐facing slope in the Gallinera valley, Alicante province, eastern Spain. Methods: After mapping the land‐use and fire history of the study site using photo‐interpretation, we sampled vegetation structure on a set of plots representing the most frequent land‐use and fire history combinations on an area burned six years before sampling. We studied the effects of land‐use history, comparing the one‐fire land‐use trajectories. We analysed the effects of fire history; comparing one‐ and two‐fire plots for both previously cropped and uncropped areas. Results: Most variables were not significantly different between the earliest abandoned plots (abandoned at least 38 years before the fire) and the uncropped plots. On the most recently abandoned plots (abandoned between one and four years before the fire), the therophyte richness and the ratio of seeder: resprouter richness were significantly greatest. Different fire recurrences did not determine different post‐fire vegetation on either the uncropped or the early abandoned plots (all dominated by fire‐recruited seeder shrubs). The most recently abandoned plots had a lower resilience to fire. Conclusions: Land‐use history and recent pre‐fire land use, in particular, determined the post‐fire vegetation in the medium term. The vegetation composition converged during secondary succession among land‐use histories. Increasing fire recurrence had a small effect on mature plant communities, due to the combination of life‐history traits determining the response to fire of the dominant species. 相似文献
5.
Land‐use change outweighs projected effects of changing rainfall on tree cover in sub‐Saharan Africa 下载免费PDF全文
Global change will likely affect savanna and forest structure and distributions, with implications for diversity within both biomes. Few studies have examined the impacts of both expected precipitation and land use changes on vegetation structure in the future, despite their likely severity. Here, we modeled tree cover in sub‐Saharan Africa, as a proxy for vegetation structure and land cover change, using climatic, edaphic, and anthropic data (R2 = 0.97). Projected tree cover for the year 2070, simulated using scenarios that include climate and land use projections, generally decreased, both in forest and savanna, although the directionality of changes varied locally. The main driver of tree cover changes was land use change; the effects of precipitation change were minor by comparison. Interestingly, carbon emissions mitigation via increasing biofuels production resulted in decreases in tree cover, more severe than scenarios with more intense precipitation change, especially within savannas. Evaluation of tree cover change against protected area extent at the WWF Ecoregion scale suggested areas of high biodiversity and ecosystem services concern. Those forests most vulnerable to large decreases in tree cover were also highly protected, potentially buffering the effects of global change. Meanwhile, savannas, especially where they immediately bordered forests (e.g. West and Central Africa), were characterized by a dearth of protected areas, making them highly vulnerable. Savanna must become an explicit policy priority in the face of climate and land use change if conservation and livelihoods are to remain viable into the next century. 相似文献
6.
7.
Andrew L. Neal Maike Rossmann Charles Brearley Elsy Akkari Cervin Guyomar Ian M. Clark Elisa Allen Penny R. Hirsch 《Environmental microbiology》2017,19(7):2740-2753
Phosphorus cycling exerts significant influence upon soil fertility and productivity – processes largely controlled by microbial activity. We adopted phenotypic and metagenomic approaches to investigate phosphatase genes within soils. Microbial communities in bare fallowed soil showed a marked capacity to utilise phytate for growth compared with arable or grassland soil communities. Bare fallowed soil contained lowest concentrations of orthophosphate. Analysis of metagenomes indicated phoA, phoD and phoX, and histidine acid and cysteine phytase genes were most abundant in grassland soil which contained the greatest amount of NaOH‐EDTA extractable orthophosphate. Beta‐propeller phytase genes were most abundant in bare fallowed soil. Phylogenetic analysis of metagenome sequences indicated the phenotypic shift observed in the capacity to mineralise phytate in bare fallow soil was accompanied by an increase in phoD, phoX and beta‐propeller phytase genes coding for exoenzymes. However, there was a remarkable degree of genetic similarity across the soils despite the differences in land‐use. Predicted extracellular ecotypes were distributed across a greater range of soil structure than predicted intracellular ecotypes, suggesting that microbial communities subject to the dual stresses of low nutrient availability and reduced access to organic material in bare fallowed soils rely upon the action of exoenzymes. 相似文献
8.
Andean plant species are predicted to shift their distributions, or ‘migrate,’ upslope in response to future warming. The impacts of these shifts on species' population sizes and their abilities to persist in the face of climate change will depend on many factors including the distribution of individuals within species' ranges, the ability of species to migrate and remain at equilibrium with climate, and patterns of human land‐use. Human land‐use may be especially important in the Andes where anthropogenic activities above tree line may create a hard barrier to upward migrations, imperiling high‐elevation Andean biodiversity. In order to better understand how climate change may impact the Andean biodiversity hotspot, we predict the distributional responses of hundreds of plant species to changes in temperature incorporating population density distributions, migration rates, and patterns of human land‐use. We show that plant species from high Andean forests may increase their population sizes if able to migrate onto the expansive land areas above current tree line. However, if the pace of climate change exceeds species' abilities to migrate, all species will experience large population losses and consequently may face high risk of extinction. Using intermediate migration rates consistent with those observed for the region, most species are still predicted to experience population declines. Under a business‐as‐usual land‐use scenario, we find that all species will experience large population losses regardless of migration rate. The effect of human land‐use is most pronounced for high‐elevation species that switch from predicted increases in population sizes to predicted decreases. The overriding influence of land‐use on the predicted responses of Andean species to climate change can be viewed as encouraging since there is still time to initiate conservation programs that limit disturbances and/or facilitate the upward migration and persistence of Andean plant species. 相似文献
9.
Toshihide Hirao Masashi Murakami Jiro Iwamoto Hino Takafumi Hiroyuki Oguma 《Ecological Research》2008,23(1):189-196
The effect of disturbance on local communities may operate within the context of the spatial landscape. We examined the scale-dependent
effects of windthrow disturbance caused by a large typhoon on three arthropod communities in a temperate forest of Japan.
Canopy arthropods were collected by beating foliage, forest-floor arthropods were collected by sweeping the vegetation, and
flying arthropods were collected in Malaise traps. To assess the “functional spatial scale” at which arthropods responded
to tree-fall disturbance, the gap rate was quantified at different spatial scales by sequentially enlarging the radius of
a circular landscape sector in 10-m increments from 10 to 500 m. We then analyzed the responses of order richness and abundance
to the gap rate for each arthropod community. The spatial scale of the significant best-fitting model, which was selected
from the models fitted to the gap rate at stepwise spatial scales, was regarded as the arthropod-specific functional spatial
scale. Arthropod order richness was not dependent on the gap rate. In contrast, arthropod order abundance depended significantly
on the gap rate in many orders, but varied in the response direction and functional spatial scale. These order-specific, scale-dependent
responses to tree-fall gaps could complicate interactions among organisms, leading to complex community organization. An understanding
of the spatial processes that link the use of space by organisms with the spatial scale at which ecological processes are
experienced is required to elucidate the responses of populations, communities, and biotic interactions to disturbances in
a spatial landscape context. 相似文献
10.
Subsoils contain large amounts of organic carbon which is generally believed to be highly stable when compared with surface soils. We investigated subsurface organic carbon storage and dynamics by analysing organic carbon concentrations, fractions and isotopic values in 78 samples from 12 sites under different land‐uses and climates in eastern Australia. Despite radiocarbon ages of several millennia in subsoils, contrasting native systems with agriculturally managed systems revealed that subsurface organic carbon is reactive on decadal timeframes to land‐use change, which leads to large losses of young carbon down the entire soil profile. Our results indicate that organic carbon storage in soils is input driven down the whole profile, challenging the concept of subsoils as a repository of stable organic carbon. 相似文献
11.
Travis W. Drake David C. Podgorski Bienvenu Dinga Jeffrey P. Chanton Johan Six Robert G. M. Spencer 《Global Change Biology》2020,26(3):1374-1389
The flux and composition of carbon (C) from land to rivers represents a critical component of the global C cycle as well as a powerful integrator of landscape‐level processes. In the Congo Basin, an expansive network of streams and rivers transport and cycle terrigenous C sourced from the largest swathe of pristine tropical forest on Earth. Increasing rates of deforestation and conversion to agriculture in the Basin are altering the current regime of terrestrial‐to‐aquatic biogeochemical cycling of C. To investigate the role of deforestation on dissolved organic and inorganic C (DOC and DIC, respectively) biogeochemistry in the Congo Basin, six lowland streams that drain catchments of varying forest proportion (12%–77%) were sampled monthly for 1 year. Annual mean concentrations of DOC exhibited an asymptotic response to forest loss, while DIC concentrations increased continuously with forest loss. The isotopic signature of DIC became significantly more enriched with deforestation, indicating a shift in source and processes controlling DIC production. The composition of dissolved organic matter (DOM), as revealed by ultra‐high‐resolution mass spectrometry, indicated that deforested catchments export relatively more aliphatic and heteroatomic DOM sourced from microbial biomass in soils. The DOM compositional results imply that DOM from the deforested sites is more biolabile than DOM from the forest, consistent with the corresponding elevated stream CO2 concentrations. In short, forest loss results in significant and comprehensive shifts in the C biogeochemistry of the associated streams. It is apparent that land‐use conversion has the potential to dramatically affect the C cycle in the Congo Basin by reducing the downstream flux of stable, vascular‐plant derived DOC while increasing the transfer of biolabile soil C to the atmosphere. 相似文献
12.
13.
14.
15.
Allison M. Brehm Alessio Mortelliti George A. Maynard Joseph Zydlewski 《Ecology letters》2019,22(9):1387-1395
Many plants rely on animals for seed dispersal, but are all individuals equally effective at dispersing seeds? If not, then the loss of certain individual dispersers from populations could have cascade effects on ecosystems. Despite the importance of seed dispersal for forest ecosystems, variation among individual dispersers and whether land‐use change interferes with this process remains untested. Through a large‐scale field experiment conducted on small mammal seed dispersers, we show that an individual's personality affects its choice of seeds, as well as how distant and where seeds are cached. We also show that anthropogenic habitat modifications shift the distribution of personalities within a population, by increasing the proportion of bold, active, and anxious individuals and in‐turn affecting the potential survival and dispersal of seeds. We demonstrate that preserving diverse personality types within a population is critical for maintaining the key ecosystem function of seed dispersal. 相似文献
16.
Jennifer M. Fraterrigo 《应用植被学》2016,19(4):555-556
Modern‐day plant communities often retain imprints of intensive past land use. Do low‐intensity land‐use practices also produce legacies? In this issue, Jonason et al. (Applied Vegetation Science) demonstrate that, 80 yrs after grassland abandonment, meadow species can recover if habitat improves. I interpret these findings in the context of the spatiotemporal processes that shape regional‐scale population dynamics. 相似文献
17.
Land‐use conversion into bioenergy crop production can alter litter decomposition processes tightly coupled to soil carbon and nutrient dynamics. Yet, litter decomposition has been poorly described in bioenergy production systems, especially following land‐use conversion. Predicting decomposition dynamics in postconversion bioenergy production systems is challenging because of the combined influence of land‐use legacies with current management and litter quality. To evaluate how land‐use legacies interact with current bioenergy crop management to influence litter decomposition in different litter types, we conducted a landscape‐scale litterbag decomposition experiment. We proposed land‐use legacies regulate decomposition, but their effects are weakened under higher quality litter and when current land use intensifies ecosystem disturbance relative to prior land use. We compared sites left in historical land uses of either agriculture (AG) or Conservation Reserve Program grassland (CRP) to those that were converted to corn or switchgrass bioenergy crop production. Enzyme activities, mass loss, microbial biomass, and changes in litter chemistry were monitored in corn stover and switchgrass litter over 485 days, accompanied by similar soil measurements. Across all measured variables, legacy had the strongest effect (P < 0.05) relative to litter type and current management, where CRP sites maintained higher soil and litter enzyme activities and microbial biomass relative to AG sites. Decomposition responses to conversion depended on legacy but also current management and litter type. Within the CRP sites, conversion into corn increased litter enzymes, microbial biomass, and litter protein and lipid abundances, especially on decomposing corn litter, relative to nonconverted CRP. However, conversion into switchgrass from CRP, a moderate disturbance, often had no effect on switchgrass litter decomposition parameters. Thus, legacies shape the direction and magnitude of decomposition responses to bioenergy crop conversion and therefore should be considered a key influence on litter and soil C cycling under bioenergy crop management. 相似文献
18.
Elizabeth H. Boughton Pedro F. Quintana‐Ascencio Patrick J. Bohlen David G. Jenkins Roberta Pickert 《Ecography》2010,33(3):461-470
Different management regimes imposed on similar habitat types provide opportunities to investigate mechanisms driving community assembly and changes in species composition. We investigated the effect of pasture management on vegetation composition in wetlands with varying spatial isolation on a Florida cattle ranch. We hypothesized that increased pasture management intensity would dampen the expected negative effect of wetland isolation on native species richness due to a change from dispersal‐driven community assembly to niche‐driven assembly by accentuated environmental tolerance. We used native plant richness, exotic plant richness and mean coefficient of conservatism (CC) to assess wetland plant assemblage composition. Sixty wetlands were sampled, stratified by three levels of isolation across two pasture management intensities; semi‐native (less intensely managed; mostly native grasses, never fertilized) and agronomically improved (intensely managed, planted with exotic grasses, and fertilized). Improved pasture wetlands had lower native richness and CC scores, and greater total soil phosphorus and exotic species coverage compared to semi‐native pasture wetlands. Increased wetland isolation was significantly associated with decreases in native species richness in semi‐native pasture wetlands but not in improved pasture wetlands. Additionally, the species–area relationship was stronger in wetlands in improved pastures than semi‐native pastures. Our results indicate that a) native species switch from dispersal‐based community assembly in semi‐native pastures to a species‐sorting process in improved pastures, and b) recently‐introduced exotic species already sorted for more intensive management conditions are primarily undergoing dispersal‐based community assembly. That land‐use may alter the relative importance of assembly processes and that different processes drive native and exotic richness has implications for both ecosystem management and restoration planning. 相似文献
19.
The spatial distribution of predators and their prey is affected by their joint use of space. While the formation of such spatial patterns may be driven by density‐dependent and ‐independent factors our knowledge on the contribution of different land‐use activities on the formation of spatial patterns between predators and prey remains very limited. Agriculture is one of the most prevailing land‐use activities with strong effects on invertebrate densities and structural habitat conditions. Here, we used replicated conventionally and organically managed winter wheat fields to investigate the effects of agricultural land‐use on the spatial patterns of generalist predators and decomposer prey. We then identified the explanatory power of density‐dependent (prey and predator activity density) and density‐independent (vegetation structure) predictors for the observed spatial patterns. Generalist predators were regularly distributed only in conventionally managed fields and this pattern intensified with decreasing Collembola prey availability and increasing spider activity density. Segregation between carabid and spider predators was strongest in fields with lowest wheat plant height, suggesting more intense intraguild interactions in structurally less complex habitats. Collembola were aggregated independent of management and aggregation was strongest in fields with highest Collembola and carabid activity density. Spiders and Collembola prey were associated, but higher aphid densities under conventional management weakened or interrupted this spatial relationship. We conclude that active control of crop plant physiognomy by growth hormones and herbicides in conventionally managed fields promotes predator–predator segregation and that a high availability of aphid prey seems to decouple predator–Collembola prey associations. Our results emphasise the need for a more mechanistic understanding of the effects of land‐use on the formation of spatial patterns and species interactions, especially under scenarios of environmental change and an ongoing loss of biodiversity. 相似文献
20.
Interactive effects of keystone rodents on the structure of desert grassland arthropod communities 总被引:3,自引:0,他引:3
Certain species play particularly large roles in ecosystems, and are often referred to as keystones. However, little is known about the interactive effects of these species where they co-occur. Prairie dogs ( Cynomys spp.) and banner-tailed kangaroo rats Dipodomys spectabilis are commonly considered keystone species of grassland ecosystems, creating a mosaic of unique habitats on the landscape through ecosystem engineering and herbivory. We examined the separate and interactive effects of these species on the structure of grassland arthropod communities. We conducted a cross-site study at two locations in the northern Chihuahuan Desert, and evaluated the impacts of these rodents on ground-dwelling arthropod and grasshopper communities in areas where prairie dogs and kangaroo rats co-occurred compared to areas where each rodent species occurred alone. Our results demonstrate that prairie dogs ( C. gunnisoni and C. ludovicianus ) and banner-tailed kangaroo rats had keystone-level impacts on arthropod communities both separately and interactively. Their burrow systems provided important habitats for multiple trophic and taxonomic groups of arthropods, and increased overall arthropod abundance and species richness. Many arthropods also were attracted to the aboveground habitats around the mounds and across the landscapes where the rodents occurred. Detritivores, predators, ants, grasshoppers, and rare rodent burrow inhabitants were especially associated with prairie dog and kangaroo rat activity. The impacts of prairie dogs and kangaroo rats were unique, and the habitats they created supported different assemblages of arthropods. Where both rodent species co-occurred, there was greater heterogeneity and arthropod diversity on the landscape. Our results suggest that the interaction of multiple keystones, especially those with engineering roles, results in unique and more diverse communities in time and space. 相似文献