首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Models of source–sink population dynamics have to make assumptions about whether, and eventually how, demographic parameters in source habitats are dependent on the demography in sink habitats. However, the empirical basis for making such assumptions has been weak. Here we report a study on experimental root vole populations, where estimates of demographic parameters were contrasted between source patches in source–sink (treatment) and source–source systems (control). In the presence of a sink patch (simulated by a pulsed removal of immigrants), source‐patch populations failed to increase over the breeding season, mainly due to a high spatially density‐dependent dispersal rate from source to sink patches. The per capita recruitment rate was almost two times higher in source–sink than in the source–source systems, but this did not compensate for the loss rate due to dispersal from source to sink patches. Sex ratio in the source–sink systems became less female biased, probably as a result of an enhanced frequency of dispersal movements in females. Good knowledge of the degree of density‐and habitat‐dependent dispersal is critical for predicting the dynamics of source–sink populations.  相似文献   

2.
The evolution of adaptive behaviours can influence population dynamics. Conversely, population dynamics can affect both the rate and direction of adaptive evolution. This paper examines reasons why sink populations – populations maintained by immigration, preventing local extinction – might persist in the habitat repertoire of a species over evolutionary time-scales. Two such reasons correspond to standard explanations for deviations from an ideal free habitat distribution: organisms may not be free to settle in whichever habitat has the highest potential fitness, and may be constrained by costs, perceptual limitations, or mode of dispersal in the acuity of their habitat selectivity. Here, I argue that a third general reason for persistent sink populations is provided by unstable population dynamics in source habitats. I present a simple model illustrating how use of a sink habitat may be selectively advantageous, when a source population has unstable dynamics (which necessarily reflects temporal variation in local fitnesses). Species with unstable local dynamics in high-quality habitats should be selected to utilize a broader range of habitats than species with stable local dynamics, and in particular in some circumstances should utilize sink habitats. This observation has implications for the direction of niche evolution, and the likelihood of niche conservatism.  相似文献   

3.
Climate fluctuations in the past and in the future are likely to result in population expansions, shifts, or the contraction of the ecological niche of many species, and potentially leading to the changes in their geographical distributions. Prediction of suitable habitats has been developed as a useful tool for the assessment of habitat suitability and resource conservation to protect wildlife. Here, we model the ancestral demographic history of the extant modern Chinese Muntjac Muntiacus reevesi populations using approximate Bayesian computation (ABC) and used the maximum entropy model to simulate the past and predict the future spatial dynamics of the species under climate oscillations. Our results indicated that the suitable habitats for the M. reevesi shifted to the Southeast and contracted during the Last Glacial Maximum, whereas they covered a broader and more northern position in the Middle Holocene. The ABC analyses revealed that the modern M. reevesi populations diverged in the Middle Holocene coinciding with the significant contraction of the highly suitable habitat areas. Furthermore, our predictions suggest that the potentially suitable environment distribution for the species will expand under all future climate scenarios. These results indicated that the M. reevesi diverged in the recent time after the glacial period and simultaneously as its habitat’s expanded in the Middle Holocene. Furthermore, the past and future climate fluctuation triggered the change of Chinese muntjac spatial distribution, which has great influence on the Chinese muntjac’s population demographic history.  相似文献   

4.
Every year, migratory species undertake seasonal movements along different pathways between discrete regions and habitats. The ability to assess the relative demographic contributions of these different habitats and pathways to the species’ overall population dynamics is critical for understanding the ecology of migratory species, and also has practical applications for management and conservation. Metrics for assessing habitat contributions have been well‐developed for metapopulations, but an equivalent metric is not currently available for migratory populations. Here, we develop a framework for estimating the demographic contributions of the discrete habitats and pathways used by migratory species throughout the annual cycle by estimating the per capita contribution of cohorts using these locations. Our framework accounts for seasonal movements between multiple breeding and non‐breeding habitats and for both resident and migratory cohorts. We illustrate our framework using a hypothetical migratory network of four habitats, which allows us to better understand how variations in habitat quality affect per capita contributions. Results indicate that per capita contributions for any habitat or pathway are dependent on habitat‐specific survival probabilities in all other areas used as part of the migratory circuit, and that contribution metrics are spatially linked (e.g. reduced survival in one habitat also decreases the contribution metric for other habitats). Our framework expands existing theory on the dynamics of spatiotemporally structured populations by developing a generalized approach to estimate the habitat‐ and pathway‐specific contributions of species migrating between multiple breeding and multiple non‐breeding habitats for a range of life histories or migratory strategies. Most importantly, it provides a means of prioritizing conservation efforts towards those migratory pathways and habitats that are most critical for the population viability of migratory species.  相似文献   

5.
Biological traits can determine species ecological niches and define species responses to environmental variation. Species have a specific functional position in the biological community, resulting in interactions like interspecific competition. In this study, we used biological traits in order to define the life strategies of 205 nektonic species of the Mediterranean Sea. Furthermore, traits related to resource use were analyzed to determine the level of trait and niche overlap and their relationship to life strategies. Focusing on habitats of importance (Posidonia beds, coralligène formations, and lagoons), we investigated strategies and niches of the species present there. Finally, we examined the life strategy of Lessepsian species and investigated the niche overlap between them and indigenous species. Archetypal analysis indicated the existence of three life histories corresponding to strategies already documented for fish (equilibrium, periodic, and opportunistic), with some species also placed in intermediate positions. Niche overlap was evaluated by multiple correspondence analysis and the generation of a single distance metric between all species pairs. This identified species occupying relatively empty (underexploited) ecological niches, like the Lessepsian species Siganus luridus and S. rivulatus, a finding that can also be associated with their establishment in the Mediterranean. Most Lessepsian species were associated with the opportunistic life history strategy, again an important aspect related to their establishment. Also, we documented that most species occurring in important habitats have a relatively high overlap of niches. No significant differences were found in the life strategies across Mediterranean habitats; however, variation in niche overlap and traits related to habitat use was detected. The findings can be useful to determine theoretical competition between species and to identify empty ecological niches. Fisheries science can also benefit from comprehending the dynamics of competing stocks or predict the responses of data‐poor stocks to anthropogenic stressors from known examples of species with shared life strategies.  相似文献   

6.
Population trends represent a minimum amount of information required to assess the conservation status of a species. However, understanding and detecting trends can be complicated by variation among habitats and regions, and by dispersal connecting habitats through source‐sink dynamics. We analyzed trends in breeding populations between habitats and regions to better understand the overall dynamics of a species' decline. Specifically, we analyzed historical trends in breeding populations of tricolored blackbirds (Agelaius tricolor) using breeding records from 1907 to 2009. The species breeds itinerantly and ephemerally uses multiple habitat types and breeding areas, which make interpretation of trends complex. We found overall abundance declines of 63% between 1935 and 1975. Since 1980 overall declines became nonsignificant and obscure despite large amounts of data from 1980 to 2009. Temporal trends differed between breeding habitat types and were associated with regional differences in population declines. A new habitat, triticale crops (a wheat‐rye hybrid grain) produced colonies 40× larger, on average, than other breeding habitats, and contributed to a change in regional distribution since it primarily occurred in a single region. The mechanism for such an effect is not clear, but could represent the local availability of foodstuffs in the landscape rather than something specific to triticale crops. While variation in trends among habitats clearly occurred, they could not easily be ascribed to source‐sink dynamics, ecological traps, habitat selection or other detailed ecological mechanisms. Nonetheless, such exchanges provide valuable information to guide management of dynamic systems.  相似文献   

7.
Source–sink dynamics may be ubiquitous in ecology. We developed a theory for source–sink dynamics using spatial extensions of the net reproductive value, R 0, which has been used elsewhere to define fitness, disease eradication, population growth, and invasion risk. R 0 decomposes into biologically meaningful components—lifetime reproductive output, survival, and dispersal—that are widely adaptable and easily interpreted. The theory provides a general quantitative means for relating fundamental niche, biotic interactions, dispersal, and species distributions. We applied the methods to Dreissena and found a resolution to a paradox in invasion biology—competitive coexistence between quagga (Dreissena bugensis) and zebra (D. polymorpha) mussels among lakes despite extensive niche overlap within lakes. Source–sink dynamics within lakes between deepwater and shallow habitats, which favor quagga and zebra mussels, respectively, yield a metacommunity distribution where quagga mussels dominate large lakes and zebra mussels dominate small lakes. The source–sink framework may also be useful in spatial competition theory, habitat conservation, marine protected areas, and ecological responses to climate change.  相似文献   

8.
Abstract Population density estimates and patterns of habitat selection by sympatric red‐bellied pademelons (Thylogale billardierii (Marsupialia: Macropodidae)) and red‐necked wallabies (Macropus rufogriseus rufogriseus (Marsupialia: Macropodidae)) were examined within a patchy forestry environment in north‐west Tasmania. Population density of both species was relatively high. Selection indices from both population surveys and animal movement data showed that T. billardierii and M. rufogriseus had similar patterns of habitat selection at two spatio‐temporal scales; home range within the study area and habitats selected while foraging at night. Both species selected for young Eucalyptus nitens plantation with high weed‐cover within their home range. At night, T. billardierii and M. rufogriseus selected for open habitats (young plantation and grassland) and avoided closed habitats (native forest and 5–7 years old E. nitens plantation). There was no evidence for resource partitioning between species at these scales. In contrast, the two species differed in their selection for daytime sheltering habitat; T. billardierii selected native forest while M. rufogriseus selected older plantation. This may reflect differences in their predator avoidance strategies; that is, crypsis versus flight, rather than resource partitioning as a result of interspecific competition. The environment appears to be of high quality for both species, with patches of feeding and shelter habitats within close proximity of one another.  相似文献   

9.
10.
Local environmental features can shape hybrid zone dynamics when hybrids are bounded by ecotones or when patchily distributed habitat types lead to a corresponding mosaic of genotypes. We investigated the role of marsh‐level characteristics in shaping a hybrid zone between two recently diverged avian taxa – Saltmarsh (Ammodramus caudacutus) and Nelson's (A. nelsoni) sparrows. These species occupy different niches where allopatric, with caudacutus restricted to coastal marshes and nelsoni found in a broader array of wetland and grassland habitats and co‐occur in tidal marshes in sympatry. We determined the influence of habitat types on the distribution of pure and hybrid sparrows and assessed the degree of overlap in the ecological niche of each taxon. To do this, we sampled and genotyped 305 sparrows from 34 marshes across the hybrid zone and from adjacent regions. We used linear regression to test for associations between marsh characteristics and the distribution of pure and admixed sparrows. We found a positive correlation between genotype and environmental variables with a patchy distribution of genotypes and habitats across the hybrid zone. Ecological niche models suggest that the hybrid niche was more similar to that of A. nelsoni and habitat suitability was influenced strongly by distance from coastline. Our results support a mosaic model of hybrid zone maintenance, suggesting a role for local environmental features in shaping the distribution and frequency of pure species and hybrids across space.  相似文献   

11.
Pygoscelis penguins are experiencing general population declines in their northernmost range whereas there are reported increases in their southernmost range. These changes are coincident with decadal‐scale trends in remote sensed observations of sea ice concentrations (SIC) and sea surface temperatures (SST) during the chick‐rearing season (austral summer). Using SIC, SST, and bathymetry, we identified separate chick‐rearing niche spaces for the three Pygoscelis penguin species and used a maximum entropy approach (MaxEnt) to spatially and temporally model suitable chick‐rearing habitats in the Southern Ocean. For all Pygoscelis penguin species, the MaxEnt models predict significant changes in the locations of suitable chick‐rearing habitats over the period of 1982–2010. In general, chick‐rearing habitat suitability at specific colony locations agreed with the corresponding increases or decreases in documented population trends over the same time period. These changes were the most pronounced along the West Antarctic Peninsula where there has been a rapid warming event during at least the last 50 years.  相似文献   

12.
Aim We examine the range expansion/contraction dynamics during the last glacial cycle of the late‐successional tropical rain forest conifer Podocarpus elatus using a combination of modelling and molecular marker analyses. Specifically, we test whether distributional changes predicted by environmental niche modelling are in agreement with (1) the glacial maximum contractions inferred from the southern fossil record, and (2) population genetic‐based estimates of range disjunctions and demographic dynamics. In addition, we test whether northern and southern ranges are likely to have experienced similar expansion/contraction dynamics. Location Eastern Australian tropical and subtropical rain forests. Methods Environmental niche modelling was completed for three time periods during the last glacial cycle and was interpreted in light of the known palynology. We collected 109 samples from 32 populations across the entire range of P. elatus. Six microsatellite loci and Bayesian coalescence analysis were used to infer population expansion/contraction dynamics, and five sequenced loci (one plastid and four nuclear) were used to quantify genetic structure/diversity. Results Environmental niche modelling suggested that the northern and southern ranges of P. elatus experienced different expansion/contraction dynamics. In the northern range, the habitat suitable for P. elatus persisted in a small refugial area during the Last Glacial Maximum (LGM, 21 ka) and then expanded during the post‐glacial period. Conversely, in the south suitable habitat was widespread during the LGM but subsequently contracted. These differential dynamics were supported by Bayesian analyses of the population genetic data (northern dispersal) and are consistent with the greater genetic diversity in the south compared with the north. A contact zone between the two genetically divergent groups (corresponding to the Macleay Overlap Zone) was supported by environmental niche modelling and molecular analyses. Main conclusions The climatic fluctuations of the Quaternary have differentially impacted the northern and southern ranges of a broadly distributed rain forest tree in Australia. Recurrent contraction/expansion cycles contributed to the genetic distinction between northern and southern distributions of P. elatus. By combining molecular and environmental niche modelling evidence, this unique study undermines the general assumption that broadly distributed species respond in a uniform way to climate change.  相似文献   

13.
Tropical late‐successional tree species are at high risk of local extinction due to habitat loss and fragmentation. Population‐growth rates in fragmented populations are predicted to decline as a result of reduced fecundity, survival and growth. We examined the demographic effects of habitat fragmentation by comparing the population dynamics of the late‐successional tree Poulsenia armata (Moraceae) in southern Mexico between a continuous forest and several forest fragments using integral projection models (IPMs) during 2010–2012. Forest fragmentation did not lead to differences in population density and even resulted in a higher population‐growth rate (λ) in fragments compared to continuous forests. Habitat fragmentation had drastic effects on the dynamics of P. armata, causing the population structure to shift toward smaller sizes. Fragmented populations experienced a significant decrease in juvenile survival and growth compared to unaltered populations. Adult survival and growth made the greatest relative contributions to λ in both habitat types during 2011–2012. However, the relative importance of juvenile survival and growth to λ was highest in the fragmented forest in 2010–2011. Our Life Table Response Experiment analysis revealed that positive contributions of adult fecundity explained most of the variation of λ between both habitats and annual periods. Finally, P. armata has a relatively slow speed of recovery after disturbances, compromising persistence of fragmented populations. Developing a mechanistic understanding of how forest fragmentation affects plant population dynamics, as done here, will prove essential for the preservation of natural areas.  相似文献   

14.
The establishment of a population into a new empty habitat outside of its initial niche is a phenomenon akin to evolutionary rescue in the presence of immigration. It underlies a wide range of processes, such as biological invasions by alien organisms, host shifts in pathogens, or the emergence of resistance to pesticides or antibiotics from untreated areas. We derive an analytically tractable framework to describe the evolutionary and demographic dynamics of asexual populations in a source-sink system. We analyze the influence of several factors on the establishment success in the sink, and on the time until establishment. To this aim, we use a classic phenotype-fitness landscape (Fisher's geometrical model in n dimensions) where the source and sink habitats have different phenotypic optima. In case of successful establishment, the mean fitness in the sink follows a typical four-phases trajectory. The waiting time to establishment is independent of the immigration rate and has a “U-shaped” dependence on the mutation rate, until some threshold where lethal mutagenesis impedes establishment and the sink population remains so. We use these results to get some insight into possible effects of several management strategies.  相似文献   

15.
In the Mediterranean region of Europe, land-use changes have allowed for rapid colonisation of open habitats by woody species. As a result, it is critical to gather information on how protected species in open habitats respond to forest spread in such areas. Our objective is to quantify whether spatial heterogeneity of the vegetation associated with recent forest closure influences demographic structure and maternal fertility in a population of the protected Paeonia officinalis L. In closed woodland, adult plants of P. officinalis are almost exclusively vegetative, in open habitats seedlings are rare and on the woodland edge there is a relative over-representation of flowering plants and seedlings. Forest closure dramatically reduces flowering frequency, but has no significant effect on maternal fertility of flowering plants. The spatial aggregation of seedlings close to the maternal plants suggests that dispersal is spatially restricted. Together, these results suggest that the viability of the population requires a transitional habitat between open garrigues or grassland with spaced trees and woodland. A management programme incorporating tree and shrub thinning and cutting of parcels in rotation to maximise the length of the forest edge could maintain a habitat mosaic that favours the persistence of this species in the study site.  相似文献   

16.
Density regulation influences population dynamics through its effects on demographic rates and consequently constitutes a key mechanism explaining the response of organisms to environmental changes. Yet, it is difficult to establish the exact form of density dependence from empirical data. Here, we developed an individual‐based model to explore how resource limitation and behavioural processes determine the spatial structure of white stork Ciconia ciconia populations and regulate reproductive rates. We found that the form of density dependence differed considerably between landscapes with the same overall resource availability and between home range selection strategies, highlighting the importance of fine‐scale resource distribution in interaction with behaviour. In accordance with theories of density dependence, breeding output generally decreased with density but this effect was highly variable and strongly affected by optimal foraging strategy, resource detection probability and colonial behaviour. Moreover, our results uncovered an overlooked consequence of density dependence by showing that high early nestling mortality in storks, assumed to be the outcome of harsh weather, may actually result from density dependent effects on food provision. Our findings emphasize that accounting for interactive effects of individual behaviour and local environmental factors is crucial for understanding density‐dependent processes within spatially structured populations. Enhanced understanding of the ways animal populations are regulated in general, and how habitat conditions and behaviour may dictate spatial population structure and demographic rates is critically needed for predicting the dynamics of populations, communities and ecosystems under changing environmental conditions.  相似文献   

17.
Aim While niche models are typically used to assess the vulnerability of species to climate change, they have been criticized for their limited assessment of threats other than climate change. We attempt to evaluate this limitation by combining niche models with life‐history models to investigate the relative influence of climate change and a range of fire regimes on the viability of a long‐lived plant population. Specifically, we investigate whether range shift due to climate change is a greater threat to an obligate seeding fire‐prone shrub than altered fire frequency and how these two threatening processes might interact. Location Australian sclerophyll woodland and heathland. Methods The study species is Leucopogon setiger, an obligate seeding fire‐prone shrub. A spatially explicit stochastic matrix model was constructed for this species and linked with a dynamic niche model and fire risk functions representing a suite of average fire return intervals. We compared scenarios with a variety of hypothetical patches, a patch framework based upon current habitat suitability and one with dynamic habitat suitability based on climate change scenarios A1FI and A2. Results Leucopogon setiger was found to be sensitive to fire frequency, with shorter intervals reducing expected minimum abundances (EMAs). Spatial decoupling of fires across the landscape reduced the vulnerability of the species to shortened fire frequencies. Shifting habitat, while reducing EMAs, was less of a threat to the species than frequent fire. Main conclusions Altered fire regime, in particular more frequent fires relative to the historical regime, was predicted to be a strong threat to this species, which may reflect a vulnerability of obligate seeders in general. Range shifts induced by climate change were a secondary threat when habitat reductions were predicted. Incorporating life‐history traits into habitat suitability models by linking species distribution models with population models allowed for the population‐level evaluation of multiple stressors that affect population dynamics and habitat, ultimately providing a greater understanding of the impacts of global change than would be gained by niche models alone. Further investigations of this type could elucidate how particular bioecological factors can affect certain types of species under global change.  相似文献   

18.
The theoretical foundations of population and community ecology stress the importance of identifying crucial niche requirements and life history stages of invasive species and, in doing so, give insight into research and management. We focus on Microstegium vimineum, an invasive grass which is causing marked changes in the structure and function of US forests. We describe M. vimineum’s life history and habitat characteristics, infer its niche requirements and synthesize this information in the context of population dynamics and management. Based on the results synthesized here, M. vimineum’s crucial niche requirements appear to be light (reproductive output), soil moisture (reproductive output, seedling recruitment) and aboveground coverage by leaf-litter and competing species (seedling recruitment and survival). These data suggest a source-sink dynamic might allow M. vimineum to disperse and thrive along sunny, and sometimes wet, edge habitats and, in turn, these populations might act as source populations for adjacent shady forest habitats. By evaluating M. vimineum in the context of its stage-specific requirements, we highlight potential weaknesses in its life history that provide strategies for effective management.  相似文献   

19.
demoniche is a freely available R‐package which simulates stochastic population dynamics in multiple populations of a species. A demographic model projects population sizes utilizing several transition matrices that can represent impacts on species growth. The demoniche model offers options for setting demographic stochasticity, carrying capacity, and dispersal. The demographic projection in each population is linked to spatially‐explicit niche values, which affect the species growth. With the demoniche package it is possible to compare the influence of scenarios of environmental changes on future population sizes, extinction probabilities, and range shifts of species.  相似文献   

20.
Microhabitat selectivity, resource partitioning, and niche shifts in five species of grazing caddisfly larvae (Glossosoma califica, G. penitum, Dicosmoecus gilvipes, Neophylax rickeri, and N. splendens) were quantified by underwater measurement of microhabitat availability and utilization in three northern California streams. The microhabitat parameters water depth and velocity and rock size, roughness, and slope were measured. Comparisons of habitat available to habitat used revealed significant selection for at least two microhabitat parameters by each population, with depth and velocity being the most important. Comparisons of habitat used by different species showed significant partitioning of at least two microhabitat parameters at each site, with depth being partitioned at all sites. Non-parametric discriminant analysis revealed significant microhabitat partitioning on a multivariate level at two sites. Comparisons of habitat used at different sites quantified a major niche shift by D. gilvipes in its preference for riffles versus pools. Size-selective predation by dippers (Cinclus mexicanus) and steelhead (Salmo gairdneri gairdneri) is proposed as a hypothesis to explain the observed resource partitioning and niche shift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号