首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
The aim of this minireview is to present a concise view of the most important pattern recognition receptors used by the innate immune system to sense and control pathogen growth into host tissues. A brief review of the role of Toll-like receptors (TLRs) in fungal infections followed by some recent results on the function of TLR4, TLR2 and the MyD88 adaptor molecule in the pathogenesis of paracoccidioidomycosis are presented.  相似文献   

2.
3.
Microglia rapidly mount an inflammatory response to pathogens in the central nervous system (CNS). Heparan sulfate proteoglycans (HSPGs) have been attributed various roles in inflammation. To elucidate the relevance of microglial HSPGs in a pro-inflammatory response we isolated microglia from mice overexpressing heparanase (Hpa-tg), the HS-degrading endoglucuronidase, and challenged them with lipopolysaccharide (LPS), a bacterial endotoxin. Prior to LPS-stimulation, the LPS-receptor cluster-of-differentiation 14 (CD14) and Toll-like receptor 4 (TLR4; essential for the LPS response) were similarly expressed in Ctrl and Hpa-tg microglia. However, compared with Ctrl microglia, Hpa-tg cells released significantly less tumor necrosis factor-α (TNFα), essentially failed to up-regulate interleukin-1β (IL1β) and did not initiate synthesis of proCD14. Isolated primary astroyctes expressed TLR4, but notably lacked CD14 and in contrast to microglia, LPS challenge induced a similar TNFα response in Ctrl and Hpa-tg astrocytes, while neither released IL1β. The astrocyte TNFα-induction was thus attributed to CD14-independent TLR4 activation and was unaffected by the cells HS status. Equally, the suppressed LPS-response in Hpa-tg microglia indicated a loss of CD14-dependent TLR4 activation, suggesting that microglial HSPGs facilitate this process. Indeed, confocal microscopy confirmed interactions between microglial HS and CD14 in LPS-stimulated microglia and a potential HS-binding motif in CD14 was identified. We conclude that microglial HSPGs facilitate CD14-dependent TLR4 activation and that heparanase can modulate this mechanism.  相似文献   

4.
5.
6.
The cytokine-inducing activities of fungal polysaccharides were examined in human monocytes in culture, with special reference to CD14 and Toll-like receptors (TLRs). Tumor necrosis factor alpha (TNF-alpha) production by monocytes was markedly induced in a dose-dependent manner upon stimulation with cell walls from Candida albicans and mannan from Saccharomyces cerevisiae and C. albicans, although relatively high concentrations (10 to 100 microg/ml) of stimulants were required for activation as compared with the reference lipopolysaccharide (LPS) (1 to 10 ng/ml). The yeast form C. albicans and its mannan and cell wall fractions exhibited higher TNF-alpha production than respective preparations from the hyphal form. Only slight TNF-alpha production was induced by the S. cerevisiae glucan. The TNF-alpha production triggered by reference LPS and purified fungal mannans required the presence of LPS-binding protein (LBP), and these responses were inhibited by anti-CD14 and anti-TLR4 antibodies, but not by anti-TLR2 antibody. In contrast to the activity of LPS, the activity of purified S. cerevisiae mannan was not inhibited by polymyxin B. These findings suggested that the mannan-LBP complex is recognized by CD14 on monocytes and that signaling through TLR4 leads to the production of proinflammatory cytokines in a manner similar to that induced by LPS.  相似文献   

7.
Zhu L  Li X  Miao C 《Gene》2012,501(2):213-218
Sepsis, a condition of systemic inappropriate inflammation response to the invasion of microorganisms, results in considerable morbidity and mortality in patients. Some, but not all, epidemiological studies have suggested that Toll-like receptor 4 (TLR4) polymorphisms, Asp299Gly and Thr399Ile, may influence the risk of at-risk patients for sepsis. Our work tried to further study the association of the two common polymorphisms with sepsis susceptibility by performing a meta-analysis of previous data. Electronic searches of MEDLINE, EMBASE and Web of Science databases were performed. Original observational studies dealing with the association between polymorphisms Asp299Gly and/or Thr399Ile and sepsis risk were selected. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated with random-effects model or fixed-effects model based on the heterogeneity analysis. Seventeen studies including 2212 cases and 3880 controls were included with most subjects of Caucasian ethnicity. The odds ratio for the association of Asp299Gly polymorphism with sepsis risk was 1.22 (95% CI: 0.90-1.65, P=0.21), and the association of Thr399Ile polymorphism was 1.16 (95%CI: 0.70-1.91, P=0.57). Subgroup analysis and sensitivity analysis did not change the results. Our meta-analysis revealed that the two common TLR4 polymorphisms, Asp299Gly and Thr399Ile, have no strong association with the likelihood of sepsis in Caucasian populations. Further studies are needed to investigate the effect of genetic networks and their mutual interactions in TLR4 signaling pathway on sepsis susceptibility.  相似文献   

8.
Dysregulation of innate and adaptive intestinal immune responses to bacterial microbiota is supposed to be involved in pathogenetic mechanisms of inflammatory bowel diseases (IBDs). We investigated expression of Toll-like receptor 2 (TLR2), TLR4, and their transmembrane coreceptor CD14 in biopsy samples from patients with IBD and in non-inflamed gut mucosa from controls. Small intestine and colon samples were obtained by colonoscopy from patients with Crohn's disease (CD), ulcerative colitis (UC), and controls. Immunohistochemical analysis of cryostat sections using polyclonal and monoclonal antibodies specific for TLR2, TLR4, and CD14 showed a significant increase in TLR2 expression in the terminal ileum of patients with inactive and active UC against controls. Significant upregulation of TLR4 expression relative to controls was found in the terminal ileum and rectum of UC patients in remission and in the terminal ileum of CD patients with active disease. CD14 expression was upregulated in the terminal ileum of CD patients in remission and with active disease, in the cecum of UC patients in remission and with active disease, and in rectum of UC patients with active disease. Hence, dysregulation of TLR2, TLR4, and CD14 expression in different parts of the intestinal mucosa may be crucial in IBD pathogenesis.  相似文献   

9.
One cause of sepsis is systemic maladaptive immune response of the host to bacteria and specifically, to Gram-negative bacterial outer-membrane glycolipid lipopolysaccharide (LPS). On the host myeloid cell surface, proinflammatory LPS activates the innate immune system via Toll-like receptor-4/myeloid differentiation factor-2 complex. Intracellularly, LPS is also sensed by the noncanonical inflammasome through caspase-11 in mice and 4/5 in humans. The minimal functional determinant for innate immune activation is the membrane anchor of LPS called lipid A. Even subtle modifications to the lipid A scaffold can enable, diminish, or abolish immune activation. Bacteria are known to modify their LPS structure during environmental stress and infection of hosts to alter cellular immune phenotypes. In this review, we describe how mass spectrometry-based structural analysis of endotoxin helped uncover major determinations of molecular pathogenesis. Through characterization of LPS modifications, we now better understand resistance to antibiotics and cationic antimicrobial peptides, as well as how the environment impacts overall endotoxin structure. In addition, mass spectrometry-based systems immunoproteomics approaches can assist in elucidating the immune response against LPS. Many regulatory proteins have been characterized through proteomics and global/targeted analysis of protein modifications, enabling the discovery and characterization of novel endotoxin-mediated protein translational modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号