首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The acetyl-coenzyme A carboxylase (ACCase)-inhibiting cyclohexanedione herbicide clethodim is used to control grass weeds infesting dicot crops. In Australia clethodim is widely used to control the weed Lolium rigidum. However, clethodim-resistant Lolium populations have appeared over the last 5 years and now are present in many populations across the western Australian wheat (Triticum aestivum) belt. An aspartate-2078-glycine (Gly) mutation in the plastidic ACCase enzyme has been identified as the only known mutation endowing clethodim resistance. Here, with 14 clethodim-resistant Lolium populations we revealed diversity and complexity in the molecular basis of resistance to ACCase-inhibiting herbicides (clethodim in particular). Several known ACCase mutations (isoleucine-1781-leucine [Leu], tryptophan-2027-cysteine [Cys], isoleucine-2041-asparagine, and aspartate-2078-Gly) and in particular, a new mutation of Cys to arginine at position 2088, were identified in plants surviving the Australian clethodim field rate (60 g ha(-1)). Twelve combination patterns of mutant alleles were revealed in relation to clethodim resistance. Through a molecular, biochemical, and biological approach, we established that the mutation 2078-Gly or 2088-arginine endows sufficient level of resistance to clethodim at the field rate, and in addition, combinations of two mutant 1781-Leu alleles, or two different mutant alleles (i.e. 1781-Leu/2027-Cys, 1781-Leu/2041-asparagine), also confer clethodim resistance. Plants homozygous for the mutant 1781, 2078, or 2088 alleles were found to be clethodim resistant and cross resistant to a number of other ACCase inhibitor herbicides including clodinafop, diclofop, fluazifop, haloxyfop, butroxydim, sethoxydim, tralkoxydim, and pinoxaden. We established that the specific mutation, the homo/heterozygous status of a plant for a specific mutation, and combinations of different resistant alleles plus herbicide rates all are important in contributing to the overall level of herbicide resistance in genetically diverse, cross-pollinated Lolium species.  相似文献   

2.
3.

Background and Aims

Selective pressures exerted by agriculture on populations of arable weeds foster the evolution of adaptive traits. Germination and emergence dynamics and herbicide resistance are key adaptive traits. Herbicide resistance alleles can have pleiotropic effects on a weed''s life cycle. This study investigated the pleiotropic effects of three acetyl-coenzyme A carboxylase (ACCase) alleles endowing herbicide resistance on the seed-to-plant part of the life cycle of the grass weed Alopecurus myosuroides.

Methods

In each of two series of experiments, A. myosuroides populations with homogenized genetic backgrounds and segregating for Leu1781, Asn2041 or Gly2078 ACCase mutations which arose independently were used to compare germination dynamics, survival in the soil and seedling pre-emergence growth among seeds containing wild-type, heterozygous and homozygous mutant ACCase embryos.

Key Results

Asn2041 ACCase caused no significant effects. Gly2078 ACCase major effects were a co-dominant acceleration in seed germination (1·25- and 1·10-fold decrease in the time to reach 50 % germination (T50) for homozygous and heterozygous mutant embryos, respectively). Segregation distortion against homozygous mutant embryos or a co-dominant increase in fatal germination was observed in one series of experiments. Leu1781 ACCase major effects were a co-dominant delay in seed germination (1·41- and 1·22-fold increase in T50 for homozygous and heterozygous mutant embryos, respectively) associated with a substantial co-dominant decrease in fatal germination.

Conclusions

Under current agricultural systems, plants carrying Leu1781 or Gly2078 ACCase have a fitness advantage conferred by herbicide resistance that is enhanced or counterbalanced, respectively, by direct pleiotropic effects on the plant phenology. Pleiotropic effects associated with mutations endowing herbicide resistance undoubtedly play a significant role in the evolutionary dynamics of herbicide resistance in weed populations. Mutant ACCase alleles should also prove useful to investigate the role played by seed storage lipids in the control of seed dormancy and germination.  相似文献   

4.
Zhang XQ  Powles SB 《Planta》2006,223(3):550-557
Acetyl-CoA carboxylase (ACCase) (EC.6.4.1.2) is an essential enzyme in fatty acid biosynthesis and, in world agriculture, commercial herbicides target this enzyme in plant species. In nearly all grass species the plastidic ACCase is strongly inhibited by commercial ACCase inhibiting herbicides [aryloxyphenoxypropionate (APP) and cyclohexanedione (CHD) herbicide chemicals]. Many ACCase herbicide resistant biotypes (populations) of L. rigidum have evolved, especially in Australia. In many cases, resistance to ACCase inhibiting herbicides is due to a resistant ACCase enzyme. Two ACCase herbicide resistant L. rigidum biotypes were studied to identify the molecular basis of ACCase inhibiting herbicide resistance. The carboxyl-transferase (CT) domain of the plastidic ACCase gene was amplified by PCR and sequenced. Amino acid substitutions in the CT domain were identified by comparison of sequences from resistant and susceptible plants. The amino acid residues Gln-102 (CAG codon) and Ile-127 (ATA codon) were substituted with a Glu residue (GAG codon) and Leu residue (TTA codon), respectively, in both resistant biotypes. Amino acid positions 102 and 127 within the fragment sequenced from L. rigidum corresponded to amino acid residues 1756 and 1781, respectively, in the A. myosuroides full ACCase sequence. Allele-specific PCR results further confirmed the mutations linked with resistance in these populations. The Ile-to-Leu substitution at position 1781 has been identified in other resistant grass species as endowing resistance to APP and CHD herbicides. The Gln-to-Glu substitution at position 1756 has not previously been reported and its role in herbicide resistance remains to be established.  相似文献   

5.

Background

Knowledge of the mechanisms of herbicide resistance is important for designing long term sustainable weed management strategies. Here, we have used an integrated biology and molecular approach to investigate the mechanisms of resistance to acetyl-CoA carboxylase inhibiting herbicides in a UK black-grass population (BG2).

Methodology/Principal Findings

Comparison between BG2 phenotypes using single discriminant rates of herbicides and genotypes based on ACCase gene sequencing showed that the I1781L, a novel I1781T, but not the W2027C mutations, were associated with resistance to cycloxydim. All plants were killed with clethodim and a few individuals containing the I1781L mutation were partially resistant to tepraloxydim. Whole plant dose response assays demonstrated that a single copy of the mutant T1781 allele conferred fourfold resistance levels to cycloxydim and clodinafop-propargyl. In contrast, the impact of the I1781T mutation was low (Rf = 1.6) and non-significant on pinoxaden. BG2 was also characterised by high levels of resistance, very likely non-target site based, to the two cereal selective herbicides clodinafop-propargyl and pinoxaden and not to the poorly metabolisable cyclohexanedione herbicides. Analysis of 480 plants from 40 cycloxydim resistant black grass populations from the UK using two very effective and high throughput dCAPS assays established for detecting any amino acid changes at the 1781 ACCase codon and for positively identifying the threonine residue, showed that the occurrence of the T1781 is extremely rare compared to the L1781 allele.

Conclusion/Significance

This study revealed a novel mutation at ACCase codon position 1781 and adequately assessed target site and non-target site mechanisms in conferring resistance to several ACCase herbicides in a black-grass population. It highlights that over time the level of suspected non-target site resistance to some cereal selective ACCase herbicides have in some instances surpassed that of target site resistance, including the one endowed by the most commonly encountered I1781L mutation.  相似文献   

6.
Acetyl-CoA carboxylase (ACCase) alleles carrying one point mutation that confers resistance to herbicides have been identified in arable grass weed populations where resistance has evolved under the selective pressure of herbicides. In an effort to determine whether herbicide resistance evolves from newly arisen mutations or from standing genetic variation in weed populations, we used herbarium specimens of the grass weed Alopecurus myosuroides to seek mutant ACCase alleles carrying an isoleucine-to-leucine substitution at codon 1781 that endows herbicide resistance. These specimens had been collected between 1788 and 1975, i.e., prior to the commercial release of herbicides inhibiting ACCase. Among the 734 specimens investigated, 685 yielded DNA suitable for PCR. Genotyping the ACCase locus using the derived Cleaved Amplified Polymorphic Sequence (dCAPS) technique identified one heterozygous mutant specimen that had been collected in 1888. Occurrence of a mutant codon encoding a leucine residue at codon 1781 at the heterozygous state was confirmed in this specimen by sequencing, clearly demonstrating that resistance to herbicides can pre-date herbicides in weeds. We conclude that point mutations endowing resistance to herbicides without having associated deleterious pleiotropic effects can be present in weed populations as part of their standing genetic variation, in frequencies higher than the mutation frequency, thereby facilitating their subsequent selection by herbicide applications.  相似文献   

7.
Many herbicide-resistant weed species are polyploids, but far too little about the evolution of resistance mutations in polyploids is understood. Hexaploid wild oat (Avena fatua) is a global crop weed and many populations have evolved herbicide resistance. We studied plastidic acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicide resistance in hexaploid wild oat and revealed that resistant individuals can express one, two or three different plastidic ACCase gene resistance mutations (Ile-1781-Leu, Asp-2078-Gly and Cys-2088-Arg). Using ACCase resistance mutations as molecular markers, combined with genetic, molecular and biochemical approaches, we found in individual resistant wild-oat plants that (1) up to three unlinked ACCase gene loci assort independently following Mendelian laws for disomic inheritance, (2) all three of these homoeologous ACCase genes were transcribed, with each able to carry its own mutation and (3) in a hexaploid background, each individual ACCase resistance mutation confers relatively low-level herbicide resistance, in contrast to high-level resistance conferred by the same mutations in unrelated diploid weed species of the Poaceae (grass) family. Low resistance conferred by individual ACCase resistance mutations is likely due to a dilution effect by susceptible ACCase expressed by homoeologs in hexaploid wild oat and/or differential expression of homoeologous ACCase gene copies. Thus, polyploidy in hexaploid wild oat may slow resistance evolution. Evidence of coexisting non-target-site resistance mechanisms among wild-oat populations was also revealed. In all, these results demonstrate that herbicide resistance and its evolution can be more complex in hexaploid wild oat than in unrelated diploid grass weeds. Our data provide a starting point for the daunting task of understanding resistance evolution in polyploids.  相似文献   

8.
Chloroplastic acetyl CoA-carboxylase (ACCase) is the target of widely used, specific graminicide herbicides: cyclohexanediones (CHDs) and aryloxyphenoxypropionates (APPs). Resistance to these compounds is a worldwide, increasing problem. Population genetic studies aimed at understanding the dynamics of this situation and the diffusion of resistance genes within and between weed populations are challenging because biological assays are not adequate for this purpose, and because different mechanisms of resistance confer a similar resistance phenotype. Molecular markers for specifically detecting resistance genes are therefore urgently needed to conduct such studies. For this purpose, we cloned and sequenced the whole gene encoding chloroplastic ACCase in Alopecurus myosuroides Huds. (Black-grass). We identified two point mutations at nucleotide 5,341 that both cause an isoleucine-leucine substitution at position 1,781. Three bi-directional allele-specific PCR assays were developed, each detecting two distinct ACCase alleles with a single PCR reaction. The sensitivity of 1,190 seedlings of A. myosuroides to one CHD and one APP was determined. Genotyping revealed that, although resistant plants were only selected by APPs, the (1,781)Leu ACCase allele is a widespread, dominant gene of resistance to both APPs and CHDs. No other ACCase allele associated with resistance could be identified in this work. Useful applications of allele-specific PCR markers are population genetic studies as well as routine molecular diagnosis of herbicide resistance.  相似文献   

9.
Resistance of the snail Biomphalaria glabrata to the trematode Schistosoma mansoni is correlated with allelic variation at copper-zinc superoxide dismutase (sod1). We tested whether there is a fitness cost associated with carrying the most resistant allele in three outbred laboratory populations of snails. These three populations were derived from the same base population, but differed in average resistance. Under controlled laboratory conditions we found no cost of carrying the most resistant allele in terms of fecundity, and a possible advantage in terms of growth and mortality. These results suggest that it might be possible to drive resistant alleles of sod1 into natural populations of the snail vector for the purpose of controlling transmission of S. mansoni. However, we did observe a strong effect of genetic background on the association between sod1 genotype and resistance. sod1 genotype explained substantial variance in resistance among individuals in the most resistant genetic background, but had little effect in the least resistant genetic background. Thus, epistatic interactions with other loci may be as important a consideration as costs of resistance in the use of sod1 for vector manipulation.  相似文献   

10.
Effective herbicide resistance management requires an assessment of the range of spatial dispersion of resistance genes among weed populations and identification of the vectors of this dispersion. In the grass weed Alopecurus myosuroides (black-grass), seven alleles of the acetyl-CoA carboxylase (ACCase) gene are known to confer herbicide resistance. Here, we assessed their respective frequencies and spatial distribution on two nested geographical scales (the whole of France and the French administrative district of C?te d'Or) by genotyping 13 151 plants originating from 243 fields. Genetic variation in ACCase was structured in local populations at both geographical scales. No spatial structure in the distribution of resistant ACCase alleles and no isolation by distance were detected at either geographical scale investigated. These data, together with ACCase sequencing and data from the literature, suggest that evolution of A. myosuroides resistance to herbicides occurred at the level of the field or group of adjacent fields by multiple, independent appearances of mutant ACCase alleles that seem to have rather restricted spatial propagation. Seed transportation by farm machinery seems the most likely vector for resistance gene dispersal in A. myosuroides.  相似文献   

11.
Délye C  Wang T  Darmency H 《Planta》2002,214(3):421-427
The cDNAs encoding chloroplastic acetyl-CoA carboxylase (ACCase, EC 6.4.1.2) from three lines of Setaria viridis (L. Beauv.) resistant or sensitive to sethoxydim, and from one sethoxydim-sensitive line of Setaria italica (L. Beauv.) were cloned and sequenced. Sequence comparison revealed that a single isoleucine-leucine substitution discriminated ACCases from sensitive and resistant lines. Using near-isogenic lines of S. italica derived from interspecific hybridisation, we demonstrated that the transfer of the S. viridis mutant ACCase allele into a sethoxydim-sensitive S. italica line conferred resistance to this herbicide. We confirmed this result using allele-specific polymerase chain reaction and showed that a single copy of the mutant allele is sufficient to confer resistance to sethoxydim. We conclude that a mutant allele of chloroplastic ACCase encoding a leucine residue instead of an isoleucine residue at position 1780 is a major gene of resistance to sethoxydim.  相似文献   

12.
A deterministic two-locus model was used to examine how small fitness costs to individuals carrying resistance alleles could impact the risk of panmictic insect pest populations adapting to crop varieties that produced two distinct toxins. Parameters examined were (1) level of toxicity of each toxin, (2) initial frequencies of alleles for adaptation to the toxins, (3) percentage of population feeding on nontoxic plants, and (4) level of fitness cost associated with adaptation to each of the two toxins. Resistance to each toxin was assumed to be biochemically independent, controlled by a resistance coding allele at a single locus, and inherited as a partially recessive trait in the field. When plants are extremely toxic to the pest, effective refuge size is 10%, and there is a fitness cost to resistance alleles only when in homozygous form (5%), the pest population is never predicted to adapt to either toxin as long as the initial frequencies of the resistance alleles are below 0.05. Even if the initial frequency of the allele for adapting to one toxin is 0.95 when a two-toxin cultivar completely replaces a one-toxin cultivar, the model predicts that a low equilibrium allelic frequency will develop for both resistance alleles, as long as the frequency of the allele for adapting to the second toxin is initially 0.001 or less. If cultivars with one and two toxins are planted, the model predicts that resistance will develop. Nonrandom mating and stochastic variation within subpopulations also could lead to evolution of resistance.  相似文献   

13.
We describe a simple method to select for transfer of mutant alleles from the Escherichia coli chromosome to a plasmid which formerly carried the wild-type (wt) allele. The wt allele on the plasmid is modified by introduction of a unique restriction site (e.g., XhoI) and transformed into a rec + strain carrying the mutant allele on the chromosome. Upon homogenotization, the efficiency of which was increased by UV irradiation of the transforming plasmid [Chattoraj et al., Gene 27 (1982) 213–222], plasmids carrying the mutant allele are formed which are resistant to XhoI. These plasmids are selected from the population by resistance to XhoI digestion coupled with the low transformation efficiency of linear DNA molecules in recA strain. The method is efficient and rapid and has particular advantages in situations where the mutant allele is difficult to detect by its phenotype.  相似文献   

14.
This study investigates mechanisms of multiple resistance to glyphosate, acetyl-coenzyme A carboxylase (ACCase) and acetolactate synthase (ALS)-inhibiting herbicides in two Lolium rigidum populations from Australia. When treated with glyphosate, susceptible (S) plants accumulated 4- to 6-fold more shikimic acid than resistant (R) plants. The resistant plants did not have the known glyphosate resistance endowing mutation of 5-enolpyruvylshikimate-3 phosphate synthase (EPSPS) at Pro-106, nor was there over-expression of EPSPS in either of the R populations. However, [14C]-glyphosate translocation experiments showed that the R plants in both populations have altered glyphosate translocation patterns compared to the S plants. The R plants showed much less glyphosate translocation to untreated young leaves, but more to the treated leaf tip, than did the S plants. Sequencing of the carboxyl transferase domain of the plastidic ACCase gene revealed no resistance endowing amino acid substitutions in the two R populations, and the ALS in vitro inhibition assay demonstrated herbicide-sensitive ALS in the ALS R population (WALR70). By using the cytochrome P450 inhibitor malathion and amitrole with ALS and ACCase herbicides, respectively, we showed that malathion reverses chlorsulfuron resistance and amitrole reverses diclofop resistance in the R population examined. Therefore, we conclude that multiple glyphosate, ACCase and ALS herbicide resistance in the two R populations is due to the presence of distinct non-target site based resistance mechanisms for each herbicide. Glyphosate resistance is due to reduced rates of glyphosate translocation, and resistance to ACCase and ALS herbicides is likely due to enhanced herbicide metabolism involving different cytochrome P450 enzymes.  相似文献   

15.
Alleles conferring a higher adaptive value in one environment may have a detrimental impact on fitness in another environment. Alleles conferring resistance to pesticides and drugs provide textbook examples of this trade‐off as, in addition to conferring resistance to these molecules, they frequently decrease fitness in pesticide/drug‐free environments. We show here that resistance to chlorpyrifos, an organophosphate (OP), in Chinese populations of the diamondback moth, Plutella xylostella, is conferred by two mutations of ace1 – the gene encoding the acetylcholinesterase enzyme targeted by OPs – affecting the amino acid sequence of the corresponding protein. These mutations were always linked, consistent with the segregation of a single resistance allele, ace1R, carrying both mutations, in the populations studied. We monitored the frequency of ace1R (by genotyping more than 20 000 adults) and the level of resistance (through bioassays on more than 50 000 individuals) over several generations. We found that the ace1R resistance allele was costly in the absence of insecticide and that this cost was likely recessive. This fitness costs involved a decrease in fecundity: females from resistant strains laid 20% fewer eggs, on average, than females from susceptible strains. Finally, we found that the fitness costs associated with the ace1R allele were greater at high temperatures. At least two life history traits were involved: longevity and fecundity. The relative longevity of resistant individuals was affected only at high temperatures and the relative fecundity of resistant females – which was already affected at temperatures optimal for development – decreased further at high temperatures. The implications of these findings for resistance management are discussed.  相似文献   

16.
X-linked mutant alleles associated with prenatal male lethality are difficult to analyze because only heterozygous females are readily available for study. Genomic analysis of the mutant allele is facilitated by the construction of somatic cell hybrids because this enables the segregation of the X Chromosomes (Chrs) that carry the mutant and wild-type alleles. We describe here a method that ensures that the X Chr carrying the mutant allele is retained in somatic cell hybrids in an active selectable state. This is achieved by mating heterozygous females to males that carry a mutation at the hypoxanthine phosphoribosyl transferase (Hprt) locus. The resultant F1 females are compound heterozygotes, and when cells from these females are fused to HPRT− Chinese hamster cells and subjected to selection in HAT medium, the only survivors are those hybrid cells that retain an active X Chr carrying the mutant allele together with the wild-type Hprt allele. We use hybrids constructed by this method to demonstrate that there are no gross deletions or genomic rearrangements present in three mottled alleles associated with prenatal male lethality. Received: 8 January 1996 / Accepted: 29 February 1996  相似文献   

17.
IN ISOLATED populations underdominance leads to bistable evolutionary dynamics: below a certain mutant allele frequency the wildtype succeeds. Above this point, the potentially underdominant mutant allele fixes. In subdivided populations with gene flow there can be stable states with coexistence of wildtypes and mutants: polymorphism can be maintained because of a migration-selection equilibrium, i.e., selection against rare recent immigrant alleles that tend to be heterozygous. We focus on the stochastic evolutionary dynamics of systems where demographic fluctuations in the coupled populations are the main source of internal noise. We discuss the influence of fitness, migration rate, and the relative sizes of two interacting populations on the mean extinction times of a group of potentially underdominant mutant alleles. We classify realistic initial conditions according to their impact on the stochastic extinction process. Even in small populations, where demographic fluctuations are large, stability properties predicted from deterministic dynamics show remarkable robustness. Fixation of the mutant allele becomes unlikely but the time to its extinction can be long.  相似文献   

18.
The avrBs2 avirulence gene of the bacterial plant pathogen Xanthomonas campestris pv. vesicatoria triggers disease resistance in pepper plants containing the Bs2 resistance gene and contributes to bacterial virulence on susceptible host plants. We studied the effects of the pepper Bs2 gene on the evolution of avrBs2 by characterizing the molecular basis for virulence of 20 X. campestris pv. vesicatoria field strains that were isolated from disease spots on previously resistant Bs2 pepper plants. All field strains tested were complemented by a wild-type copy of avrBs2 in their ability to trigger disease resistance on Bs2 plants. DNA sequencing revealed four mutant alleles of avrBs2, two of which consisted of insertions or deletions of 5 nucleotides in a repetitive region of avrBs2. The other two avrBs2 alleles were characterized by point mutations with resulting single amino acid changes (R403P or A410D). We generated isogenic X. campestris pv. vesicatoria strains by chromosomal avrBs2 gene exchange to study the effects of these mutations on the dual functions of avrBs2 in enhancing bacterial virulence and inducing plant resistance by in planta bacterial growth experiments. The deletion of 5 nucleotides led to loss of avrBs2-induced resistance on Bs2 pepper plants and abolition of avrBs2-mediated enhancement of fitness on susceptible plants. Significantly, the point mutations led to minimal reduction in virulence function of avrBs2 on susceptible pepper plants, with either minimal (R403P allele) or an intermediate level of (A410D allele) triggering of resistance on Bs2 plants. Consistent with the divergent selection pressures on avrBs2 exerted by the Bs2 resistance gene, our results show that avrBs2 is evolving to decrease detection by the Bs2 gene while at the same time maintaining its virulence function.  相似文献   

19.
The frequency of insecticide-resistance alleles for two genes (Vssc1 and CYP6D1) was studied in field collected populations of house flies from two different climates. While the frequency of these resistance alleles in flies at dairies from four states has recently been reported, there is no information on the relative change of these allele frequencies over time. House flies were collected during the 2003-2004 season from New York and Florida before the first application of permethrin, during the middle of the field season, after the final application, and again the following spring (following months without permethrin use). Bioassay results indicated that homozygous susceptible and extremely resistant flies were rare, while moderately and highly resistant individuals were relatively common at all times in both states. The frequency of resistance alleles at the New York dairy rose during the season and declined over the winter, suggesting an overwintering fitness cost associated with these alleles. The super-kdr allele was detected for the first time in North America at the end of 2003. In Florida the frequency of the resistance alleles did not increase during the spray season or decrease during the winter, suggesting there is substantial immigration of susceptible alleles to the Florida dairy and no overwintering fitness cost associated with resistance alleles in this climate. Resistance to permethrin correlated well with the frequency of the Vssc1 and CYP6D1 resistance alleles in flies from New York, but not as well in the population from Florida. This suggests there may be a new resistance mechanism or allele evolving in Florida.  相似文献   

20.
Escherichia coli cells that are aged in batch culture display an increased fitness referred to as the growth advantage in stationary phase, or GASP, phenotype. A common early adaptation to this culture environment is a mutant rpoS allele, such as rpoS819, that results in attenuated RpoS activity. However, it is important to note that during long-term batch culture, environmental conditions are in flux. To date, most studies of the GASP phenotype have focused on identifying alleles that render an advantage in a specific environment, Luria-Bertani broth (LB) batch culture. To determine what role environmental conditions play in rendering relative fitness advantages to E. coli cells carrying either the wild-type or rpoS819 alleles, we performed competitions under a variety of culture conditions in which either the available nutrients, the pH, or both were manipulated. In LB medium, we found that while the rpoS819 allele confers a strong competitive fitness advantage at basic pH, it confers a reduced advantage under neutral conditions, and it is disadvantageous under acidic conditions. Similar results were found using other media. rpoS819 conferred its greatest advantage in basic minimal medium in which either glucose or Casamino Acids were the sole source of carbon and energy. In acidic medium supplemented with either Casamino Acids or glucose, the wild-type allele conferred a slight advantage. In addition, populations were dynamic under all pH conditions tested, with neither the wild-type nor mutant rpoS alleles sweeping a culture. We also found that the strength of the fitness advantage gained during a 10-day incubation is pH dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号