首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Temperate species are projected to experience the greatest temperature increases across a range of modelled climate change scenarios, and climate warming has been linked to geographical range and population changes of individual species at such latitudes. However, beyond the multiple modelling approaches, we lack empirical evidence of contemporary climate change impacts on populations in broad taxonomic groups and at continental scales. Identifying reliable predictors of species resilience or susceptibility to climate warming is of critical importance in assessing potential risks to species, ecosystems and ecosystem services. Here we analysed long‐term trends of 110 common breeding birds across Europe (20 countries), to identify climate niche characteristics, adjusted to other environmental and life history traits, that predict large‐scale population changes accounting for phylogenetic relatedness among species. Beyond the now well‐documented decline of farmland specialists, we found that species with the lowest thermal maxima (as the mean spring and summer temperature of the hottest part of the breeding distribution in Europe) showed the sharpest declines between 1980 and 2005. Thermal maximum predicted the recent trends independently of other potential predictors. This study emphasizes the need to account for both land‐use and climate changes to assess the fate of species. Moreover, we highlight that thermal maximum appears as a reliable and simple predictor of the long‐term trends of such endothermic species facing climate change.  相似文献   

2.
    
Climate change has been shown to cause poleward range shifts of species. These shifts are typically demonstrated using presence–absence data, which can mask the potential changes in the abundance of species. Moreover, changes in the mean centre of weighted density of species are seldom examined, and comparisons between these two methods are even rarer. Here, we studied the change in the mean weighted latitude of density (MWLD) of 94 bird species in Finland, northern Europe, using data covering a north–south gradient of over 1000 km from the 1970s to the 2010s. The MWLD shifted northward on average 1.26 km yr?1, and this shift was significantly stronger in northern species compared to southern species. These shifts can be related to climate warming during the study period, because the annual temperature had increased more in northern Finland (by 1.7 °C) than in southern Finland (by 1.4 °C), although direct causal links cannot be shown. Density shifts of species distributed over the whole country did not differ from shifts in species situated on the edge of the species range in southern and northern species. This means that density shifts occur both in the core and on the edge of species distribution. The species‐specific comparison of MWLD values with corresponding changes in the mean weighted latitude using presence–absence atlas data (MWL) revealed that the MWLD moved more slowly than the MWL in the atlas data in the southern species examined, but more rapidly in the northern species. Our findings highlight that population densities are also moving rapidly towards the poles and the use of presence–absence data can mask the shift of population densities. We encourage use of abundance data in studies considering the effects of climate change on biodiversity.  相似文献   

3.
    
Land‐cover and climate change are two main drivers of changes in species ranges. Yet, the majority of studies investigating the impacts of global change on biodiversity focus on one global change driver and usually use simulations to project biodiversity responses to future conditions. We conduct an empirical test of the relative and combined effects of land‐cover and climate change on species occurrence changes. Specifically, we examine whether observed local colonization and extinctions of North American birds between 1981–1985 and 2001–2005 are correlated with land‐cover and climate change and whether bird life history and ecological traits explain interspecific variation in observed occurrence changes. We fit logistic regression models to test the impact of physical land‐cover change, changes in net primary productivity, winter precipitation, mean summer temperature, and mean winter temperature on the probability of Ontario breeding bird local colonization and extinction. Models with climate change, land‐cover change, and the combination of these two drivers were the top ranked models of local colonization for 30%, 27%, and 29% of species, respectively. Conversely, models with climate change, land‐cover change, and the combination of these two drivers were the top ranked models of local extinction for 61%, 7%, and 9% of species, respectively. The quantitative impacts of land‐cover and climate change variables also vary among bird species. We then fit linear regression models to test whether the variation in regional colonization and extinction rate could be explained by mean body mass, migratory strategy, and habitat preference of birds. Overall, species traits were weakly correlated with heterogeneity in species occurrence changes. We provide empirical evidence showing that land‐cover change, climate change, and the combination of multiple global change drivers can differentially explain observed species local colonization and extinction.  相似文献   

4.
    
Poleward and upward species range shifts are the most commonly anticipated and studied consequences of climate warming. However, these global responses to climate change obscure more complex distribution change patterns. We hypothesize that the spatial arrangement of mountain ranges and, consequently, climatic gradients in Europe, will result in range disjunctions. This hypothesis was investigated for submountainous forest plant species at two temporal and spatial scales: (i) under future climate change (between 1950–2000 and 2061–2080 periods) at the European scale and (ii) under contemporary climate change (between 1914–1987 and 1997–2013 periods) at the French scale. We selected 97 submountainous forest plant species occurring in France, among which distribution data across Europe are available for 25 species. By projecting future distribution changes for the 25 submountainous plant species across Europe, we demonstrated that range disjunction is a likely consequence of future climate change. To assess whether it is already taking place, we used a large forest vegetation‐plot database covering the entire French territory over 100 years (1914–2013) and found an average decrease in frequency (?0.01 ± 0.004) in lowland areas for the 97 submountainous species – corresponding to a loss of 6% of their historical frequency – along with southward and upward range shifts, suggesting early signs of range disjunctions. Climate‐induced range disjunctions should be considered more carefully since they could have dramatic consequences on population genetics and the ability of species to face future climate changes.  相似文献   

5.
    
Ecological Niche Models (ENMs) have different performances in predicting potential geographic distributions. Here we meta‐analyzed the likely effects of climate change on the potential geographic distribution of 1,205 bird species from the Neotropical region, modeled using eight ENMs and three Atmosphere‐Ocean General Circulation Models (AOGCM). We considered the variability in ENMs performance to estimate a weighted mean difference between potential geographic distributions for baseline and future climates. On average, potential future ranges were projected to be from 25.7% to 44.5% smaller than current potential ranges across species. However, we found that 0.2% to 18.3% of the total variance in range shifts occurred “within species” (i.e., owing to the use of different modeling techniques and climate models) and 81.7% to 99.8% remained between species (i.e., it could be explained by ecological correlates). Using meta‐analytical techniques akin to regression, we also showed that potential range shifts are barely predicted by bird biological traits. We demonstrated that one can combine and reduce species‐specific effects with high uncertainty in ENMs and also explore potential causes of climate change effect on species using meta‐analytical tools. We also highlight that the search for powerful correlates of climate change‐induced range shifts can be a promising line of investigation.  相似文献   

6.
    
Nesting beaches have a critical role in the life cycle of sea turtles and their survival. Many different factors affect nest site selection, ranging from the composition of the sand to the vegetation of the beach. These factors are subject to change due to the onset of climate change. We aimed to determine the possible changes in nesting beaches according to the future climate scenarios of Chelonia mydas nesting sites in the Mediterranean by ecological niche modeling. Nineteen bioclimatic variables and Representative Concentration Pathway scenarios (RCP2.6 and RCP8.5) were used to generate past, current, and future nesting site projections. The datasets were prepared with ArcGIS v10. and bioclimatic variables were analyzed using the Pearson Correlation Analysis. The ecological niche modeling was made with the MaxEnt v4.1.0. Model outputs, mean temperature of warmest quarter (22.01 %), precipitation of coldest quarter (15.32 %), mean temperature of the driest quarter (13.60 %), isothermality (12.30 %), mean diurnal range (9.22 %), the max temperature of the warmest month (6.60 %), precipitation seasonality (5.87 %) and annual mean temperature (4.73 %) are the parameters that most affect the estimated distribution of the species and the other parameters have the least effect on the estimated distribution (each < 2.60 %). The prediction accuracy of the model is measured by the Area Under the Curve (AUC) values, which is between 0 and 1, where values closer to 1 have a greater prediction accuracy. In our model results, the AUC values vary between 0.961 and 0.990. The majority of current green turtle nesting sites will continue to be suitable for nesting into the 2100′s. But the habitat suitability of the current nesting beaches in Syria and Lebanon will decrease. Conservational efforts should be developed to protect not only the current nesting beaches but also other possible nesting beaches that might become viable in the future.  相似文献   

7.
    
  1. Sipha (Rungsia) maydis, Sipha (Rungsia) elegans, Sipha (Sipha) glyceriae and especially Sipha (Sipha) flava are considered to be virus vectors and serious pests of crops and pasture grasses. Ecological niche modelling, a useful tool for assessing potential geographical distributions of species, was used to predict the risk of invasion of these four species of the Siphini (Hemiptera, Aphididae) on a global scale.
  2. The maximum entropy model based on associations between unique occurrence localities and a set of environmental variables was used. Obtained models of potentially suitable habitats, based only on climatic variables, suggest that favourable conditions for each species may be present on every continent. However, S. (S.) flava appears to be potentially the most widespread species. Moreover, the resulting maps provide important information on the corridors by which invasive species are able to penetrate into new areas.
  3. A mean of the area under the receiver operating characteristic curve at the levels of 0.937, 0.947, 0.968, 0.937 for S. (R.) maydis, S. (R.) elegans, S. (S.) glyceriae and S. (S.) flava, respectively, indicated a high level of discriminatory power of the maximum entropy model.
  4. A jackknife test indicated that the precipitation of the coldest quarter with the highest gain value was the most important environmental variable restricting the expansion of the studied species.
  相似文献   

8.
    
  1. In order to conserve threatened species, knowledge of the status, trends and trajectories of populations is required. Co‐ordinating collection of these data is challenging, especially for inconspicuous species such as the hazel dormouse Muscardinus avellanarius.
  2. The UK National Dormouse Monitoring Programme (NDMP) is comprised of nest box recording schemes organised by volunteers. The number, size, and coverage of these schemes has varied over time. Such changes risk conflation of genuine population trends with covarying artefacts, including survey effort and expansion into sites of variable quality.
  3. We provide a robust analysis of count data from 400 NDMP sites from 1993 to 2014 and demonstrate that changes in counts are not an artefact of survey characteristics. In relation to the International Union for Conservation of Nature (IUCN) Red List criteria, we conclude that dormouse counts in nest boxes are an index of abundance appropriate to the taxon and allow the inference of population reduction of 72% (95% confidence intervals 62–79%) over the 22 years from 1993 to 2014, equivalent to a mean annual rate of decline of 5.8% (4.5–7.1%). This decline is ongoing.
  4. We highlight difficulties in assigning an IUCN Red List conservation category to a population, given variation in apparent trends over consecutive time‐periods. In eight out of 13 sliding window intervals of 10 years from 1993 to 2014, the 95% confidence intervals overlap a decline of 50%. While average population decline over 10‐year periods suggests that the hazel dormouse should be classified as Vulnerable, a precautionary approach would not rule out the category of Endangered in the United Kingdom, given the lower bounds of population change estimates, the mean annual rate of decline and ongoing decline.
  5. Ongoing decline in the hazel dormouse population is despite a high level of species protection and widespread conservation measures. The hazel dormouse is a UK Biodiversity Action Plan Priority Species and a European Protected Species, and the causes of population reduction are not well understood and may not have ceased. An urgent appraisal of dormouse conservation is required to ensure the species’ favourable conservation status.
  相似文献   

9.
Many important ecological management issues can only be addressed by long‐term monitoring or through studies carried out over extended periods. But such studies require institutional settings that ensure funding is sustained and that data arising from these studies are securely managed. Recent experience suggests both are difficult to achieve. This is because management agencies and research bodies are periodically restructured, especially in recent years. This has often led to long‐term work being terminated. But there is anecdotal evidence that the data collected in at least some of these studies are not always lost. Instead, it can remain stored in the back rooms of agencies or in the personal files of former staff. Such data are clearly at risk; with time fewer people remain aware of the work or of the existence of data that were collected, thereby increasing the likelihood that the information will eventually disappear. This seems a waste. Securing funds for any long‐term ecological study is always likely to be difficult, and many of these previous long‐term studies are likely to be relevant to some of our present management problems. One approach to taking advantage of these earlier studies would be to ask scientific and professional associations to survey their older members to identify relevant previous investigations. But any re‐establishment of former studies will require the creation of new institutional arrangements, more robust institutional memories and sufficient funds that are able to sustain any resurrected investigations into the future.  相似文献   

10.
    
In this study, we have analysed the series of daily air temperatures from 1977 to 2009 measured in a sedge‐grass marsh ecosystem near the town of Třeboň, Czech Republic (Central Europe). Annual averages of daily mean, minimum and maximum temperatures were analysed. Possible significant increases were recorded for all these values during the study period. The annual average of daily maximum temperatures increased on average by 0.0827 °C per year. The annual average of daily mean air temperatures increased by 0.0544 °C per year. The rise of the annual average of daily minimum air temperature was the lowest, namely by 0.0374 °C per year. The air temperature rise was not the same in all periods of the year, and different increases were found in individual months. The daily mean air temperature rose significantly in the growing season (April–August). In all the other months except December, a statistically non‐significant rise of daily mean air temperatures was recorded. From the ecological point of view, the different monthly increases are more important for the wetland ecosystem than the slow gradual rise of air temperature over the years. The air temperature rise recorded in the wetland studied was lower than that predicted by climatic models. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
    
  • Global biodiversity is contracting rapidly due to potent anthropogenic activities and severe climate change. Wild populations of Rosa chinensis var. spontanea and Rosa lucidissima are rare species endemic to China, as well as important germplasm resources for rose breeding. However, these populations are at acute risk of extinction and require urgent action to ensure their preservation.
  • We harnessed 16 microsatellite loci to 44 populations of these species and analysed population structure and differentiation, demographic history, gene flow and barrier effect. In addition, a niche overlap test and potential distribution modelling in different time periods were also carried out.
  • The data indicate that: (1) R. lucidissima cannot be regarded as a separate species from R. chinensis var. spontanea; (2) the Yangtze River and the Wujiang River function as barriers in population structure and differentiation, and precipitation in the coldest quarter may be the key factor for niche divergence of R. chinensis var. spontanea complex; (3) historical gene flow showed a converse tendency to current gene flow, indicating that alternate migration events of R. chinensis var. spontanea complex between south and north were a response to climate oscillations; and (4) extreme climate change will decrease the distribution range of R. chinensis var. spontanea complex, whereas the opposite will occur under a moderate scenario for the future.
  • Our results resolve the relationship between R. chinensis var. spontanea and R. lucidissima, highlight the pivotal roles of geographic isolation and climate heterogeneity in their population differentiation, and provide an important reference for comparable conservation studies on other endangered species.
  相似文献   

12.
13.
    
Primates have long been used as indicator species for assessing overall ecosystem health. However, area‐wide census methods are time consuming, costly, and not always feasible under many field conditions. Therefore, it is important to establish whether monitoring a subset of a population accurately reflects demographic changes occurring in the population at large. Over the past 35 years, we have conducted 15 area‐wide censuses in Sector Santa Rosa, Costa Rica. These efforts have revealed important trends in population growth patterns of capuchin monkeys following the protection and subsequent regeneration of native forests. During this same period, we have also intensively studied a subset of the capuchin groups. Comparing these two datasets, we investigate whether the population structures of the closely monitored groups are reliable indicators of area‐wide demographic patterns. We compare the overall group size and the individual age/sex class compositions of study groups and nonstudy groups (i.e., those contacted during area‐wide censuses only). Our study groups contained more individuals overall with a larger proportion of infants, and there were indications that the proportion of adult and subadult males was lower. These differences can be ascribed either to sampling errors or real differences attributable to human presence and/or better habitat quality for the study groups. No other sex/age classes differed, and major demographic changes were simultaneously evident in both study and nonstudy groups. This study suggests that the Santa Rosa capuchin population is similarly impacted by large‐scale ecological patterns observable within our study groups.  相似文献   

14.
    
Aim The oceans harbour a great diversity of organisms whose distribution and ecological preferences are often poorly understood. Species distribution modelling (SDM) could improve our knowledge and inform marine ecosystem management and conservation. Although marine environmental data are available from various sources, there are currently no user‐friendly, high‐resolution global datasets designed for SDM applications. This study aims to fill this gap by assembling a comprehensive, uniform, high‐resolution and readily usable package of global environmental rasters. Location Global, marine. Methods We compiled global coverage data, e.g. satellite‐based and in situ measured data, representing various aspects of the marine environment relevant for species distributions. Rasters were assembled at a resolution of 5 arcmin (c. 9.2 km) and a uniform landmask was applied. The utility of the dataset was evaluated by maximum entropy SDM of the invasive seaweed Codium fragile ssp. fragile. Results We present Bio‐ORACLE (ocean rasters for analysis of climate and environment), a global dataset consisting of 23 geophysical, biotic and climate rasters. This user‐friendly data package for marine species distribution modelling is available for download at http://www.bio‐oracle.ugent.be . The high predictive power of the distribution model of C. fragile ssp. fragile clearly illustrates the potential of the data package for SDM of shallow‐water marine organisms. Main conclusions The availability of this global environmental data package has the potential to stimulate marine SDM. The high predictive success of the presence‐only model of a notorious invasive seaweed shows that the information contained in Bio‐ORACLE can be informative about marine distributions and permits building highly accurate species distribution models.  相似文献   

15.
    
Wild fungi play a critical role in forest ecosystems, and its recollection is a relevant economic activity. Understanding fungal response to climate is necessary in order to predict future fungal production in Mediterranean forests under climate change scenarios. We used a 15‐year data set to model the relationship between climate and epigeous fungal abundance and productivity, for mycorrhizal and saprotrophic guilds in a Mediterranean pine forest. The obtained models were used to predict fungal productivity for the 2021–2080 period by means of regional climate change models. Simple models based on early spring temperature and summer–autumn rainfall could provide accurate estimates for fungal abundance and productivity. Models including rainfall and climatic water balance showed similar results and explanatory power for the analyzed 15‐year period. However, their predictions for the 2021–2080 period diverged. Rainfall‐based models predicted a maintenance of fungal yield, whereas water balance‐based models predicted a steady decrease of fungal productivity under a global warming scenario. Under Mediterranean conditions fungi responded to weather conditions in two distinct periods: early spring and late summer–autumn, suggesting a bimodal pattern of growth. Saprotrophic and mycorrhizal fungi showed differences in the climatic control. Increased atmospheric evaporative demand due to global warming might lead to a drop in fungal yields during the 21st century.  相似文献   

16.
  总被引:2,自引:0,他引:2  
Aim Niche‐based distribution models are often used to predict the spread of invasive species. These models assume niche conservation during invasion, but invasive species can have different requirements from populations in their native range for many reasons, including niche evolution. I used distribution modelling to investigate niche conservatism for the Asian tiger mosquito (Aedes albopictus Skuse) during its invasion of three continents. I also used this approach to predict areas at risk of invasion from propagules originating from invasive populations. Location Models were created for Southeast Asia, North and South America, and Europe. Methods I used maximum entropy (Maxent ) to create distribution models using occurrence data and 18 environmental datasets. One native model was created for Southeast Asia; this model was projected onto North America, South America and Europe. Three models were created independently for the non‐native ranges and projected onto the native range. Niche overlap between native and non‐native predictions was evaluated by comparing probability surfaces between models using real data and random models generated using a permutation approach. Results The native model failed to predict an entire region of occurrences in South America, approximately 20% of occurrences in North America and nearly all Italian occurrences of A. albopictus. Non‐native models poorly predict the native range, but predict additional areas at risk for invasion globally. Niche overlap metrics indicate that non‐native distributions are more similar to the native niche than a random prediction, but they are not equivalent. Multivariate analyses support modelled differences in niche characteristics among continents, and reveal important variables explaining these differences. Main conclusions The niche of A. albopictus has shifted on invaded continents relative to its native range (Southeast Asia). Statistical comparisons reveal that the niche for introduced distributions is not equivalent to the native niche. Furthermore, reciprocal models highlight the importance of controlling bi‐directional dispersal between native and non‐native distributions.  相似文献   

17.
    
The release of any species into a novel environment can evoke transmission of parasites that do not normally parasitize the host as well as potentially introducing new parasites into the environment. Species introductions potentially incur such risks, yet little is currently known about the parasite fauna of introduced primate species over the long term. We describe the results of long‐term monitoring of the intestinal parasite fauna of an unprovisioned, reproducing population of chimpanzees introduced 40 years earlier (1966–1969) onto Rubondo Island in Lake Victoria, Tanzania, a non‐native habitat for chimpanzees. Two parasitological surveys (March 1997–October 1998 and October 2002–December 2005) identified Entamoeba spp. including E. coli, Iodamoeba buetschlii, Troglodytella abrassarti, Chilomastix mesnili, Trichuris sp., Anatrichosoma sp., Strongyloides spp., Strongylida fam. gen. sp., Enterobius anthropopitheci, Subulura sp., Ascarididae gen. sp., and Protospirura muricola. The parasite fauna of the Rubondo chimpanzees is similar to wild chimpanzees living in their natural habitats, but Rubondo chimpanzees have a lower prevalence of strongylids (9%, 3.8%) and a higher prevalence of E. anthropopitheci (8.6%, 17.9%) than reported elsewhere. Species prevalence was similar between our two surveys, with the exception of Strongyloides spp. being higher in the first survey. None of these species are considered to pose a serious health risk to chimpanzees, but continued monitoring of the population and surveys of the parasitic fauna of the two coinhabitant primate species and other animals, natural reservoir hosts of some of the same parasites, is important to better understand the dynamics of host–parasite ecology and potential long‐term implications for chimpanzees introduced into a new habitat. Am. J. Primatol. 72:307–316, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
    
Understanding relationships between environmental conditions and reproductive parameters is important when interpreting variation in animal population size. The northwestern North American population of Golden Eagles Aquila chrysaetos canadensis initiates courtship and nesting in early spring when prey diversity is low and weather conditions are severe. Snowshoe Hare Lepus americanus and Willow Ptarmigan Lagopus lagopus, the primary prey of Golden Eagles early in their nesting season in interior Alaska, both exhibit cyclical fluctuations in abundance, providing the opportunity to investigate such relationships. We used Bayesian hierarchical models to explore variation in territory occupancy, nesting rates, nesting success and productivity of Golden Eagles from 1988 to 2010 in Denali National Park and Preserve, Alaska, in relation to annual and site‐specific parameters including prey abundance, weather conditions, elevation and human activity. We also investigated the long‐term fluctuations of breeding performance over the course of the study. The abundance of Hares influenced both the number of Eagles that laid eggs and the number of Eagles that produced fledglings. The conditions on the breeding ground did not explain observed declines in nesting rates and fledgling production, suggesting that other factors such as change in the age structure of the population, increased intraspecific competition or deterioration of migration and wintering habitat are driving the long‐term trends of these parameters.  相似文献   

19.
    
There is increasing evidence that climate change shifts species distributions towards poles and mountain tops. However, most studies are based on presence–absence data, and either abundance or the observation effort has rarely been measured. In addition, hardly any studies have investigated the direction of shifts and factors affecting them. Here, we show using count data on a 1000 km south–north gradient in Finland, that between 1970–1989 and 2000–2012, 128 bird species shifted their densities, on average, 37 km towards the north north‐east. The species‐specific directions of the shifts in density were significantly explained by migration behaviour and habitat type. Although the temperatures have also moved on average towards the north north‐east (186 km), the species‐specific directions of the shifts in density and temperature did not correlate due to high variation in density shifts. Findings highlight that climate change is unlikely the only driver of the direction of species density shifts, but species‐specific characteristics and human land‐use practices are also influencing the direction. Furthermore, the alarming results show that former climatic conditions in the north‐west corner of Finland have already moved out of the country. This highlights the need for an international approach in research and conservation actions to mitigate the impacts of climate change.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号