首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
Land‐cover and climate change are two main drivers of changes in species ranges. Yet, the majority of studies investigating the impacts of global change on biodiversity focus on one global change driver and usually use simulations to project biodiversity responses to future conditions. We conduct an empirical test of the relative and combined effects of land‐cover and climate change on species occurrence changes. Specifically, we examine whether observed local colonization and extinctions of North American birds between 1981–1985 and 2001–2005 are correlated with land‐cover and climate change and whether bird life history and ecological traits explain interspecific variation in observed occurrence changes. We fit logistic regression models to test the impact of physical land‐cover change, changes in net primary productivity, winter precipitation, mean summer temperature, and mean winter temperature on the probability of Ontario breeding bird local colonization and extinction. Models with climate change, land‐cover change, and the combination of these two drivers were the top ranked models of local colonization for 30%, 27%, and 29% of species, respectively. Conversely, models with climate change, land‐cover change, and the combination of these two drivers were the top ranked models of local extinction for 61%, 7%, and 9% of species, respectively. The quantitative impacts of land‐cover and climate change variables also vary among bird species. We then fit linear regression models to test whether the variation in regional colonization and extinction rate could be explained by mean body mass, migratory strategy, and habitat preference of birds. Overall, species traits were weakly correlated with heterogeneity in species occurrence changes. We provide empirical evidence showing that land‐cover change, climate change, and the combination of multiple global change drivers can differentially explain observed species local colonization and extinction.  相似文献   

2.
Climate change has been shown to cause poleward range shifts of species. These shifts are typically demonstrated using presence–absence data, which can mask the potential changes in the abundance of species. Moreover, changes in the mean centre of weighted density of species are seldom examined, and comparisons between these two methods are even rarer. Here, we studied the change in the mean weighted latitude of density (MWLD) of 94 bird species in Finland, northern Europe, using data covering a north–south gradient of over 1000 km from the 1970s to the 2010s. The MWLD shifted northward on average 1.26 km yr?1, and this shift was significantly stronger in northern species compared to southern species. These shifts can be related to climate warming during the study period, because the annual temperature had increased more in northern Finland (by 1.7 °C) than in southern Finland (by 1.4 °C), although direct causal links cannot be shown. Density shifts of species distributed over the whole country did not differ from shifts in species situated on the edge of the species range in southern and northern species. This means that density shifts occur both in the core and on the edge of species distribution. The species‐specific comparison of MWLD values with corresponding changes in the mean weighted latitude using presence–absence atlas data (MWL) revealed that the MWLD moved more slowly than the MWL in the atlas data in the southern species examined, but more rapidly in the northern species. Our findings highlight that population densities are also moving rapidly towards the poles and the use of presence–absence data can mask the shift of population densities. We encourage use of abundance data in studies considering the effects of climate change on biodiversity.  相似文献   

3.
There is increasing evidence that climate change shifts species distributions towards poles and mountain tops. However, most studies are based on presence–absence data, and either abundance or the observation effort has rarely been measured. In addition, hardly any studies have investigated the direction of shifts and factors affecting them. Here, we show using count data on a 1000 km south–north gradient in Finland, that between 1970–1989 and 2000–2012, 128 bird species shifted their densities, on average, 37 km towards the north north‐east. The species‐specific directions of the shifts in density were significantly explained by migration behaviour and habitat type. Although the temperatures have also moved on average towards the north north‐east (186 km), the species‐specific directions of the shifts in density and temperature did not correlate due to high variation in density shifts. Findings highlight that climate change is unlikely the only driver of the direction of species density shifts, but species‐specific characteristics and human land‐use practices are also influencing the direction. Furthermore, the alarming results show that former climatic conditions in the north‐west corner of Finland have already moved out of the country. This highlights the need for an international approach in research and conservation actions to mitigate the impacts of climate change.  相似文献   

4.
1. Climate change could be one of the main threats faced by aquatic ecosystems and freshwater biodiversity. Improved understanding, monitoring and forecasting of its effects are thus crucial for researchers, policy makers and biodiversity managers. 2. Here, we provide a review and some meta‐analyses of the literature reporting both observed and predicted climate‐induced effects on the distribution of freshwater fish. After reviewing three decades of research, we summarise how methods in assessing the effects of climate change have evolved, and whether current knowledge is geographically or taxonomically biased. We conducted multispecies qualitative and quantitative analyses to find out whether the observed responses of freshwater fish to recent changes in climate are consistent with those predicted under future climate scenarios. 3. We highlight the fact that, in recent years, freshwater fish distributions have already been affected by contemporary climate change in ways consistent with anticipated responses under future climate change scenarios: the range of most cold‐water species could be reduced or shift to higher altitude or latitude, whereas that of cool‐ and warm‐water species could expand or contract. 4. Most evidence about the effects of climate change is underpinned by the large number of studies devoted to cold‐water fish species (mainly salmonids). Our knowledge is still incomplete, however, particularly due to taxonomic and geographic biases. 5. Observed and expected responses are well correlated among families, suggesting that model predictions are supported by empirical evidence. The observed effects are of greater magnitude and show higher variability than the predicted effects, however, indicating that other drivers of changes may be interacting with climate and seriously affecting freshwater fish. 6. Finally, we suggest avenues of research required to address current gaps in what we know about the climate‐induced effects on freshwater fish distribution, including (i) the need for more long‐term data analyses, (ii) the assessment of climate‐induced effects at higher levels of organisation (e.g. assemblages), (iii) methodological improvements (e.g. accounting for uncertainty among projections and species’ dispersal abilities, combining both distributional and empirical approaches and including multiple non‐climatic stressors) and (iv) systematic confrontation of observed versus predicted effects across multi‐species assemblages and at several levels of biological organisation (i.e. populations and assemblages).  相似文献   

5.
Climate change is expected to influence the viability of populations both directly and indirectly, via species interactions. The effects of large‐scale climate change are also likely to interact with local habitat conditions. Management actions designed to preserve threatened species therefore need to adapt both to the prevailing climate and local conditions. Yet, few studies have separated the direct and indirect effects of climatic variables on the viability of local populations and discussed the implications for optimal management. We used 30 years of demographic data to estimate the simultaneous effects of management practice and among‐year variation in four climatic variables on individual survival, growth and fecundity in one coastal and one inland population of the perennial orchid Dactylorhiza lapponica in Norway. Current management, mowing, is expected to reduce competitive interactions. Statistical models of how climate and management practice influenced vital rates were incorporated into matrix population models to quantify effects on population growth rate. Effects of climate differed between mown and control plots in both populations. In particular, population growth rate increased more strongly with summer temperature in mown plots than in control plots. Population growth rate declined with spring temperature in the inland population, and with precipitation in the coastal population, and the decline was stronger in control plots in both populations. These results illustrate that both direct and indirect effects of climate change are important for population viability and that net effects depend both on local abiotic conditions and on biotic conditions in terms of management practice and intensity of competition. The results also show that effects of management practices influencing competitive interactions can strongly depend on climatic factors. We conclude that interactions between climate and management should be considered to reliably predict future population viability and optimize conservation actions.  相似文献   

6.
Aquatic species living in running waters are widely acknowledged to be vulnerable to climate‐induced, thermal and hydrological fluctuations. Climate changes can interact with other environmental changes to determine structural and functional attributes of communities. Although such complex interactions are most likely to occur in a multiple‐stressor context as frequently encountered in large rivers, they have received little attention in such ecosystems. In this study, we aimed at specifically addressing the issue of relative long‐term effects of global and local changes on benthic macroinvertebrate communities in multistressed large rivers. We assessed effects of hydroclimatic vs. water quality factors on invertebrate community structure and composition over 30 years (1979–2008) in the Middle Loire River, France. As observed in other large European rivers, water warming over the three decades (+0.9 °C between 1979–1988 and 1999–2008) and to a lesser extent discharge reduction (?80 m3 s?1) were significantly involved in the disappearance or decrease in taxa typical from fast running, cold waters (e.g. Chloroperlidae and Potamanthidae). They explained also a major part of the appearance and increase of taxa typical from slow flowing or standing waters and warmer temperatures, including invasive species (e.g. Corbicula sp. and Atyaephyra desmarestii). However, this shift towards a generalist and pollution tolerant assemblage was partially confounded by local improvement in water quality (i.e. phosphate input reduction by about two thirds and eutrophication limitation by almost one half), explaining a significant part of the settlement of new pollution‐sensitive taxa (e.g. the caddisfly Brachycentridae and Philopotamidae families) during the last years of the study period. The regain in such taxa allowed maintaining a certain level of specialization in the invertebrate community despite climate change effects.  相似文献   

7.
A synthesis of a long‐term (19 years) study assessing the effects of cattle grazing on the structure and composition of a Mediterranean grassland in north‐eastern Israel is presented, with new insights into the response of the vegetation to grazing management and rainfall. We hypothesized that the plant community studied would be resistant to high grazing intensities and rainfall variability considering the combined long history of land‐use and unpredictable climatic conditions where this community evolved. Treatments included manipulations of stocking densities (moderate, heavy, and very heavy) and of grazing regimes (continuous vs. seasonal), in a factorial design. The effect of interannual rainfall variation on the expression of grazing impacts on the plant community was minor. The main effects of grazing on relative cover of plant functional groups were related to early vs. late seasonal grazing. Species diversity and equitability were remarkably stable across all grazing treatments. A reduction in tall grass cover at higher stocking densities was correlated with increased cover of less palatable groups such as annual and perennial thistles, as well as shorter and prostrate groups such as short annual grasses. This long‐term study shows that interannual fluctuations in plant functional group composition could be partly accounted for by grazing pressure and timing, but not by the measured rainfall variables. Grazing affected the dominance of tall annual grasses. However, the persistence of tall grasses and more palatable species over time, despite large differences in grazing pressure and timing, supports the idea that Mediterranean grasslands are highly resistant to prolonged grazing. Indeed, even under the most extreme grazing conditions applied, there were no signs of deterioration or collapse of the ecosystem. This high resistance to grazing intensity and interannual fluctuation in climatic conditions should favor the persistence of the plant community under forecasted increasing unpredictability due to climate change.  相似文献   

8.
1. With a modified version of the lake model BELAMO, we were able to describe the essential features of the dynamics of nutrients, dissolved oxygen, phyto‐ and zooplankton in three lakes of different trophic status over periods of 19–30 years, with essentially the same model parameters for all three lakes. This is remarkable, as the measured nutrient inputs decreased considerably during the simulated time period. 2. Despite having done this before for a period of 4 years with an earlier version of the model, a considerable effort was required that led to a series of model modifications without which the data could not be matched. This demonstrates that long‐term calibration of a model that combines processes in the water column with mineralisation in the sediment can be difficult. 3. Due to the necessarily simplified processes within the model, there is a bias in its output. We applied a recently developed technique for model calibration and uncertainty analysis to address bias and multiple calibration criteria. To account for the demanding long‐term simulations, a simplified numerical implementation of this technique was used. 4. Our results demonstrate good understanding of the chemical state of the lake during the calibration period but less of the biological variables. The credibility intervals used to visualise this knowledge widen substantially during the prediction period (consisting of the last 10 years of the simulation). 5. The joint calibration of the model with long‐term data from lakes of different trophic status is possible but only with considerable prediction uncertainty. Due to the explicit consideration of bias in our calibration technique, we are able to estimate quantitatively the uncertainty of our knowledge about chemical and biological variables in the lake.  相似文献   

9.
Mountain regions are globally important areas for biodiversity but are subject to multiple human‐induced threats, including climate change, which has been more severe at higher elevations. We reviewed evidence for impacts of climate change on Holarctic mountain bird populations in terms of physiology, phenology, trophic interactions, demography and observed and projected distribution shifts, including effects of other factors that interact with climate change. We developed an objective classification of high‐elevation, mountain specialist and generalist species, based on the proportion of their breeding range occurring in mountain regions. Our review found evidence of responses of mountain bird populations to climate (extreme weather events, temperature, rainfall and snow) and environmental (i.e. land use) change, but we know little about either the underlying mechanisms or the synergistic effects of climate and land use. Long‐term studies assessing reproductive success or survival of mountain birds in relation to climate change were rare. Few studies have considered shifts in elevational distribution over time and a meta‐analysis did not find a consistent direction in elevation change. A meta‐analysis carried out on future projections of distribution shifts suggested that birds whose breeding distributions are largely restricted to mountains are likely to be more negatively impacted than other species. Adaptation responses to climate change rely mostly on managing and extending current protected areas for both species already present, and for expected colonizing species that are losing habitat and climate space at lower elevation. However, developing effective management actions requires an improvement in the current knowledge of mountain species ecology, in the quality of climate data and in understanding the role of interacting factors. Furthermore, the evidence was mostly based on widespread species rather than mountain specialists. Scientists should provide valuable tools to assess the status of mountain birds, for example through the development of a mountain bird population index, and policy‐makers should influence legislation to develop efficient agri‐environment schemes and forestry practices for mountain birds, as well as to regulate leisure activities at higher elevations.  相似文献   

10.
Boom‐bust dynamics – the rise of a population to outbreak levels, followed by a dramatic decline – have been associated with biological invasions and offered as a reason not to manage troublesome invaders. However, boom‐bust dynamics rarely have been critically defined, analyzed, or interpreted. Here, we define boom‐bust dynamics and provide specific suggestions for improving the application of the boom‐bust concept. Boom‐bust dynamics can arise from many causes, some closely associated with invasions, but others occurring across a wide range of ecological settings, especially when environmental conditions are changing rapidly. As a result, it is difficult to infer cause or predict future trajectories merely by observing the dynamic. We use tests with simulated data to show that a common metric for detecting and describing boom‐bust dynamics, decline from an observed peak to a subsequent trough, tends to severely overestimate the frequency and severity of busts, and should be used cautiously if at all. We review and test other metrics that are better suited to describe boom‐bust dynamics. Understanding the frequency and importance of boom‐bust dynamics requires empirical studies of large, representative, long‐term data sets that use clear definitions of boom‐bust, appropriate analytical methods, and careful interpretations.  相似文献   

11.
High mountain ecosystems are defined by low temperatures and are therefore considered to react sensitively to climate warming. Responding to observed changes in plant species richness on high peaks of the European Alps, an extensive setup of 1 m × 1 m permanent plots was established at the alpine‐nival ecotone (between 2900 and 3450 m) on Mount Schrankogel, a GLORIA master site in the central Tyrolean Alps, Austria, in 1994. Recording was repeated in a representative selection of 362 quadrats in 2004. Ten years after the first recording, we observed an average change in vascular plant species richness from 11.4 to 12.7 species per plot, an increase of 11.8% (or of at least 10.6% at a 95% confidence level). The increase in species richness involved 23 species (about 43% of all taxa found at the ecotone), comprising both alpine and nival species and was pronouncedly higher in plots with subnival/nival vegetation than in plots with alpine grassland vegetation. Only three species showed a decrease in plot occupancy: one was an annual species, one was rare, and one a common nival plant that decreased in one part of the area but increased in the uppermost part. Species cover changed in relation to altitudinal preferences of species, showing significant declines of all subnival to nival plants, whereas alpine pioneer species increased in cover. Recent climate warming in the Alps, which has been twice as high as the global average, is considered to be the primary driver of the observed differential changes in species cover. Our results indicate an ongoing range contraction of subnival to nival species at their rear (i.e. lower) edge and a concurrent expansion of alpine pioneer species at their leading edge. Although this was expected from predictive distribution models and different temperature‐related habitat preferences of alpine and nival species, we provide first evidence on – most likely – warming‐induced species declines in the high European Alps. The projected acceleration of climate warming raises concerns that this phenomenon could become the major threat to biodiversity in high mountains.  相似文献   

12.
13.
In the face of global climate change, organisms may respond to temperature increases by shifting their ranges poleward or to higher altitudes. However, the direction of range shifts in riverine systems is less clear. Because rivers are dendritic networks, there is only one dispersal route from any given location to another. Thus, range shifts are only possible if branches are connected by suitable habitat, and stream‐dwelling organisms can disperse through these branches. We used Cumberlandia monodonta (Bivalvia: Unionoida: Margaritiferidae) as a model species to investigate the effects of climate change on population connectivity because a majority of contemporary populations are panmictic. We combined ecological niche models (ENMs) with population genetic simulations to investigate the effects of climate change on population connectivity and genetic diversity of C. monodonta. The ENMs were constructed using bioclimatic and landscape data to project shifts in suitable habitat under future climate scenarios. We then used forward‐time simulations to project potential changes in genetic diversity and population connectivity based on these range shifts. ENM results under current conditions indicated long stretches of highly suitable habitat in rivers where C. monodonta persists; populations in the upper Mississippi River remain connected by suitable habitat that does not impede gene flow. Future climate scenarios projected northward and headwater‐ward range contraction and drastic declines in habitat suitability for most extant populations throughout the Mississippi River Basin. Simulations indicated that climate change would greatly reduce genetic diversity and connectivity across populations. Results suggest that a single, large population of C. monodonta will become further fragmented into smaller populations, each of which will be isolated and begin to differentiate genetically. Because C. monodonta is a widely distributed species and purely aquatic, our results suggest that persistence and connectivity of stream‐dwelling organisms will be significantly altered in response to future climate change.  相似文献   

14.
Assessing the potential future of current forest stands is a key to design conservation strategies and understanding potential future impacts to ecosystem service supplies. This is particularly true in the Mediterranean basin, where important future climatic changes are expected. Here, we assess and compare two commonly used modeling approaches (niche‐ and process‐based models) to project the future of current stands of three forest species with contrasting distributions, using regionalized climate for continental Spain. Results highlight variability in model ability to estimate current distributions, and the inherent large uncertainty involved in making projections into the future. CO2 fertilization through projected increased atmospheric CO2 concentrations is shown to increase forest productivity in the mechanistic process‐based model (despite increased drought stress) by up to three times that of the non‐CO2 fertilization scenario by the period 2050–2080, which is in stark contrast to projections of reduced habitat suitability from the niche‐based models by the same period. This highlights the importance of introducing aspects of plant biogeochemistry into current niche‐based models for a realistic projection of future species distributions. We conclude that the future of current Mediterranean forest stands is highly uncertain and suggest that a new synergy between niche‐ and process‐based models is urgently needed in order to improve our predictive ability.  相似文献   

15.
Aim The funnelweb spider Macrothele calpeiana is endemic to the southern half of the Iberian Peninsula, but recent occurrence records from localities in Spain, North Africa and other regions of Europe, which are distant from its native populations, suggest human‐mediated dispersal, probably associated with the commercial export of olive trees. The main goal of this study was to assess the environmental suitability of these new records and to discuss the spider’s potential to become an invasive species, mainly in new regions across Central Europe and the Mediterranean Basin. Location Central Europe, Mediterranean Basin. Methods Using presence points from the Iberian native populations of M. calpeiana and a set of climatic variables, four presence‐only algorithms (BIOCLIM, DOMAIN, GARP and Maxent) were applied to model the potential distribution of the spider. The models were transferred to Central Europe and the Mediterranean Basin, and the locations of the new records in both the occupied and potential environmental spaces were screened. Results The four models were generally congruent in predicting the existence of a suitable climate for the species across the Mediterranean Basin, although BIOCLIM and DOMAIN yielded more constrained predictions than GARP and Maxent. Whereas the new records from Central Europe were located far from the occupied and potential climatic spaces, those from the Iberian Peninsula were not. Main conclusions Climatic suitability together with propagule pressure owing to human activities will certainly enhance the opportunities for M. calpeiana to colonize new areas across the Mediterranean Basin. The species has invaded areas beyond its native range, and those new locations located in the Iberian Peninsula and North Africa show environmental suitability for the spider and deserve long‐term monitoring. Although the new locations in Central Europe were not predicted by the climate models and the persistence of the species seems improbable, the possibility of rapid evolution or phenotypic plasticity processes raises the need for caution over the possibility of a future spread of M. calpeiana across Europe. Stronger controls over the transport of trees must be applied, and further studies on the ecology of the spider are imperative to assess the possible impact on the invaded ecosystems.  相似文献   

16.
17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号