首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many mammal species are declining in parts of Australia's tropical savannas, for reasons that are not yet well defined. A recent paper (Fisher et al., 2014, Global Ecology and Biogeography, 23 , 181–190) suggested that the primary cause is predation by feral cats, with the main evidence presented being a purported over‐representation of small species amongst the marsupials that have contracted in range (‘small body size signifies high current extinction risk’). However, a review here of the information presented in that paper shows that no marsupial species smaller than 100 g has shown range contraction in northern Australia, and that most (15 of 17) declines are of species in the ‘critical weight range’ (35 g to 5.5 kg).  相似文献   

2.
Understanding mechanisms underlying fire regime effects on savanna fauna is difficult because of a wide range of possible trophic interactions and feedbacks. Yet, understanding mechanisms underlying fauna dynamics is crucial for conservation management of threatened species. Small savanna mammals in northern Australia are currently undergoing widespread declines and regional extinctions partly attributable to fire regimes. This study investigates mammal trophic and ecosystem responses to fire in order to identify possible mechanisms underlying these declines. Mammal trophic responses to fire were investigated by surveying mammal abundance, mammal diet, vegetation structure and non‐mammal fauna dynamics in savannas six times at eight sites over a period of 3 years. Known site‐specific fire history was used to test for trophic responses to post‐fire interval and fire frequency. Mammal and non‐mammal fauna showed only minor responses of post‐fire interval and no effect of fire frequency. Lack of fauna responses differed from large post‐fire vegetation responses. Dietary analysis showed that two mammal species, Dasyurus hallucatus and Isoodon auratus, increased their intake of large prey groups in recently burnt, compared to longer unburnt vegetation. This suggests a fire‐related change in trophic interactions among predators and their prey, after removal of ground‐layer vegetation. No evidence was found for other changes in food resource uptake by mammals after fire. These data provide support for a fire‐related top‐down ecosystem response among savanna mammals, rather than a bottom‐up resource limitation response. Future studies need to investigate fire responses among other predators, including introduced cats and dingoes, to determine their roles in fire‐related mammal declines in savannas of northern Australia.  相似文献   

3.
The density and abundance of arid-dwelling taxa often change significantly in response to precipitation fluctuations and the abundance of their predators. The survival and density of burrowing arthropods and their burrows in arid environments following prolonged dry periods and subsequent rains is poorly understood, as is the potential influence of reintroductions of their predators, such as fossorial mammals. The persistence of these arthropods and their burrows may be important for other species that rely on them for food or use their burrows for shelter. In this study, we examined the density of burrowing and ground-nesting arthropods and their burrows in Australia's Strzelecki Desert over two years between 2019 and 2021. This period spanned the tail-end of the worst drought on record and subsequent drought-breaking rains. We employed a Before-After Control-Impact (BACI) study design to examine the short-term effects of a fossorial mammal reintroduction of the greater bilby (Macrotis lagotis) into predator-free fenced exclosures and used an inspection camera to detect the presence of spiders and other taxa within individually marked burrows. We observed the largest changes in arthropod abundance and burrow density between a period that encompassed a third consecutive summer in drought and the commencement of drought-breaking rains, with some taxa declining by as much as 77% (p < 0.001). While the density of harvester ant middens erupted over this time, the density of tarantulas, trapdoor spiders and scorpions declined significantly. The greater bilby reintroduction had no short-term effect on the densities of the arthropods or their burrows, but their arrival may have implications on their post-drought recovery. Further studies are needed to determine if the significant declines in arthropod populations and burrows are reflective of normal boom-bust population dynamics due to the poor natural history knowledge of the arthropods we examined.  相似文献   

4.
Secondary seed dispersal by ants (myrmecochory) is an important process in semi‐arid environments where seeds are transported from the soil surface to an ant nest. Microsites from which ants often remove seeds are the small pits and depressions made by native and exotic animals that forage in the soil. Previous studies have demonstrated greater seed retention in the pits of native than exotic animals, but little is known about how biotic factors such as secondary seed dispersal by ants affect seed removal and therefore retention in these foraging pits. We used an experimental approach to examine how the morphology of burrowing bettong (Bettongia lesueur), greater bilby (Macrotis lagotis), short‐beaked echidna (Tachyglossus aculeatus) and European rabbit (Oryctolagus cuniculus) foraging pits and ant body size influenced ant locomotion and seed removal from pits along an aridity gradient. Ants took 3.7‐times longer to emerge from echidna pits (19.6 s) and six‐times longer to emerge from bettong pits (30.5 s) than from rabbit pits (5.2 s), resulting in lower seed removal from bettong pits than other pit types. Fewer seeds were removed from pits when cages were used to exclude large body‐sized (>2 mm) ants. Few seeds were removed from the pits or surface up to aridity values of 0.5 (humid and dry sub‐humid), but removal increased rapidly in semi‐arid and arid zones. Our study demonstrates that mammal foraging pit morphology significantly affects ant locomotion, the ability of ants to retrieve seeds, and therefore the likelihood that seeds will be retained within foraging pits.  相似文献   

5.
In mammalian pregnancy, the uterus is remodeled to become receptive to embryonic implantation. Since non‐invasive placentation in marsupials is likely derived from invasive placentation, and is underpinned by intra‐uterine conflict between mother and embryo, species with non‐invasive placentation may employ a variety of molecular mechanisms to maintain an intact uterine epithelium and to prevent embryonic invasion. Identifying such modifications to the uterine epithelium of marsupial species with non‐invasive placentation is key to understanding how conflict is mediated during pregnancy in different mammalian groups. Desmoglein‐2, involved in maintaining lateral cell–cell adhesion of the uterine epithelium, is redistributed before implantation to facilitate embryo invasion in mammals with invasive placentation. We identified localization patterns of this cell adhesion molecule throughout pregnancy in two marsupial species with non‐invasive placentation, the tammar wallaby (Macropus eugenii; Macropodidae), and the brushtail possum (Trichosurus vulpecula; Phalangeridae). Interestingly, Desmoglein‐2 redistribution also occurs in both M. eugenii and T. vulpecula, suggesting that cell adhesion, and thus integrity of the uterine epithelium, is reduced during implantation regardless of placental type, and may be an important component of uterine remodeling. Desmoglein‐2 also localizes to the mesenchymal stromal cells of M. eugenii and to epithelial cell nuclei in T. vulpecula, suggesting its involvement in cellular processes that are independent of adhesion and may compensate for reduced lateral adhesion in the uterine epithelium. We conclude that non‐invasive placentation in marsupials involves diverse and complementary strategies to maintain an intact epithelial barrier.  相似文献   

6.
Aim Fire affects the structure and dynamics of ecosystems world‐wide, over long time periods (decades and centuries) and at large spatial scales (landscapes and regions). A pressing challenge for ecologists is to develop models that explain and predict faunal responses to fire at broad temporal and spatial scales. We used a 105‐year post‐fire chronosequence to investigate small mammal responses to fire across an extensive area of ‘tree mallee’ (i.e. vegetation characterized by small multi‐stemmed eucalypts). Location The Murray Mallee region (104,000 km²) of semi‐arid Australia. Methods First, we surveyed small mammals at 260 sites and explored the fire responses of four species using nonlinear regression models. Second, we assessed the predictive accuracy of models using cross‐validation and by testing with independent data. Third, we examined our results in relation to an influential model of animal succession, the habitat accommodation model. Results Two of four study species showed a clear response to fire history. The distribution of the Mallee Ningaui Ningaui yvonneae, a carnivorous marsupial, was strongly associated with mature vegetation characterized by its cover of hummock grass. The occurrence of breeding females was predicted to increase up to 40–105 years post‐fire, highlighting the extensive time periods over which small mammal populations may be affected by fire. Evaluation of models for N. yvonneae demonstrated that accurate predictions of species occurrence can be made from fire history and vegetation data, across large geographical areas. The introduced House Mouse Mus domesticus was the only species positively associated with recently burnt vegetation. Main conclusions Understanding the impact of fire over long time periods will benefit ecological and conservation management. In this example, tracts of long‐unburnt mallee vegetation were identified as important habitat for a fire‐sensitive native mammal. Small mammal responses to fire can be predicted accurately at broad spatial scales; however, a conceptual model of post‐fire change in community structure developed in temperate Australia is not, on its own, sufficient for small mammals in semi‐arid systems.  相似文献   

7.
Australia has contributed a disproportionate number of the world's mammal extinctions over the past 200 years, with the greatest loss of species occurring through the continent's southern and central arid regions. Many taxonomically and ecologically similar species are now undergoing widespread decline across the northern Australian mainland, possibly driven by predation by feral cats and changed fire regimes. Here, we report marked recent declines of native mammal species in one of Australia's few remaining areas that support an intact mammal assemblage, Melville Island, the largest island off the northern Australian coast. We have previously reported a marked decline on Melville Island of the threatened brush‐tailed rabbit‐rat (Conilurus penicillatus) over the period 2000–2015, linked to predation by feral cats. We now report a 62% reduction in small mammal trap‐success and a 36% reduction in site‐level species richness over this period. There was a decrease in trap‐success of 90% for the northern brown bandicoot (Isoodon macrourus), 64% for the brush‐tailed rabbit‐rat and 63% for the black‐footed tree‐rat (Mesembriomys gouldii), but no decline for the common brushtail possum (Trichosurus vulpecula). These results suggest that populations of native mammals on Melville Island are exhibiting similar patterns of decline to those recorded in Kakadu National Park two decades earlier, and across the northern Australian mainland more generally. Without the implementation of effective management actions, these species are likely to be lost from one of their last remaining strongholds, threatening to increase Australia's already disproportionate contribution to global mammal extinctions.  相似文献   

8.
Fire and seral vegetation succession are known to influence the distribution and abundance of a wide range of arid and semi‐arid mammal species. In Triodia hummock grasslands, the gradual increase in Triodia cover after fire is a significant factor influencing mammal distribution and abundance. However, the height of fire‐adapted hummock grass species is often ignored during habitat preference studies despite the fact that taller hummocks are likely to have improved insulation properties and greater protection from predators. We tested the relative importance of a range of Triodia habitat characteristics in determining the distribution and abundance of a fire‐adapted mammal inhabiting Triodia mallee dune fields in semi‐arid Australia. We sampled 77 sites and collected information on habitat attributes including Triodia cover, height and time since fire. The 90th percentile Triodia height (>400 mm) was the most reliable predictor of sandhill dunnart abundance, and breeding, inferred through the presence of subadults. The presence of adult sandhill dunnarts was best explained by Triodia cover, increasing when cover exceeded 25%. We suggest that while Triodia cover may be an important variable for predicting the presence of adult sandhill dunnarts, the height of Triodia is important for breeding, when tall Triodia are possibly sought for nesting sites. These Triodia height and cover requirements were not recorded at sites until at least 10 years post fire but the relationship between fire and Triodia cover and height was inconsistent; after 20 years Triodia cover declined with increasing fire age while the 90th percentile Triodia height remained relatively constant. This incongruence may explain why the presence of sandhill dunnarts appears more constrained by a minimum rather than maximum time since fire and could help explain patterns of post‐fire distribution in other arid zone mammals. Importantly, the 90th percentile Triodia height highlighted the possible significance of scattered, tall Triodia hummocks for arid zone fossorial mammals.  相似文献   

9.
Australian arid zone mammal species within the Critical Weight Range (CWR) of 35 g–5.5 kg have suffered disproportionately in the global epidemic of contemporary faunal extinctions. CWR extinctions have been attributed largely to the effects of introduced or invasive mammals; however, the impact of these threatening processes on smaller mammals and reptiles is less clear. The change in small mammal and reptile assemblages after the removal of rabbits, cats and foxes was studied over a 6‐year period in a landscape‐scale exclosure in the Australian arid zone. Rodents, particularly Notomys alexis and Pseudomys bolami, increased to 15 times higher inside the feral‐proof Arid Recovery Reserve compared with outside sites, where rabbits, cats and foxes were still present. Predation by cats was thought to exert the greatest influence on rodent numbers owing to the maintenance of the disparity in rodent responses through dry years and the differences in dietary preferences between rabbits and P. bolami. The presence of introduced Mus domesticus or medium‐sized re‐introduced mammal species did not significantly affect resident small mammal or reptile abundance. Abundance of most dasyurids and small lizards did not change significantly after the removal of feral animals although reductions in gecko populations inside the reserve may be attributable to second order trophic interactions or subtle changes in vegetation structure and cover. This study suggests that populations of rodent species in northern South Australia below the CWR may also be significantly affected by introduced cats, foxes and/or rabbits and that a taxa specific model of Australian mammal decline may be more accurate than one based on body weight.  相似文献   

10.
Abstract:  The known sample of the important pretribosphenic mammal Peramus tenuirostris, housed in the Natural History Museum (London, UK), was imaged using micro‐computed tomography (CT). Substantial morphological diversity was discovered, prompting establishment (and resurrection) of additional taxa from within the existing hypodigm of Peramus tenuirostris: Peramus dubius comb. nov., Kouriogenys minor gen. nov. and Peramuroides tenuiscus gen. et sp. nov. The Peramura are revised; this group is restricted to taxa with clear evidence of a fully functional upper molar embrasure for the dominant lower molar talonid cusp (hypoconid), either through development of wear facet 4 or through differentiation of a distinct hypoconulid. The Peramura are the most likely sister taxon to the Tribosphenida (including living marsupials and placentals) and represent a distinct molar morphotype, transitional between primitive lineages characterized by dominant orthal shear (e.g. dryolestoids) and those with modern, multi‐functional tribospheny. A very large masseteric foramen is identified in peramurans, but this feature appears to be autapomorphic and of uncertain function.  相似文献   

11.
The subfamily Uromastycinae within the Agamidae is comprised of 18 species: three within the genus Saara and 15 within Uromastyx. Uromastyx is distributed in the desert areas of North Africa and across the Arabian Peninsula towards Iran. The systematics of this genus has been previously revised, although incomplete taxonomic sampling or weakly supported topologies resulted in inconclusive relationships. Biogeographic assessments of Uromastycinae mostly agree on the direction of dispersal from Asia to Africa, although the timeframe of the cladogenesis events has never been fully explored. In this study, we analysed 129 Uromastyx specimens from across the entire distribution range of the genus. We included all but one of the recognized taxa of the genus and sequenced them for three mitochondrial and three nuclear markers. This enabled us to obtain a comprehensive multilocus time‐calibrated phylogeny of the genus, using the concatenated data and species trees. We also applied coalescent‐based species delimitation methods, phylogenetic network analyses and model‐testing approaches to biogeographic inferences. Our results revealed Uromastyx as a monophyletic genus comprised of five groups and 14 independently evolving lineages, corresponding to the 14 currently recognized species sampled. The onset of Uromastyx diversification is estimated to have occurred in south‐west Asia during the Middle Miocene with a later radiation in North Africa. During its Saharo‐Arabian colonization, Uromastyx underwent multiple vicariance and dispersal events, hypothesized to be derived from tectonic movements and habitat fragmentation due to the active continental separation of Arabia from Africa and the expansion and contraction of arid areas in the region.  相似文献   

12.
Geographic body‐size variation characterises many mammal species. Hypotheses centring around heat conservation, heat dissipation, primary productivity and seasonality have been advanced to explain geographic body‐size patterns. However, identification of the primary body‐size drivers has often been hampered by a paucity of data for broadly distributed species and the application of regression models that have not explicitly accounted for the spatial clustering inherent in such datasets. We used Australia's most widespread marsupial, the common brushtail possum Trichosurus vulpecula, as a model species with which to test five proposed drivers of geographic body‐size variation. Using geo‐referenced skull measurements from 588 specimens and a suite of putative environmental covariates, we employed spatial simultaneous autoregressive models, together with information criteria, to evaluate these different hypotheses. Our analysis identified a strong, positive relationship between possum body size and primary productivity during the least productive season, whereas the relationship with mean annual productivity received less support. Consistent with the heat‐dissipation hypothesis, T. vulpecula body size also decreased with increasing mean summer maximum temperature. Spatial autoregression coefficients estimated from the simultaneous autoregressive models were always high, suggesting that additional abiotic or biotic factors might contribute to the spatial patterns observed. We argue that the analysis of geographic body‐size variation should consider multi‐causal possibilities rather than treating the numerous hypotheses as competing, mutually exclusive alternatives.  相似文献   

13.
《Systematic Entomology》2018,43(1):200-217
Cold‐adapted species are expected to have reached their largest distribution range during a part of the Ice Ages whereas postglacial warming has led to their range contracting toward high‐latitude and high‐altitude areas. This has resulted in an extant allopatric distribution of populations and possibly to trait differentiations (selected or not) or even speciation. Assessing inter‐refugium differentiation or speciation remains challenging for such organisms because of sampling difficulties (several allopatric populations) and disagreements on species concept. In the present study, we assessed postglacial inter‐refugia differentiation and potential speciation among populations of one of the most common arcto‐alpine bumblebee species in European mountains, Bombus monticola Smith, 1849. Based on mitochondrial DNA/nuclear DNA markers and eco‐chemical traits, we performed integrative taxonomic analysis to evaluate alternative species delimitation hypotheses and to assess geographical differentiation between interglacial refugia and speciation in arcto‐alpine species. Our results show that trait differentiations occurred between most Southern European mountains (i.e. Alps, Balkan, Pyrenees, and Apennines) and Arctic regions. We suggest that the monticola complex actually includes three species: B. konradini   stat.n. status distributed in Italy (Central Apennine mountains), B. monticola with five subspecies, including B. monticola mathildis   ssp.n. distributed in the North Apennine mountains ; and B. lapponicus . Our results support the hypothesis that post‐Ice Age periods can lead to speciation in cold‐adapted species through distribution range contraction. We underline the importance of an integrative taxonomic approach for rigorous species delimitation, and for evolutionary study and conservation of taxonomically challenging taxa.  相似文献   

14.

Aim

With the exception of South Africa there are no systematic, long‐term, large‐scale bird monitoring programmes in Africa, and for much of the continent the most comprehensive available data for most species are incidental occurrence records. Can such data be used to assess range‐wide conservation status of widespread low‐density species? We examine this using Kori Bustard Ardeotis kori, a large, easily identifiable species with an extensive African range.

Location

Southern and East Africa, 14 countries.

Methods

A comprehensive and systematic review of published and unpublished sources provided 1948 unique locality records spanning the years 1863–2009; these included 410 non‐atlas records and 97 historical (pre‐1970) records. Range‐size changes were examined by comparing minimum convex polygons to quantify Extent of Occurrence pre‐ and post‐1970, and by testing whether more historical records fell outside the recent (post‐1970) 95% probability kernel than expected by chance. Additionally, qualitative evidence of changes in abundance was obtained from historical published accounts and contemporary assessments by in‐country experts.

Results

Since the late 19th century, range‐size (measured as Extent of Occurrence) has contracted, by 21% in East Africa and 8% in southern Africa. There is strong qualitative evidence of considerable pre‐ and post‐1970 population declines in all range states, except Zambia (slight increase) and Angola (trend unclear). In some countries, declines occurred from the early 1900s. Thus, while relatively modest change in range‐size has occurred in over 100 years, numbers have greatly reduced throughout the species’ range.

Main conclusions

Our methodology allowed objective appraisal of continent‐wide Kori status. Despite lacking quantitative population estimates and trends, and poor understanding of the species’ autecology, common issues for many African species, incidental occurrence records can be used to assess range‐wide changes in status. We recommend that this or similar approaches be applied to other widespread low‐density species that probably also have rapidly declining populations despite apparently stable range extents.
  相似文献   

15.
Because most tree species recruit from seeds, seed predation by small‐mammal granivores may be important for determining plant distribution and regeneration in forests. Despite the importance of seed predation, large‐scale patterns of small‐mammal granivory are often highly variable and thus difficult to predict. We hypothesize distributions of apex predators can create large‐scale variation in the distribution and abundance of mesopredators that consume small mammals, creating predictable areas of high and low granivory. For example, because gray wolf (Canis lupus) territories are characterized by relatively less use by coyotes (C. latrans) and greater use by foxes (Vulpes vulpes, Urocyon cinereoargentus) that consume a greater proportion of small mammals, wolf territories may be areas of reduced small‐mammal granivory. Using large‐scale, multiyear field trials at 22 sites with high‐ and low‐wolf occupancy in northern Wisconsin, we evaluated whether removal of seeds of four tree species was lower in wolf territories. Consistent with the hypothesized consequences of wolf occupancy, seed removal of three species was more than 25% lower in high‐wolf‐occupancy areas across 2 years and small‐mammal abundance was more than 40% lower in high‐wolf areas during one of two study years. These significant results, in conjunction with evidence of seed consumption in situ and the absence of significant habitat differences between high‐ and low‐wolf areas, suggest that top‐down effects of wolves on small‐mammal granivory and seed survival may occur. Understanding how interactions among carnivores create spatial patterns in interactions among lower trophic levels may allow for more accurate predictions of large‐scale patterns in seed survival and forest composition.  相似文献   

16.
A previous study ( Braithwaite & Muller 1997 ) reported substantial declines in mammal abundance over the period 1986–1993 for a large study area (300 km2) within Kakadu National Park in the tropical savannas of northern Australia. This decline was reported as being a ‘natural’ response to fluctuating groundwater levels, driven by runs of poor wet seasons. We resampled mammals in this area in 1999, following a series of unusually good wet seasons, and examined the prediction that mammal numbers should have recovered. Increases in abundance were evident for four species: the smallest dasyurid (red‐cheeked dunnart Sminthopsis virginiae) and the three smallest rodents (delicate mouse Pseudomys delicatulus, western chestnut mouse Pseudomys nanus and grassland melomys Melomys burtoni). In contrast, the abundance of all mammals combined and that for seven individual mammal species (northern quoll Dasyurus hallucatus, fawn antechinus Antechinus bellus, common brushtail possum Trichosurus vulpecula, northern brown bandicoot Isoodon macrourus, dusky rat Rattus colletti, black‐footed tree‐rat Mesembriomys gouldii and pale field rat Rattus tunneyi) continued to decline. The decline in abundance of these mammal species is consistent with limited observations elsewhere in northern Australia. Although far from conclusive, these observations suggest that the biota of the vast relatively undisturbed tropical savannas can no longer be assumed to be intact nor safe. Further research is needed to test this possible pattern of decline and, if confirmed, to identify and ameliorate the processes contributing to it.  相似文献   

17.
Resource pulses are a key feature of semi‐arid and arid ecosystems and are generally triggered by rainfall. While rainfall is an acknowledged driver of the abundance and distribution of larger animals, little is known about how invertebrate communities respond to rain events or to vegetative productivity. Here we investigate Ordinal‐level patterns and drivers of ground‐dwelling invertebrate abundance across 6 years of sampling in the Simpson Desert, central Australia. Between February 1999 and February 2005, a total of 174 381 invertebrates were sampled from 32 Orders. Ants were the most abundant taxon, comprising 83% of all invertebrates captured, while Collembola at 10.3% of total captures were a distant second over this period. Temporal patterns of the six invertebrate taxa specifically analysed (Acarina, ants, Araneae, Coleoptera, Collembola and Thysanura) were dynamic over the sampling period, and patterns of abundance were taxon‐specific. Analyses indicate that all six taxa showed a positive relationship with the cover of non‐Triodia vegetation. Other indicators of vegetative productivity (seeding and flowering) also showed positive relationships with certain taxa. Although the influence of rainfall was taxon‐dependent, no taxon was affected by short‐term rainfall (up to 18 days prior to survey). The abundance of Acarina, ants, and Coleoptera increased with greater long‐term rainfall (up to 18 months prior to survey), whilst Araneae showed the opposite effect. Temperature and dune zone (dune crest vs. swale) also had taxon‐specific effects. These results show that invertebrates in arid ecosystems are influenced by a variety of abiotic factors, at multiple scales, and that responses to rainfall are not as strong or as predictable as those seen for other taxa. Our results highlight the diversity of invertebrates in our study region and emphasize the need for targeted long‐term sampling to enhance our understanding of the ecology of these taxa and the role they play in arid ecosystems.  相似文献   

18.
Not all butterflies are innocuous plant‐feeders. A small number of taxa in the family Lycaenidae have graduated from mutualistic partnerships with ants to predatory or parasitic associations. These highly‐specialized life histories, involving butterfly larvae living inside ant colonies, are often associated with rarity and vulnerability to extinction. In the present study, we examined the evolutionary relationships of a poorly‐known group of seven taxa herein referred to as the idmo‐group within the Australian lycaenid genus Ogyris. The idmo‐group has a relictual distribution across southern Australia and includes taxa with highly‐specialized phytophagous and myrmecophagous life histories. A phylogeny based on mitochondrial DNA (cytochrome oxidase I and cytochrome b] and the nuclear DNA locus elongation factor 1α (EF1α), generally agrees with current taxonomy and supports the recent elevation of endangered taxon Ogyris halmaturia to full species status. The transition to myrmecophagy was dated to the mid‐Miocene (approximately 16 Mya), when southern Australia experienced a humid climate and extensive mesic biome. The arid Nullarbor Plain, a major biogeographical feature of central southern Australia, divides the remnants of this mesic biome into south‐eastern and south‐western isolates. Late‐Miocene to Pliocene divergence estimates for polytypic Ogyris species across the Nullarbor were older than estimates made for similarly distributed birds, butterflies, mammals, and reptiles, which mostly date to the Pleistocene. The concept of highly‐specialized life histories as evolutionary dead‐end strategies is well exemplified by the idmo‐group. Data compiled on the known extant subpopulations for idmo‐group taxa show that all of these extraordinary butterflies are scarce and several face imminent threat of extinction. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 473–484.  相似文献   

19.
Aim We examine the range expansion/contraction dynamics during the last glacial cycle of the late‐successional tropical rain forest conifer Podocarpus elatus using a combination of modelling and molecular marker analyses. Specifically, we test whether distributional changes predicted by environmental niche modelling are in agreement with (1) the glacial maximum contractions inferred from the southern fossil record, and (2) population genetic‐based estimates of range disjunctions and demographic dynamics. In addition, we test whether northern and southern ranges are likely to have experienced similar expansion/contraction dynamics. Location Eastern Australian tropical and subtropical rain forests. Methods Environmental niche modelling was completed for three time periods during the last glacial cycle and was interpreted in light of the known palynology. We collected 109 samples from 32 populations across the entire range of P. elatus. Six microsatellite loci and Bayesian coalescence analysis were used to infer population expansion/contraction dynamics, and five sequenced loci (one plastid and four nuclear) were used to quantify genetic structure/diversity. Results Environmental niche modelling suggested that the northern and southern ranges of P. elatus experienced different expansion/contraction dynamics. In the northern range, the habitat suitable for P. elatus persisted in a small refugial area during the Last Glacial Maximum (LGM, 21 ka) and then expanded during the post‐glacial period. Conversely, in the south suitable habitat was widespread during the LGM but subsequently contracted. These differential dynamics were supported by Bayesian analyses of the population genetic data (northern dispersal) and are consistent with the greater genetic diversity in the south compared with the north. A contact zone between the two genetically divergent groups (corresponding to the Macleay Overlap Zone) was supported by environmental niche modelling and molecular analyses. Main conclusions The climatic fluctuations of the Quaternary have differentially impacted the northern and southern ranges of a broadly distributed rain forest tree in Australia. Recurrent contraction/expansion cycles contributed to the genetic distinction between northern and southern distributions of P. elatus. By combining molecular and environmental niche modelling evidence, this unique study undermines the general assumption that broadly distributed species respond in a uniform way to climate change.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号