共查询到20条相似文献,搜索用时 15 毫秒
1.
A potential benefit to females mating with multiple males is the increased probability that their sons will inherit traits enhancing their pre‐ or post‐mating ability to obtain fertilizations. We allowed red flour beetle (Tribolium castaneum) females to mate on three consecutive days either repeatedly to the same male or to three different males. This procedure was carried out in 20 replicate lines, 10 established with wild‐type, and 10 with the Chicago black morph, a partially dominant phenotypic marker. The paternity achieved by the sons of females from polyandrous vs. monandrous lines of contrasting morph was assessed in the F1, F2 and F3 generation by mating wild‐type stock females to two experimental males and assigning the progeny to either sire based on phenotype. The sons of polyandrous wild‐type females achieved significantly higher paternity when mating in the second male role than the sons of monandrous wild‐type females. By contrast, when mating in the first male role, males produced by females from polyandrous lines tended to have lower paternity than males from monandrous lines. Both effects were independent of the number of mates of the black competitor’s mother, and interacted significantly with the number of progeny laid by the female. These results provide the first evidence that manipulating the number of mates of a female can influence her sons’ mating success and suggest a potential trade‐off between offence and defence in this species. 相似文献
2.
C. M. HOUSE C. A. WALLING C. E. STAMPER A. J. MOORE 《Journal of evolutionary biology》2009,22(9):1961-1966
Male reproductive success generally increases with number of mates but this need not be true for females. If females are the limiting sex, as few as one mate can be optimal. Despite the theoretical differences driving multiple mating in the sexes, multiple mating is the norm rather than the exception. Empirical investigations are therefore required to determine why females mate with multiple males. Both nonadaptive (correlated responses to selection on males, given the mean mating rates have to be the same) and adaptive (direct or indirect fitness benefits) can drive the evolution of multiple mating in females. Females of the burying beetle Nicorphorus vespilloides often mate repeatedly with the same male, but this appears to be a correlated response to selection on males rather than reflecting direct benefits to females for multiple mating. However, an unexamined alternative to this nonadaptive explanation is that females benefit by mating with multiple different males and therefore are selected for general promiscuity. Here we examine if mating polyandrously provides fitness benefits by examing the effects of number of mates (1, 2 or 3), mating system (monogamous, polyandrous) and their interaction. The only significant influence was mating more than once. This did not depend on type of mating. We suggest that unlike most other species examined, in N. vespilloides mating with the same male repeatedly or with several different males reflects an indiscriminate willingness to mate as a result of correlated selection on males for high rates of mating. 相似文献
3.
T. Harano 《Journal of evolutionary biology》2015,28(2):320-327
Males typically gain fitness from multiple mating, whereas females often lose fitness from numerous mating, potentially leading to sexual conflict over mating. This conflict is expected to favour the evolution of female resistance to mating. However, females may incur male harassment if they refuse to copulate; thus, greater female resistance may increase costs imposed by males. Here, I show that the evolution of resistance to mating raises fitness disadvantages of interacting with males when mating is harmful in female adzuki bean beetles, Callosobruchus chinensis. Females that were artificially selected for higher and lower remating propensity evolved to accept and resist remating, respectively. Compared with females that evolved to accept remating, females that evolved to resist it suffered higher fitness costs from continuous exposure to males. The costs of a single mating measured by the effect on longevity did not differ among selection line females. This study indicates that receptive rather than resistant females mitigate the fitness loss resulting from sexual conflict, suggesting that even though mating is harmful, females can evolve to accept additional mating. 相似文献
4.
Sexual selection theory assumes that maximizing fitness is the ultimate goal in every mating decision. Fitness can be maximized directly by increasing the number of offspring (direct benefits) or indirectly by maximizing offspring's lifetime reproductive success (indirect benefits). Whereas there is considerable evidence in the literature for the influence of mating decisions on direct benefits, indirect benefits have been more elusive. Here, we review the variables that influence mating decisions made by females of freshwater fish and how these affect their fitness directly, as well as indirectly. Females enhance their fitness by matching their mating decisions to current environmental conditions, using a wide range of pre- and post-copulation mechanisms that enable them to maximize benefits from mating. Male sexual traits and courtship displays are signals used by females as a way of assessing male quality in terms of both direct and indirect benefits. Polyandry is very common among freshwater fish species, and indirect benefits have been hypothesized as drivers of its predominance. Despite intensive theoretical work, and multiple suggestions of the effects of indirect benefits, to date no study has been able to demonstrate experimentally the existence of indirect benefits in freshwater fish species. Additionally, most studies of direct benefits measure short-term benefits of mating decisions. In both cases, lifetime reproductive success is not assessed. Therefore, we are led to conclude that evidence as to whether female mating decisions result in direct and/or indirect benefits in freshwater fish species is still lacking. These results should be considered in light of the ongoing debate about the significance of indirect benefits in female mating decisions. 相似文献
5.
Leif Engqvist Nils Cordes Janina Schwenniger Svetlana Bakhtina Tim Schmoll 《Ethology : formerly Zeitschrift fur Tierpsychologie》2014,120(7):662-671
In polyandrous species, male reproductive success will at least partly be determined by males' success in sperm competition. To understand the potential for post‐mating sexual selection, it is therefore important to assess the extent of female remating. In the lekking moth Achroia grisella, male mating success is strongly determined by female choice based on the attractiveness of male ultrasonic songs. Although observations have indicated that some females will remate, only little is known about the level of sperm competition. In many species, females are more likely to remate if their first mating involved an already mated male than if the first male was virgin. Potentially, this is because mated males are less well able to provide an adequate sperm supply, nutrients, or substances inhibiting female remating. This phenomenon will effectively reduce the strength of pre‐copulatory sexual selection because attractive males with high mating success will be more susceptible to sperm competition. We therefore performed an experiment designed both to provide a more precise estimate of female remating probability and simultaneously to test the hypothesis that female remating is influenced by male mating history. Overall, approximately one of five females remated with a second male. Yet, although females mated to non‐virgin males were somewhat more prone to remate, the effect of male mating history was not significant. The results revealed, however, that heavier females were more likely to remate. Furthermore, we found that females' second copulations were longer, suggesting that, in accordance with theory, males may invest more sperm in situations with an elevated risk of sperm competition. 相似文献
6.
Asynchronous arrival pattern, operational sex ratio and occurrence of multiple paternities in a territorial breeding anuran, Rana dalmatina 总被引:1,自引:0,他引:1
THIERRY LODÉ MARIE-JEANNE HOLVECK DAVID LESBARRÈRES 《Biological journal of the Linnean Society. Linnean Society of London》2005,86(2):191-200
Understanding why females mate multiply is a major issue in evolutionary ecology. We investigated the consequences of an asynchronous arrival pattern on male competition and multiple paternity in the apparently monoandrous agile frog ( Rana dalmatina ). The largest frogs arrived first and both males and females lost weight significantly during the spawning period. Asynchronous arrival at breeding sites resulted in a male-biased operational sex ratio (OSR). The OSR was more strongly male-biased at the beginning and at the end of the breeding period when the number of satellite males increased. All females mated only once, but multiple paternity within clutches occurred at the beginning and the end of the breeding period. The influence of asynchronous arrival and biased sex ratio suggests that reduced variance or bet-hedging promoting female fitness had only a reduced role in the evolution of polyandry, and polyandry is likely to be associated with male benefits. Polyandry in frogs can be explained either by forced mating as a result of sexual conflict or by clutch piracy. By modifying intrasexual competition, asynchronous arrival and changes in OSR may have a decisive influence upon the evolution of mating systems and favour both polyandry and stable coexistence of alternative mating behaviour. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 86 , 191–200. 相似文献
7.
Despite the benefits of multiple mating to females many mosquitoes appear to be monandrous. Members of the mosquito tribe
Sabethini are unique among the mosquitoes for they possess iridescent scales and elaborate ornaments in both sexes. Additionally,
this tribe boasts the only reported cases of courtship display within the mosquitoes. Due to these singular traits and behaviors,
we predicted that members of this tribe have a different mating system with relatively high female mating rate. We tested
this prediction in the ornamented mosquito Sabethes cyaneus. Contrary to our prediction, however, females were monandrous throughout their lifetime and multiple gonotrophic cycles.
We discuss the possible implications of monandry on the evolution of sexually homologous ornaments, with particular consideration
of mutual mate choice. 相似文献
8.
Yukio Yasui 《Experimental & applied acarology》1997,21(10):651-664
Females of the predatory mite Parasitus fimetorum (Gamasida; Parasitina) inhabiting animal manure indiscriminately copulate with many mates. The sperm competition between the males was estimated by electrophoresis of allozymes and the effects of multiple mating on female reproduction were investigated. When females were forced to mate only once, their fecundity decreased drastically compared to the case of multiple mating (but longevity was unaffected). When one female mated with two males, the outcome of sperm competition depended greatly upon the mating interval. When the second mating occurred immediately after the first, the female fecundity decreased as in the case of single mating and the second male fertilized only a few eggs. However, when there was an interval of 1 day between the two matings, the females achieved normal fecundity and the second male fertilized approximately half the eggs. This suggests that the spermatophore deposited by the first male may act as a short-term copulatory plug in the female's genital opening. When one female mated with several males with 1 day intervals, three or more males shared fertilization of the eggs. This study suggests that the multiple mating of females is a necessary stimulus to continue oogenesis and some physiological factors for this stimulation may exist in spermatophores. 相似文献
9.
10.
Sara M. Lewis Annika Kobel Tatyana Fedina Richard W. Beeman 《Physiological Entomology》2005,30(3):303-307
Abstract. When females are inseminated by multiple males, male paternity success (sperm precedence) is determined by the underlying processes of sperm storage and sperm utilization. Although informative for many questions, two-male sperm competition experiments may offer limited insight into natural mating scenarios when females are likely to mate with several males. In this study, genetic markers in Tribolium castaneum are used to trace paternity for multiple sires, and to determine whether displacement of stored sperm that occurs after a third mating equally affects both previous mates, or if fertilizations are disproportionately lost by the female's most recent mate. For 20 days after triple-matings, first males retain significantly higher paternity success (relative to first male paternity in double-matings) compared with second males. These results demonstrate that when females remate before sperm mixing occurs, sperm stratification results in differential loss of sperm from the most recent mate. This study provides insight into the mechanisms underlying sperm precedence in a promiscuous mating system, and suggests that T. castaneum females could limit paternity success of particular mates by remating with more highly preferred males. 相似文献
11.
Sequential polyandry may evolve as an insurance mechanism to reduce the risk of choosing a mate that is infertile, closely related, genetically inferior or incompatible, but polyandry also might insure against nest failure in unpredictable environments. Most animals are oviparous, and in species where males provide nest sites whose quality varies substantially and unpredictably, polyandrous females might insure offspring success by distributing their eggs across multiple nests. Here, we test this hypothesis in a wild population of an Australian terrestrial toadlet, a polyandrous species, where males construct nests and remain with broods. We found that females partitioned their eggs across the nests of two to eight males and that more polyandrous females gained a significant increase in mean offspring survivorship. Our results provide evidence for the most extreme case of sequential polyandry yet discovered in a vertebrate and also suggest that insurance against nest failure might favour the evolution of polyandry. We propose that insurance against nest failure might be widespread among oviparous taxa and provide an important explanation for the prevalence of sequential polyandry in nature. 相似文献
12.
13.
Adam G. Jones John C. Avise 《Evolution; international journal of organic evolution》1997,51(5):1611-1622
In the dusky pipefish Syngnathus floridae, like other species in the family Syngnathidae, ‘pregnant’ males provide all post-zygotic care. Male pregnancy has interesting implications for sexual selection theory and the evolution of mating systems. Here, we employ microsatellite markers to describe the genetic mating system of S. floridae, compare the outcome with a previous report of genetic polyandry for the Gulf pipefish S. scovelli, and consider possible associations between the mating system and degree of sexual dimorphism in these species. Twenty-two pregnant male dusky pipefish from one locale in the northern Gulf of Mexico were analyzed genetically, together with subsamples of 42 embryos from each male's brood pouch. Adult females also were assayed. The genotypes observed in these samples document that cuckoldry by males did not occur; males often receive eggs from multiple females during the course of a pregnancy (six males had one mate each, 13 had two mates, and three had three mates); embryos from different females are segregated spatially within a male's brood pouch; and a female's clutch of eggs often is divided among more than one male. Thus, the genetic mating system of the dusky pipefish is best described as polygynandrous. The genetic results for S. floridae and S. scovelli are consistent with a simple model of sexual selection which predicts that for sex role-reversed organisms, species with greater degrees of sexual dimorphism are more highly polyandrous. 相似文献
14.
Gabriele Sorci Loïc Lesobre Pauline Vuarin Gwènaëlle Levêque Michel Saint Jalme Frédéric Lacroix Yves Hingrat 《Evolutionary Applications》2021,14(12):2773-2783
While uncovering the costs and benefits of polyandry has attracted considerable attention, assessing the net effect of sexual selection on population fitness requires the experimental manipulation of female mating over generations, which is usually only achievable in laboratory populations of arthropods. However, knowing if sexual selection improves or impairs the expression of life-history traits is key for the management of captive populations of endangered species, which are mostly long-lived birds and mammals. It might therefore be questionable to extrapolate the results gathered on laboratory populations of insects to infer the net effect of sexual selection on populations of endangered species. Here, we used a longitudinal dataset that has been collected on a long-lived bird, the houbara bustard, kept in a conservation breeding program, to investigate the effect of enforced monoandry on female investment into reproduction. In captivity, female houbara bustards are artificially inseminated with sperm collected from a single male (enforced monoandry), or sequentially inseminated with semen of different males (polyandry), allowing postcopulatory sexual selection to operate. We identified female lines that were produced either by monoandrous or polyandrous inseminations over three generations, and we compared reproductive investment of females from the two mating system groups. We found that females in the polyandrous lines had higher investment into reproduction as they laid more eggs per season and produced heavier hatchlings. Higher reproductive investment into reproduction in the polyandrous lines did not result from inherited differences from females initially included in the two mating system groups. These results show that removal of sexual selection can alter reproductive investment after only few generations, potentially hindering population fitness and the success of conservation breeding programs. 相似文献
15.
Thomas J. Giardina Andrew G. Clark Anthony C. Fiumera 《Molecular ecology resources》2017,17(6):1202-1209
Female Drosophila melanogaster frequently mate with multiple males in nature as shown through parentage analysis. Although polyandry is well documented, we know little about the timing between mating events in wild Drosophila populations due to the challenge of following behaviours of individual females. In this study, we used the presence of a male reproductive protein that is transferred to the female during mating (Sex Peptide, SP) to determine whether she had recently mated. We sampled females throughout the day, conducted control matings to determine the decay rate of SP within the female reproductive tract and performed computer simulations to fit the observed proportion of mated females to a nonhomogenous Poisson process that defined the expected time between successive matings for a given female. In our control matings, 100% of mated females tested positive for SP 0.5 h after the start of mating (ASM), but only 24% tested positive 24 h ASM. Overall, 35% of wild‐caught females tested positive for the presence of SP. Fitting our observed data to our simple nonhomogenous Poisson model provided the inference that females are mating, on average, approximately every 27 h (with 95% credibility interval 23–31 h). Thus, it appears that females are mating a bit less frequently that once per day in this natural population and that mating events tend to occur either early in the morning or late in the afternoon. 相似文献
16.
Brown WD Bjork A Schneider K Pitnick S 《Evolution; international journal of organic evolution》2004,58(6):1242-1250
Understanding the evolution of polyandry (mating with multiple males) is a major issue in the study of animal breeding systems. We examined the adaptive significance of polyandry in Drosophila melanogaster, a species with well-documented costs of mating in which males generally cannot force copulations. We found no direct fitness advantages of polyandry. Females that mated with multiple males had no greater mean fitness and no different variance in fitness than females that mated repeatedly with the same male. Subcomponents of reproductive success, including fecundity, egg hatch rate, larval viability, and larval development time, also did not differ between polyandrous and monogamous females. Polyandry had no affect on progeny sex ratios, suggesting that polyandry does not function against costly sex-ratio distorters. We also found no evidence that polyandry functions to favor the paternity of males successful in precopulatory sexual selection. Experimentally controlled opportunities for precopulatory sexual selection had no effect on postcopulatory sperm precedence. Although these results were generally negative, they are supported with substantial statistical power and they help narrow the list of evolutionary explanations for polyandry in an important model species. 相似文献
17.
Sperm competition (SC) is a major component of sexual selection that enhances intra‐ and intersexual conflicts and may trigger rapid adaptive evolution of sexual characters. The actual role of SC on rapid evolution, however, is poorly understood. Besides, the relative contribution of distinctive features of the mating system to among species variation in the strength of SC remains unclear. Here, we assessed the strength of SC and mating system factors that may account for it in the closely related species Drosophila buzzatii and Drosophila koepferae. Our analyses reveal higher incidence of multiple paternity and SC risk in D. buzzatii wild‐inseminated females. The estimated number of fathers per brood was 3.57 in D. buzzatii and 1.95 in D. koepferae. In turn, the expected proportion of females inseminated by more than one male was 0.89 in D. buzzatii and 0.58 in D. koepferae. Laboratory experiments show that this pattern may be accounted for by the faster rate of stored sperm usage observed in D. koepferae and by the greater female remating rate exhibited by D. buzzatii. We also found that the male reproductive cost of SC is also higher in D. buzzatii. After a female mated with a second male, first‐mating male fertility was reduced by 71.4% in D. buzzatii and only 33.3% in D. koepferae. Therefore, we may conclude that postmating sexual selection via SC is a stronger evolutionary force in D. buzzatii than in its sibling. 相似文献
18.
《Ethology, Ecology and Evolution》2012,24(1):75-86
Males of the coreid bug, Margus obscurator (F.), were individually numbered in the field in southeastern Georgia (USA) and censused daily for the 6 weeks in spring from the initiation of mating activity until the complete decline of the adult population. Data was analyzed for the subset of males sighted at least 5 times since the relationship between number of observations and variance in mating success leveled off at five observations. Variance in male mating success exceeded that generated by null models, suggesting a phenotypic determinant of mating success. Body length was significantly positively correlated with male mating success. Longer males were more likely to retain a grasp on females which resist, by fleeing, most courting males. The intensity of sexual selection (standardized selection differential) on male size was greater in the second half of the season (0.43 versus 0.21) when both host plant abundance and the proportion of females in the population had declined. Consequently, male density and the number of intermale aggressive interactions increased. During fights, larger males were more likely to retain access to females or the flower heads on which mating occurred. The opportunity for sexual selection (= squared coefficient of variation for mating success) was also greater in the second half of the season (0.90 versus 0.20). The opportunity for sexual selection increased 2.5 times faster than the intensity of sexual selection on size between halves of the season, reflecting the greater male-bias in the operational sex ratio (proportion of males = 0.57 versus 0.49), a more patchy distribution of females and, perhaps, reflecting the operation of additional components of phenotypic selection. 相似文献
19.
Demian D. Chapman Mark J. Corcoran Guy M. Harvey Sonita Malan Mahmood S. Shivji 《Environmental Biology of Fishes》2003,68(3):241-245
We document in detail the first complete sequence of mating events in the southern stingray, Dasyatis americana, based on observations of four matings (five separate copulations) at Grand Cayman, British West Indies and Bimini, Bahamas. These observations are significant because almost nothing is known about this important aspect of the life cycle of batoids, due to the rarity of encounters with mating animals in natural settings. Similar to mating behavior described in the manta ray, Manta birostris, the mating sequence of D. americana can be characterized as (1) 'close-following', (2) 'pre-copulatory biting', (3) 'insertion/copulation', (4) 'resting' and (5) 'separation'. Additional information gained from these observations includes the fact that (1) two of the females were mated very shortly (i.e. within minutes–hours) after parturition and (2) one of the mating events involved a single female that copulated (unforced) with two males in rapid succession. The latter observation suggests that polyandry and multiple paternity may be elements of the mating system of D. americana. 相似文献
20.
Mating rate and fitness in female bean weevils 总被引:7,自引:3,他引:7
Females of most animal taxa mate with several males during theirlifespan. Yet our understanding of the ultimate causes of polyandryis incomplete. For example, it is not clear if and in what sensefemale mating rates are optimal. Most female insects are thoughtto maximize their fitness by mating at an intermediate rate,but it has been suggested that two alternative fitness peaksmay be observed if multiple costs and benefits interact in determiningthe relationship between mating rate and fitness. We studiedthe relationship between female fitness and mating rate in thebean weevil, Callosobruchus maculatus (Coleoptera: Bruchidae),a species in which several distinct direct effects of matingto females have been reported. Our results show that femalefitness, measured as lifetime offspring production, is lowestat an intermediate mating rate. We suggest that this patternis the result of multiple direct benefits to mating (e.g., spermreplenishment and hydration/nutrition effects) in combinationwith significant direct costs to mating (e.g., injury from malegenitalia). Females mating at low rates may efficiently minimizethe costs of mating, whereas females mating at high rates insteadmay maximize the benefits of mating. If common, the existenceof bimodal relationships between female mating rate and fitnessmay help explain the large intra- and interspecific variationin the degree of polyandry often seen in insects. 相似文献