首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anatomically modern humans (Homo sapiens) dispersed out of Africa roughly 120,000 years ago and again after 75,000 years ago. The early dispersal was geographically restricted to the Arabian Peninsula, Levant, and possibly parts of southern Asia. The later dispersal was ultimately global in scope, including areas not previously occupied by Homo. One explanation for the contrast between the two out‐of‐Africa dispersals is that the modern humans who expanded into Eurasia 120,000 years ago lacked the functionally and structurally complex technology of recent hunter‐gatherers. This technology, which includes, for example, mechanical projectiles, snares and traps, and sewn clothing, provides not only expanded dietary breadth and increased rates of foraging efficiency and success in places where plant and animal productivity is low, but protection from cold weather in places where winter temperatures are low. The absence of complex technology before 75,000 years ago also may explain why modern humans in the Levant did not develop sedentary settlements and agriculture 120,000 years ago (i.e., during the Last Interglacial).  相似文献   

2.
There is general agreement among scientists about a recent (less than 200,000 yrs ago) African origin of anatomically modern humans, whereas there is still uncertainty about whether, and to what extent, they admixed with archaic populations, which thus may have contributed to the modern populations' gene pools. Data on cranial morphology have been interpreted as suggesting that, before the main expansion from Africa through the Near East, anatomically modern humans may also have taken a Southern route from the Horn of Africa through the Arabian peninsula to India, Melanesia and Australia, about 100,000 yrs ago. This view was recently supported by archaeological findings demonstrating human presence in Eastern Arabia >90,000 yrs ago. In this study we analyzed genetic variation at 111,197 nuclear SNPs in nine populations (Kurumba, Chenchu, Kamsali, Madiga, Mala, Irula, Dalit, Chinese, Japanese), chosen because their genealogical relationships are expected to differ under the alternative models of expansion (single vs. multiple dispersals). We calculated correlations between genomic distances, and geographic distances estimated under the alternative assumptions of a single dispersal, or multiple dispersals, and found a significantly stronger association for the multiple dispersal model. If confirmed, this result would cast doubts on the possibility that some non-African populations (i.e., those whose ancestors expanded through the Southern route) may have had any contacts with Neandertals.  相似文献   

3.
The emergence of more refined chronologies for climate change and archaeology in prehistoric Africa, and for the evolution of human mitochondrial DNA (mtDNA), now make it feasible to test more sophisticated models of early modern human dispersals suggested by mtDNA distributions. Here we have generated 42 novel whole-mtDNA genomes belonging to haplogroup L0, the most divergent clade in the maternal line of descent, and analysed them alongside the growing database of African lineages belonging to L0’s sister clade, L1’6. We propose that the last common ancestor of modern human mtDNAs (carried by “mitochondrial Eve”) possibly arose in central Africa ~180 ka, at a time of low population size. By ~130 ka two distinct groups of anatomically modern humans co-existed in Africa: broadly, the ancestors of many modern-day Khoe and San populations in the south and a second central/eastern African group that includes the ancestors of most extant worldwide populations. Early modern human dispersals correlate with climate changes, particularly the tropical African “megadroughts” of MIS 5 (marine isotope stage 5, 135–75 ka) which paradoxically may have facilitated expansions in central and eastern Africa, ultimately triggering the dispersal out of Africa of people carrying haplogroup L3 ~60 ka. Two south to east migrations are discernible within haplogroup LO. One, between 120 and 75 ka, represents the first unambiguous long-range modern human dispersal detected by mtDNA and might have allowed the dispersal of several markers of modernity. A second one, within the last 20 ka signalled by L0d, may have been responsible for the spread of southern click-consonant languages to eastern Africa, contrary to the view that these eastern examples constitute relicts of an ancient, much wider distribution.  相似文献   

4.
Aim A previous study of the allodapine bee genus Braunsapis suggested an African origin, with dispersal events into Madagascar and Asia, and from Asia into Australia. We re‐examine the phylogeny of this genus, using an expanded set of taxa from Madagascar and Malawi and additional sequence data, in order to determine the number of dispersals and the timeframe over which they occurred. Location Africa, Madagascar, Malawi, Asia and Australia. Methods One nuclear (EF‐1α F2) and two mitochondrial (CO1 and Cyt b) gene regions were sequenced for 36 allodapine bee species (including members of the genera Braunsapis, Nasutapis, Allodape, Allodapula, and Macrogalea) and one ceratinine species (Ceratina japonica). We used Bayesian analyses to examine phylogenetic structure and a penalized likelihood approach to estimate approximate ages for key divergences in our phylogeny. Results Our analyses indicate a tropical African origin for Braunsapis in the early Miocene followed by very early dispersal into Asia and then a subsequent dispersal, following Asian diversification, into Australia during the late Miocene. There have also been two dispersals of Braunsapis from Africa to Madagascar and this result, when combined with phylogenetic and biogeographical data for other allodapines, suggests that these bees have the ability to cross moderately large ocean expanses. These dispersals may have been aided by the West Wind Drift, but rafting across the Mozambique Channel is also possible, and could be aided by the existence of developmental stages that require minimal or no feeding and by tolerance to sea water and spume. Accumulating evidence suggests that many biogeographical patterns in the southern hemisphere may be better explained by dispersal than by Gondwanan vicariance hypotheses. Our results add to this growing body of data and raise the possibility that some puzzling trans‐Indian Ocean distributions may also be explained by historical dispersal events across oceanic barriers that now seem insuperable.  相似文献   

5.
Domestic dogs have an ancient origin and a long history in Africa. Nevertheless, the timing and sources of their introduction into Africa remain enigmatic. Herein, we analyse variation in mitochondrial DNA(mt DNA) D-loop sequences from 345 Nigerian and 37 Kenyan village dogs plus 1530 published sequences of dogs from other parts of Africa, Europe and West Asia. All Kenyan dogs can be assigned to one of three haplogroups(matrilines; clades): A, B, and C, while Nigerian dogs can be assigned to one of four haplogroups A, B, C, and D. None of the African dogs exhibits a matrilineal contribution from the African wolf(Canis lupus lupaster). The genetic signal of a recent demographic expansion is detected in Nigerian dogs from West Africa. The analyses of mitochondrial genomes reveal a maternal genetic link between modern West African and North European dogs indicated by sub-haplogroup D1(but not the entire haplogroup D) coalescing around 12,000 years ago. Incorporating molecular anthropological evidence,we propose that sub-haplogroup D1 in West African dogs could be traced back to the late-glacial dispersals, potentially associated with human hunter-gatherer migration from southwestern Europe.  相似文献   

6.
The past decade has brought considerable debate on the subject of modern human origins. The nature of the transition from Homo erectus to archaic Homo sapiens to modern H. sapiens has been examined primarily in terms of the relative contribution of archaic populations to later moderns, both within and among geographic regions. The recent African origin model proposes that modern humans appeared first in Africa between 100,000 and 200,000 years ago, and then spread through the rest of the Old World, replacing preexisting populations.1–6 This model has been referred to by a variety of names, including “replacement”, “Garden of Eden”, “Noah's Ark”, and “out of Africa”. The recent African origin model contrasts with the multiregional model, which proposes a species-wide transition to modern humans throughout the Old World during the past million years or more.7–10 Indeed, some proponents of the multiregional model advocate placing Homo erectus and all subsequent species of Homo in the evolutionary species Homo sapiens.11 This contrasts with the view that there were multiple hominid species during the Middle Pleistocene. The debate continues.12,13 Although the multiregional model is often portrayed as proposing a simultaneous transition to anatomically modern humans in different geographic regions, it explicitly allows for varying degrees of continuity across time and space.10 This model, in the broad sense, does not rule out the possibility that modern human morphology appeared first in Africa and then spread through the rest of the Old World through gene flow. However, not all advocates of the multiregional model adhere to this specific subset of the general model.9 Comparison of the African and multiregional models is complicated by considering other, less extreme, hypotheses. Some versions of the recent African origin model imply a speciation event associated with the initial origin of modern humans. Another version, which suggests the possibility of some admixture between “moderns” leaving Africa and preexisting “archaics” elsewhere in the Old World,14,15 is similar to some variants of the multiregional model, which also suggest that modern morphology appeared first in Africa, but involved admixture with other Old World populations.16 The major difference between these views appears to be the extent of admixture, although the exact level is never specified. A further complication is the possibility that multiple dispersals from Africa produced a more complicated pattern of worldwide variation.17  相似文献   

7.
Until recently, the settlement of the Americas seemed largely divorced from the out‐of‐Africa dispersal of anatomically modern humans, which began at least 50,000 years ago. Native Americans were thought to represent a small subset of the Eurasian population that migrated to the Western Hemisphere less than 15,000 years ago. Archeological discoveries since 2000 reveal, however, that Homo sapiens occupied the high‐latitude region between Northeast Asia and northwest North America (that is, Beringia) before 30,000 years ago and the Last Glacial Maximum (LGM). The settlement of Beringia now appears to have been part of modern human dispersal in northern Eurasia. A 2007 model, the Beringian Standstill Hypothesis, which is based on analysis of mitochondrial DNA (mtDNA) in living people, derives Native Americans from a population that occupied Beringia during the LGM. The model suggests a parallel between ancestral Native Americans and modern human populations that retreated to refugia in other parts of the world during the arid LGM. It is supported by evidence of comparatively mild climates and rich biota in south‐central Beringia at this time (30,000‐15,000 years ago). These and other developments suggest that the settlement of the Americas may be integrated with the global dispersal of modern humans.  相似文献   

8.
Ethnic populations of India as seen from an evolutionary perspective   总被引:5,自引:0,他引:5  
It is now widely accepted that (i) modern humans,Homo sapiens sapiens, evolved in Africa, (ii) migrated out of Africa and replaced archaic humans in other parts of the world, and (iii) one of the first waves of out-of-Africa migration came into India. India, therefore, served as a major corridor for dispersal of modern humans. By studying variation at DNA level in contemporary human populations of India, we have provided evidence that mitochondrial DNA haplotypes based on RFLPs are strikingly similar across ethnic groups of India, consistent with the hypothesis that a small number of females entered India during the initial process of the peopling of India. We have also provided evidence that there may have been dispersal of humans from India to southeast Asia. In conjunction with haplotype data, nucleotide sequence data of a hypervariable segment (HVS-1) of the mitochondrial genome indicate that the ancestors of the present austro-asiatic tribal populations may have been the most ancient inhabitants of India. Based on Y-chromosomal RFLP and STRP data, we have also been able to trace footprints of human movements from west and central Asia into India.  相似文献   

9.
Despite a massive endeavour, the problem of modern human origins not only remains unresolved, but is usually reduced to “Out of Africa” versus multiregional evolution. Not all would agree, but evidence for a single recent origin is accumulating. Here, we want to go beyond this debate and explore within the “Out of Africa” framework an issue that has not been fully addressed: the mechanism by which modern human diversity has developed. We believe there is no clear rubicon of modern Homo sapiens, and that multiple dispersals occurred from a morphologically variable population in Africa. Pre-existing African diversity is thus crucial to the way human diversity developed outside Africa. The pattern of diversity—behavioural, linguistic, morphological and genetic—can be interpreted as the result of dispersals, colonisation, differentiation and subsequent dispersals overlaid on former population ranges. The first dispersals would have originated in Africa from where two different geographical routes were possible, one through Ethiopia/Arabia towards South Asia, and one through North Africa/Middle East towards Eurasia.  相似文献   

10.
Aim We investigate the directionality of mainland‐to‐island dispersals, focusing on a case study of an African‐Malagasy bat genus, Triaenops (Hipposideridae). Taxa include T. persicus from east Africa and three Triaenops species from Madagascar (T. auritus, T. furculus, and T. rufus). The evolution of this bat family considerably post‐dated the tectonic division of Madagascar from Africa, excluding vicariance as a viable hypothesis. Therefore, we consider three biogeographical scenarios to explain these species' current ranges: (A) a single dispersal from Africa to Madagascar with subsequent speciation of the Malagasy species; (B) multiple, unidirectional dispersals from Africa to Madagascar resulting in multiple, independent Malagasy lineages; or (C) early dispersal of a proto‐species from Africa to Madagascar, with later back‐dispersal of a descendant Malagasy taxon to Africa. Location East Africa, Madagascar, and the Mozambique Channel. Methods We compare the utility of phylogenetic and coalescent methodologies to address the question of directionality in a mainland‐to‐island dispersal event for recently diverged taxa. We also emphasize the application of biologically explicit demographic systems, such as the non‐equilibrium isolation‐with‐migration model. Here, these methods are applied to a four‐species haploid genetic data set, with simulation analyses being applied to validate this approach. Results Coalescent simulations favour scenario B: multiple, unidirectional dispersals from Africa to Madagascar resulting in multiple, independent Malagasy bat lineages. From coalescent dating, we estimate that the genus Triaenops was still a single taxon approximately 2.25 Ma. The most recent Africa to Madagascar dispersal occurred much more recently (c. 660 ka), and led to the formation of the extant Malagasy species, T. rufus. Main conclusions Haploid genetic data from four species of Triaenops are statistically most consistent with multiple, unidirectional dispersals from mainland Africa to Madagascar during the late Pleistocene.  相似文献   

11.
Dispersal and vicariant hypotheses have for decades been at odds with each other, notwithstanding the fact that both are well-established natural processes with important histories in biogeographic analyses. Despite their importance, neither dispersal nor vicariant methodologies are problem-free. The now widely used molecular techniques for generating phylogenies have provided a mechanism by which both dispersal- and vicariance-driven speciation can be better tested via the application of molecular clocks; unfortunately, substantial problems can also exist in the employment of those clocks. To begin to assess the relative roles of dispersal and vicariance in the establishment of avifaunas, especially intercontinental avifaunas, I applied a test for clocklike behavior in molecular data, as well as a program that infers ancestral areas and dispersal events, to a phylogeny of a speciose, cosmopolitan avian genus (Anthus; Motacillidae). Daughter-lineages above just 25 of 40 nodes in the Anthus phylogeny are evolving in a clocklike manner and are thus dateable by a molecular clock. Dating the applicable nodes suggests that Anthus arose nearly 7 million yr ago, probably in eastern Asia, and that between 6 and 5 million yr ago, Anthus species were present in Africa, the Palearctic, and North and South America. Speciation rates have been high throughout the Pliocene and quite low during the Pleistocene; further evidence that the Pleistocene may have had little effect in generating modern species. Intercontinental movements since 5 million yr ago have been few and largely restricted to interchange between Eurasia and Africa. Species swarms on North America, Africa, and Eurasia (but not South America or Australia) are the product of multiple invasions, rather than being solely the result of within-continent speciation. Dispersal has clearly played an important role in the distribution of this group.  相似文献   

12.
The Middle to Later Stone Age (MSA/LSA) transition is a prominent feature of the African archeological record that began in some places ~30,000–60,000 years ago, historically associated with the origin and/or dispersal of “modern” humans. Unlike the analogous Middle to Upper Paleolithic transition in Eurasia and associated Neanderthal extinction, the African MSA/LSA record remains poorly documented, with its potential role in explaining changes in the behavioral diversity and geographic range of Homo sapiens largely unexplored. I review archeological and biogeographic data from East Africa, show regionally diverse pathways to the MSA/LSA transition, and emphasize the need for analytical approaches that document potential ancestor‐descendent relationships visible in the archeological record, needed to assess independent invention, population interaction, dispersal, and other potential mechanisms for behavioral change. Diversity within East Africa underscores the need for regional, rather than continental‐scale narratives of the later evolutionary history of H. sapiens.  相似文献   

13.
Aim To analyse the historical biogeography of the lichen genus Chroodiscus using a phenotype‐based phylogeny in the context of continental drift and evolution of tropical rain forest vegetation. Location All tropical regions (Central and South America, Africa, India, Southeast Asia, north‐east Australia). Methods We performed a phenotype‐based phylogenetic analysis and ancestral character state reconstruction of 14 species of the lichen genus Chroodiscus, using paup * and mesquite ; dispersal–vicariance analysis (DIVA) and dispersal–extinction–cladogenesis (DEC) modelling to trace the geographical origin of individual clades; and ordination and clustering by means of pc‐ord , based on a novel similarity index, to visualize the biogeographical relationships of floristic regions in which Chroodiscus occurs. Results The 14 species of Chroodiscus show distinctive distribution patterns, with one pantropical and one amphi‐Pacific taxon and 12 species each restricted to a single continent. The genus comprises four clades. DIVA and DEC modelling suggest a South American origin of Chroodiscus in the mid to late Cretaceous (120–100 Ma), with subsequent expansion through a South American–African–Indian–Southeast Asian–Australian dispersal route and late diversification of the argillaceus clade in Southeast Asia. Based on the abundance of extant taxa, the probability of speciation events in Chroodiscus is shown to be extremely low. Slow dispersal of foliicolous rain forest understorey lichens is consistent with estimated phylogenetic ages of individual species and with average lengths of biological species intervals in fungi (10–20 Myr). Main conclusions The present‐day distribution of Chroodiscus can be explained by vicariance and mid‐distance dispersal through the interconnection or proximity of continental shelves, without the need for recent, trans‐oceanic long‐distance dispersal. Phylogenetic reconstruction and age estimation for Chroodiscus are consistent with the ‘biotic ferry’ hypothesis: a South American origin and subsequent eastward expansion through Africa towards Southeast Asia and north‐eastern Australia via the Indian subcontinent. The present‐day pantropical distributions of many clades and species of foliicolous lichens might thus be explained by eastward expansion through continental drift, along with the evolution of modern rain forests starting 120 Ma, rather than by the existence of a hypothetical continuous area of pre‐modern rain forest spanning South America, Africa and Southeast Asia during the mid and late Cretaceous.  相似文献   

14.
Aim African–Asian disjunctions are common in palaeotropical taxa, and are typically explained by reference to three competing hypotheses: (1) ‘rafting’ on the Indian tectonic plate, enabling Africa‐to‐Asia dispersal; (2) migration via Eocene boreotropical forests; and (3) transoceanic long‐distance dispersal. These hypotheses are tested using Uvaria (Annonaceae), which is distributed in tropical regions of Africa, Asia and Australasia. Recent phylogenetic reconstructions of the genus show a clear correlation with geographical provenance, indicating a probable origin in Africa and subsequent dispersal to Asia and then Australasia. Ancestral areas and migration routes are inferred and compared with estimates of divergence times in order to distinguish between the prevailing dispersal hypotheses. Location Palaeotropics. Methods Divergence times in Uvaria are estimated by analysing the sequences of four DNA regions (matK, psbA–trnH spacer, rbcL and trnL–F) from 59 Uvaria species and 77 outgroup species, using a Bayesian uncorrelated lognormal (UCLD) relaxed molecular clock. The ancestral area of Uvaria and subsequent dispersal routes are inferred using statistical dispersal–vicariance analysis (s‐diva ). Results Uvaria is estimated to have originated in continental Africa 31.6 Ma [95% highest posterior density (HPD): 38.4–25.1 Ma] between the Middle Eocene and Late Oligocene. Two main migration events during the Miocene are identified: dispersal into Madagascar around 17.0 Ma (95% HPD: 22.3–12.3 Ma); and dispersal into Asia between 21.4 Ma (95% HPD: 26.7–16.7 Ma) and 16.1 Ma (95% HPD: 20.1–12.1 Ma). Main conclusions Uvaria fruits are widely reported to be consumed by primates, and are therefore unlikely candidates for successful long‐distance transoceanic dispersal. The other biogeographical hypotheses, involving rafting on the Indian tectonic plate, and dispersal via the European boreotropical forests associated with the Eocene thermal maximum, can be discounted due to incongruence with the divergence time estimates. An alternative scenario is suggested, involving dispersal across Arabia and central Asia via the tropical forests that developed during the late Middle Miocene thermal maximum (17–15 Ma), associated with the ‘out‐of‐Africa’ dispersal of primates. The probable route and mechanism of overland dispersal between Africa and Asia for tropical plant groups during the Miocene climatic optimum are clarified based on the Uvaria data.  相似文献   

15.
An out-of-Africa dispersal route has been proposed for many organisms, including modern man. However, counter examples of in-to-Africa dispersal routes are less common. In the present article, the phylogenetic relationships within the Labeoninae, a subfamily of cyprinid fishes distributed in Asia and Africa, were analyzed to investigate the biogeographic processes governing the modern distribution of these Asian and African cyprinids. The mitochondrial DNA cytochrome b gene was used as a molecular marker. The phylogenetic analysis indicated that the subfamily Labeoninae is a monophyletic group, with some Asian labeonins located at the basal position. Two subclades were found that contained both African and Asian species, which highlighted a need for further biogeographic analysis. Based on this analysis, it is proposed that the centre of origin of the Labeoninae was in East Asia. Molecular clock estimation suggests that the Labeoninae arose by the Early Miocene (~23 MYA) during the period of the second Tibetan uplift. Subsequently, two dispersal events of labeonins from Asia into Africa occured in the Early Miocene (~ 20 MYA) and Late Miocene (~9 MYA) and serve as examples counter to out-of-Africa dispersal.  相似文献   

16.
The domestication and development of cattle has considerably impacted human societies, but the histories of cattle breeds and populations have been poorly understood especially for African, Asian, and American breeds. Using genotypes from 43,043 autosomal single nucleotide polymorphism markers scored in 1,543 animals, we evaluate the population structure of 134 domesticated bovid breeds. Regardless of the analytical method or sample subset, the three major groups of Asian indicine, Eurasian taurine, and African taurine were consistently observed. Patterns of geographic dispersal resulting from co-migration with humans and exportation are recognizable in phylogenetic networks. All analytical methods reveal patterns of hybridization which occurred after divergence. Using 19 breeds, we map the cline of indicine introgression into Africa. We infer that African taurine possess a large portion of wild African auroch ancestry, causing their divergence from Eurasian taurine. We detect exportation patterns in Asia and identify a cline of Eurasian taurine/indicine hybridization in Asia. We also identify the influence of species other than Bos taurus taurus and B. t. indicus in the formation of Asian breeds. We detect the pronounced influence of Shorthorn cattle in the formation of European breeds. Iberian and Italian cattle possess introgression from African taurine. American Criollo cattle originate from Iberia, and not directly from Africa with African ancestry inherited via Iberian ancestors. Indicine introgression into American cattle occurred in the Americas, and not Europe. We argue that cattle migration, movement and trading followed by admixture have been important forces in shaping modern bovine genomic variation.  相似文献   

17.
Aim The Mascarene ridged frog, Ptychadena mascareniensis, is the only African amphibian species thought to occur on Madagascar and on the Seychelles and also Mascarene islands. We explored its phylogenetic relationships and intraspecific genetic differentiation to contribute to the understanding of transoceanic dispersal in amphibians. Methods Fragments of the mitochondrial 16S rRNA gene were sequenced from specimens collected over most of the distribution area of P. mascareniensis, including populations from Madagascar, Mascarenes and Seychelles. Results We identified five deeply divergent clades having pairwise divergences >5%, which probably all represent cryptic species in a P. mascareniensis complex. One of these seems to be restricted to Madagascar, the Mascarenes and the Seychelles. Sequences obtained from topotypic material (Réunion) were identical to the most widespread haplotype from Madagascar. The single Mauritian/Seychellean haplotype differed by only one mutation from a Malagasy haplotype. Main conclusions It is likely that the Mascarene and Seychellean populations were introduced from Madagascar by humans. In contrast, the absence of the Malagasy haplotypes from Africa and the distinct divergences among Malagasy populations (16 mutations in one divergent hapolotype from northern Madagascar) suggest that Madagascar was populated by Ptychadena before the arrival of humans c. 2000 years ago. Because Madagascar has been separated from Africa since the Jurassic, this colonization must have taken place by overseas rafting, which may be a more widespread dispersal mode in amphibians than commonly thought.  相似文献   

18.
倪喜军 《人类学学报》2022,41(4):576-592
解剖结构上的现代人是指具有近圆球形头骨、短而平的面颅、纤细的骨骼等特征的区别于其他古老人类的化石和现今的人群。支持多地区演化模型和支持近期非洲起源模型的学者,在“解剖结构上的现代人”的应用范围方面是不同的,前者以连续演化为基本思想,认为这一名词只包括智人中较进步的类群;而后者以分支系统学思想为基础,认为包括所有智人。分子古生物学研究显示,尼人、丹人和智人在遗传学水平上属于不同的人种。新近的以标本-种群为单元的系统分析,因为不是以属、种等分类学阶元进行的,因此与分类学的阶元划分无关。该系统分析的结果显示智人属于单系类群,哈尔滨人、大荔人等组成其姊妹群。尼人与智人的分异早于1百万年,与基因组水平的谱系分析相符合。多次多向的穿梭扩散是统计学上符合系统关系的模型。  相似文献   

19.
Previous studies have suggested that bird populations in east Asia were less affected by Pleistocene climatic fluctuations than those in Europe and North America. However, this is mainly based on comparisons among species. It would be more relevant to analyse geographical populations of widespread species or species complexes. We analyzed two mitochondrial genes and two nuclear introns for all taxa of Pica to investigate 1) which Earth history factors have shaped the lineage divergence, and 2) whether different geographical populations were differently affected by the Pleistocene climatic changes. Our mitochondrial tree recovered three widespread lineages, 1) in east Asia, 2) across north Eurasia, and 3) in North America, respectively, with three isolated lineages in northwest Africa, Arabia and the Qinghai‐Tibet Plateau, respectively. Divergences among lineages took place 1.4–3.1 million yr ago. The northwest African population was sister to the others, which formed two main clades. In one of these, Arabia was sister to Qinghai‐Tibet, and these formed the sister clade to the east Asia clade. The other main clade comprised the North American and north Eurasian clades. There was no or very slight structure within these six geographical clades, including a lack of differentiation between the two North American species black‐billed magpie P. hudsonia and yellow‐billed magpie P. nutalli. Demographic expansion was recorded in the three most widespread lineages after 0.06 Ma. Asymmetric gene flow was recorded in the north Eurasian clade from southwestern Europe eastward, whereas the east Asian clade was rooted in south central China. Our results indicate that the fragmentation of the six clades of Pica was related to climatic cooling and aridification during periods of the Pliocene–Pleistocene. Populations on both sides of the Eurasian continent were similarly influenced by the Pleistocene climate changes and expanded concomitantly with the expansion of steppes. Based on results we also propose a revised taxonomy recognising seven species of Pica.  相似文献   

20.
Aim To assess the genetic and archaeological evidence for the migration of modern humans out of Africa to the circum‐Pacific region and compare the migration patterns with Late Pleistocene and Holocene changes in sea level and climate. Location Southern and eastern Asia, Australia, and Oceania. Methods Review of the literature and detailed compilations of data on early human settlements, sea level, and climate change. Results The expansion of modern humans out of Africa, following a coastal route into southern Asia, was initially thwarted by a series of large and abrupt environmental changes. A period of relatively stable climate and sea level from c. 45,000 yr bp to 40,000 yr bp supported a rapid coastal expansion of modern humans throughout much of Southeast Asia, enabling them to reach the coasts of northeast Russia and Japan by 38,000–37,000 yr bp . Further northwards, migrations were delayed by cold northern climates, which began to deteriorate rapidly after 33,000 yr bp . Human migrations along the coast of the Bering Sea into the New World appear to have occurred much later, c. 14,000 yr bp , probably by people from central Asia who were better adapted to cold northern climates. Cold, dry climates and rapidly changing sea levels leading into and out of the Last Glacial Maximum inhibited coastal settlement, and many of the sites occupied prior to 33,000 yr bp were abandoned. After 16,000 yr bp , the sea‐level rise slowed enough to permit coastal ecosystems to develop and coasts to be re‐colonized, but abrupt changes in climate and sea level inhibited this development until after 12,000 yr bp . Between 12,000 yr bp and 7000 yr bp there was a dramatic increase in reef and estuary/lagoon ecosystems, concurrent with a major expansion of coastal settlements. This early Holocene increase in coastal environments and the concomitant expansion of human coastal‐resource exploitation were followed by corresponding declines in both phenomena in the mid‐Holocene, c. 6000–4000 yr bp . This decline in coastal resources is linked to the drop in sea level throughout the Pacific, which may have caused the widespread population dislocations that ultimately led to the human expansion throughout Oceania. Main conclusions Climate and sea‐level changes played a central role in the peopling of the circum‐Pacific region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号