首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Limb regeneration is a complex yet fascinating process observed to some extent in many animal species, though seen in its entirety in urodele amphibians. Accomplished by formation of a morphologically uniform intermediate, the blastema, scientists have long attempted to define the cellular constituents that enable regrowth of a functional appendage. Today, we know that the blastema consists of a variety of multipotent progenitor cells originating from a variety of tissues, and which contribute to limb tissue regeneration in a lineage-restricted manner. By continuing to dissect the role of stem cells in limb regeneration, we can hope to one day modulate the human response to limb amputation and facilitate regrowth of a working replacement.  相似文献   

2.
While urodele amphibians (newts and salamanders) can regenerate limbs as adults, other tetrapods (reptiles, birds and mammals) cannot and just undergo wound healing. In adult mammals such as mice and humans, the wound heals and a scar is formed after injury, while wound healing is completed without scarring in an embryonic mouse. Completion of regeneration and wound healing takes a long time in regenerative and non-regenerative limbs, respectively. However, it is the early steps that are critical for determining the extent of regenerative response after limb amputation, ranging from wound healing with scar formation, scar-free wound healing, hypomorphic limb regeneration to complete limb regeneration. In addition to the accumulation of information on gene expression during limb regeneration, functional analysis of signaling molecules has recently shown important roles of fibroblast growth factor (FGF), Wnt/beta-catenin and bone morphogenic protein (BMP)/Msx signaling. Here, the routine steps of wound healing/limb regeneration and signaling molecules specifically involved in limb regeneration are summarized. Regeneration of embryonic mouse digit tips and anuran amphibian (Xenopus) limbs shows intermediate regenerative responses between the two extremes, those of adult mammals (least regenerative) and urodele amphibians (more regenerative), providing a range of models to study the various abilities of limbs to regenerate.  相似文献   

3.
Intercalation is the process whereby cells located at the boundary of a wound interact to stimulate proliferation and the restoration of the structures between the boundaries that were lost during wounding. Thus, intercalation is widely considered to be the mechanism of regeneration. When a salamander limb is amputated, the entire cascade of regeneration events is activated, and the missing limb segments and their boundaries (joints) as well as the structures within each segment are regenerated. Therefore, in an amputated limb it is not possible to distinguish between intersegmental regeneration (formation of new segments/joints) and intrasegmental regeneration (formation of structures within a given segment), and it is not possible to study the differential regulation of these two processes. We have used two models for regeneration that allow us to study these two processes independently, and report that inter- and intrasegmental regeneration are different processes regulated by different signaling pathways. New limb segments/joints can be regenerated from cells that dedifferentiate to form blastema cells in response to signaling that is mediated in part by fibroblast growth factor.  相似文献   

4.
Urodele amphibians (salamanders) are unique among adult vertebrates in their ability to regenerate structurally complete and fully functional limbs. Regeneration is a stepwise process that requires interactions between keratinocytes, nerves and fibroblasts. The formation of a wound epithelium covering the amputation site is an early and necessary event in the process but the molecular mechanisms that underlie the role of the wound epithelium in regeneration remain unclear. We have developed an ex vivo model that recapitulates many features of in vivo wound healing. The model comprises a circular explant of axolotl (Ambystoma mexicanum) limb skin with a central circular, full thickness wound. Re‐epithelialization of the wound area is rapid (typically <11 h) and is dependent on metalloproteinase activity. The ex vivo wound epithelium is viable, responds to neuronal signals and is able to participate in ectopic blastema formation and limb regeneration. This ex vivo model provides a reproducible and tractable system in which to study the cellular and molecular events that underlie wound healing and regeneration.  相似文献   

5.
The accessory limb model has become an alternative model for performing investigations of limb regeneration in an amputated limb. In the accessory limb model, a complete patterned limb can be induced as a result of an interaction between the wound epithelium, a nerve and dermal fibroblasts in the skin. Studies should therefore focus on examining these tissues. To date, however, a study of cellular contributions in the accessory limb model has not been reported. By using green fluorescent protein (GFP) transgenic axolotl tissues, we can trace cell fate at the tissue level. Therefore, in the present study, we transgrafted GFP skin onto the limb of a non‐GFP host and induced an accessory limb to investigate cellular contributions. Previous studies of cell contribution to amputation‐induced blastemas have demonstrated that dermal cells are the progenitors of many of the early blastema cells, and that these cells contribute to regeneration of the connective tissues, including cartilage. In the present study, we have determined that this same population of progenitor cells responds to signaling from the nerve and wound epithelium in the absence of limb amputation to form an ectopic blastema and regenerate the connective tissues of an ectopic limb. Blastema cells from dermal fibroblasts, however, did not differentiate into either muscle or neural cells, and we conclude that dermal fibroblasts are dedifferentiated along its developmental lineage.  相似文献   

6.
Previous studies have shown that both fibroblast growth factor (FGF)-1 and nerves play an important function during limb regeneration, but no correlation between these two regeneration factors has yet been demonstrated. In the present study we first establish that exogenous FGF-2, a member of the FGF family that binds to the same high-affinity receptors as FGF-1, is able to stimulate both [3H]-thymidine incorporation and the mitotic index in the mesenchyme and the epidermal cells of denervated blastemas. We then use cocultures of spinal cord and blastema on heparin-coated dishes, an in vitro system mimicking the in vivo interactions during limb regeneration, to show that interactions between nerve fibers from the spinal cord and the blastema enhance the release of bioactive FGF-1. Release of this growth factor seemed to correlate with nerve fiber regeneration, as it decreased in the presence of the dipeptide Leu-Ala, known to inhibit neurite outgrowth, while the inverse dipeptide Ala-Leu was inactive. Therefore, these results support our hypothesis that the interaction between nervous tissue and blastema is permissive for the release of FGF-1, which in turn stimulates blastema cell proliferation.  相似文献   

7.
张卓航  姜振宇  杨忠 《生命科学》2012,(10):1202-1206
蝾螈等有尾两栖类在其肢体任何节段被截断后,能通过准确的时空模式调节完成具有位置匹配关系的再生修复,该过程由受损肢体残端产生的芽基组织介导完成。芽基细胞的来源目前尚有争议,其产生受局部基质微环境诱导并涉及细胞表观遗传学改变,性状上呈现不完全的细胞再编程特征,增殖分化具有神经依赖性。哺乳类包括人类仅具有极为有限的肢体再生能力,其肢体再生限于指(趾)末端受损离断。深入探讨有尾两栖类等肢体再生过程的细胞分子机制,将为探索新的干细胞损伤修复途径及再生促进策略提供线索。  相似文献   

8.
After tail and limb amputation in lizard, injection of 5BrdU for 6 days produces immunolabelled cells in most tissues of tail and limb stumps. After further 8 and 16 days, and 14 and 22 days of regeneration, numerous 5BrdU-labelled cells are detected in regenerating tail and limb, derived from most stump tissues. In tail blastema cone at 14 days, sparse-labelled cells remain in proximal dermis, muscles, cartilaginous tube and external layers of wound epidermis but are numerous in the blastema. In apical regions at 22 days of regeneration, labelled mesenchymal cells are sparse, while the apical wound epidermis contains numerous labelled cells in suprabasal and external layers, indicating cell accumulation from more proximal epidermis. Cell proliferation dilutes the label, and keratinocytes take 8 days to migrate into corneous layers. In healing limbs, labelled cells remain sparse from 14 to 22 days of regeneration in wound epidermis and repairing tissues and little labelling dilution occurs indicating low cell proliferation for local tissue repair but not distal growth. Labelled cells are present in epidermis, intermuscle and peri-nerve connectives, bone periosteum, cartilaginous callus and sparse fibroblasts, leading to the formation of a scarring outgrowth. Resident stem cells and dedifferentiation occur when stump tissues are damaged.  相似文献   

9.
10.
In newt lens regeneration, the dorsal iris has lens forming ability and the ventral iris has no such capability, whereas there is no difference in the morphological criteria. To investigate the real aspects of this characteristic lens regeneration in the newt at the cellular level, a useful model system was constructed by transplanting the dorsal and ventral reaggregate derived from singly dissociated pigmented epithelial cells of the iris into the blastema of the forelimb in the newt. The lens was formed from the dorsal reaggregate with high efficiency, but not from the ventral one. No lens formation was observed in the implantation of the reaggregate into the tissue of the intact limbs. In detailed examination of the process of lens formation from the reaggregate, it was shown that tubular formation was the first step in the rearrangement of cells within the reaggregate. This was followed by depigmentation, vesicle formation with active cell growth, and the final step was lens fiber formation by transdifferentiation of epithelial cells composing the lens vesicle. The process was almost the same as in situ lens regeneration except the reconstitution of the two-layered epithelial structure was embodied as flattened tubular formation in the first step. The present study made it possible for the first time to examine lens forming ability in the reaggregate mixed with dorsal and ventral cells, because the formation of a reaggregate was started from singly dissociated cells of the dorsal and ventral cells of the iris. Mixed reaggregate experiments indicated that the existence of the dorsal cells in a cluster within the reaggregate is important in lens formation, and ventral cells showed an inhibitory effect on the formation. The present study demonstrated that the limb system thus constructed was effective for the analysis of lens formation at the cellular level and made it possible to examine the role of dorsal and ventral cells in lens regeneration.  相似文献   

11.
Limb regeneration in urodeles is achieved through the dedifferentiation of tissues at the amputation plane and through the production of the blastema. This tissue breakdown is possible by extensive alterations in molecules of the extracellular matrix. In this respect we describe the regulation of several integrins during such events. It was found that α1 and β1 integrins were down-regulated as blastema formation proceeded. In contrast, the expression of α3, α6 and αv integrins were upregulated in the blastema. These data are consistent with the roles of integrins in developmental phenomena and are discussed in light of the mechanisms of dedifferentiation.  相似文献   

12.
We studied the intensity of blastema growth in operated planarians at an early stage of regeneration as a function of the following factors: area of regenerate and its function and number of regeneration foci (volume of regeneration). There was no direct dependence between the intensity of regeneration and the size of regenerating fragment, as well as the volume of regeneration. Some specific features of the early stage of regeneration have been described, which suggest its determinate character. The behavior of neoblasts during formation of blastemas with different localization is discussed.  相似文献   

13.
The ability of birds and mammals to regenerate tissues is limited. By contrast, urodele amphibians can regenerate a variety of injured tissues such as intestine, cardiac muscle, lens and neural retina, as well as entire structures such as limbs, tail and lower jaw. This regenerative capacity is associated with the ability to form masses of mesenchyme cells (blastemas) that differentiate into the missing tissues or parts. Understanding the mechanisms that underlie blastema formation in urodeles will provide valuable tools with which to achieve the goal of stimulating regeneration in mammalian tissues that do not naturally regenerate. Here we discuss an example of tissue regeneration (spinal cord) and an example of epimorphic appendage regeneration (limb) in the axolotl Ambystoma mexicanum , emphasizing analysis of the processes that produce the regeneration blastema and of the tissue interactions and blastemal products that contribute to the regeneration-promoting environment.  相似文献   

14.
The tail of the Xenopus tadpole contains major axial structures, including a spinal cord, notochord and myotomes, and regenerates within 2 weeks following amputation. The tail regeneration in Xenopus can provide insights into the molecular basis of the regeneration mechanism. The regenerated tail has some differences from the normal tail, including an immature spinal cord and incomplete segmentation of the muscle masses. Lineage analyses have suggested that the tail tissues are reconstructed with lineage-restricted stem cells derived from their own tissues in clear contrast to urodele regeneration, in which multipotent blastema cells derived from differentiated cells play a major role. Comprehensive gene expression analyses resulted in the identification of a panel of genes involved in sequential steps of the regeneration. Manipulation of genes' activities suggested that the tail regeneration is regulated through several major signaling pathways.  相似文献   

15.
Deer antler regeneration: cells, concepts, and controversies   总被引:9,自引:0,他引:9  
The periodic replacement of antlers is an exceptional regenerative process in mammals, which in general are unable to regenerate complete body appendages. Antler regeneration has traditionally been viewed as an epimorphic process closely resembling limb regeneration in urodele amphibians, and the terminology of the latter process has also been applied to antler regeneration. More recent studies, however, showed that, unlike urodele limb regeneration, antler regeneration does not involve cell dedifferentiation and the formation of a blastema from these dedifferentiated cells. Rather, these studies suggest that antler regeneration is a stem-cell-based process that depends on the periodic activation of, presumably neural-crest-derived, periosteal stem cells of the distal pedicle. The evidence for this hypothesis is reviewed and as a result, a new concept of antler regeneration as a process of stem-cell-based epimorphic regeneration is proposed that does not involve cell dedifferentiation or transdifferentiation. Antler regeneration illustrates that extensive appendage regeneration in a postnatal mammal can be achieved by a developmental process that differs in several fundamental aspects from limb regeneration in urodeles.  相似文献   

16.
Regenerative ability varies tremendously across species. A common feature of regeneration of appendages such as limbs, fins, antlers, and tails is the formation of a blastema—a transient structure that houses a pool of progenitor cells that can regenerate the missing tissue. We have identified the expression of von Willebrand factor D and EGF domains (vwde) as a common feature of blastemas capable of regenerating limbs and fins in a variety of highly regenerative species, including axolotl (Ambystoma mexicanum), lungfish (Lepidosiren paradoxa), and Polpyterus (Polypterus senegalus). Further, vwde expression is tightly linked to the ability to regenerate appendages in Xenopus laevis. Functional experiments demonstrate a requirement for vwde in regeneration and indicate that Vwde is a potent growth factor in the blastema. These data identify a key role for vwde in regenerating blastemas and underscore the power of an evolutionarily informed approach for identifying conserved genetic components of regeneration.  相似文献   

17.
Correct selection of an appropriate animal mode to closely mimic human extremity diseases or to exhibit desirable phenotypes of limb regeneration is the first critical step for all scientists in biomedical and regenerative researches. The commonly-used animals in limb regeneration and repairing studies, such as axolotl, mice, and rats, are discussed in the review and other models including cockroaches, dogs, and horses are also mentioned. The review weighs the general advantages, disadvantages, and precedent uses of each model in the context of limb and peripheral injury and subsequent regeneration. We hope that this review can provide the reader an overview of each model, from which to select one for their specific purpose.  相似文献   

18.
Urodele amphibians are the only vertebrates that can regenerate their limbs throughout their life. The critical feature of limb regeneration is the formation of a blastema, a process that requires an intact nerve supply. Nerves appear to provide an unidentified factor, known as the neurotrophic factor (NTF), which stimulates cycling of blastema cells. One candidate NTF is glial growth factor (GGF), a member of the neuregulin (NRG) growth factor family. NRGs are both survival factors and mitogens to glial cells, including Schwann cells. All forms of NRGs contain an EGF‐like domain that is sufficient to activate NRG receptors erbB2, erbB3, and erbB4. To investigate the involvement of neuregulin in newt limb regeneration, we cloned and characterized one neuregulin isoform, a neuregulin with a cysteine‐rich domain (CRD‐NRG), from newt (Notophthalmus viridescens) spinal cord. Results of in situ hybridization showed that the newt CRD‐NRG is highly expressed in dorsal root ganglia and spinal cord neurons that innervate the limbs. We also demonstrated the biological activity of recombinant human GGF2 (rhGGF2) in urodele limb regeneration. When rhGGF2 was injected into denervated, nerve‐dependent axolotl blastemas, the labeling index (LI) of blastema cells was maintained at a level near to that of control, innervated blastemas, whereas without rhGGF2 the LI decreased significantly. In another experiment, rhGGF2 was delivered into denervated, nerve‐dependent blastemas either by direct infusion into blastemas or by injection into the intraperitoneal cavity. The denervated blastemas were rescued into a regeneration response. © 2000 John Wiley & Sons, Inc. J Neurobiol 43: 150–158, 2000  相似文献   

19.
20.
Vitamin D is essential for normal metabolism of phosphorus and calcium, and differentiation of skeletal elements. 1,25 dihydroxyvitamin-D3, the biologically active metabolite, acts as an induction/proliferation switch in various cell types and promotes chondrogenesis of chick limb bud mesenchymal cells. The function of vitamin D is mediated through its nuclear receptor, the vitamin D receptor (VDR). The proliferative actions of 1,25(OH)2-D3 on limb bud mesenchymal cells are similar to the ones produced by retinoids, such as all- trans retinoic acid (RA) or 9- cis retinoic acid (9- cis ). The retinoids have been shown to be compounds of extreme importance in the field of limb development and regeneration. In order to examine possible roles of vitamin D metabolites on limb regeneration, the effects of 1,25(OH)2-D3, 24,25(OH)2-D3 and KH1060 (a more potent metabolite) alone or in conjunction with all- trans RA or 9- cis RA on the regenerating axolotl limb. Vitamin D affects limb morphogenesis by generating abnormalities in skeletal elements. Synergism of vitamin D with retinoic acid in affecting pattern formation is suggested by the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号