首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Studies on the amphibian respiratory tract microvascular anatomy are few. Using scanning electron microscopy (SEM) of vascular corrosion casts (VCCs) and light microscopy of perfusion‐fixed tissue sections, we studied the bronchial microvascular anatomy in the adult South African Clawed Toad, Xenopus laevis Daudin. Histomorphology showed that the bronchial wall consists (from luminal to abluminal) of squamous epithelium, subepithelial capillary bed, cartilage rings or cartilage plates, a layer of dense connective tissue, a layer of smooth muscle cells, and squamous epithelium (serosa). SEM of VCCs reveals that bilaterally a ventral, a dorsal (Ø 77.21 ± 7.61 μm), and a caudal bronchial artery supply the bronchial subepithelial capillary bed. The ventral bronchial artery has 3–4 branching orders (interbranching distances: 506.3 ± 392.12 μm; branching angles of first‐ and second‐order bifurcations: 24.60 ± 10.24° and 29.59 ± 14.3°). Casts of bronchial arteries display imprints of flow dividers and sphincters. Cranial and caudal bronchial veins (Ø 154.78 ± 49.68 μm) drain into pulmonary veins. They lack microvenous valves. The location of the dense subepithelial capillary meshwork just beneath the thin squamous bronchial epithelium and its drainage into the pulmonary veins make it likely that in Xenopus, bronchi assist in aerial gas exchange.  相似文献   

2.
    
The reorganization of cranial cartilages during tadpole metamorphosis is a set of complex processes. The fates of larval cartilage‐forming cells (chondrocytes) and sources of adult chondrocytes are largely unknown. Individual larval cranial cartilages may either degenerate or remodel, while many adult cartilages appear to form de novo during metamorphosis. Determining the extent to which adult chondrocytes/cartilages are derived from larval chondrocytes during metamorphosis requires new techniques in chondrocyte lineage tracing. We have developed two transgenic systems to label cartilage cells throughout the body with fluorescent proteins. One system strongly labels early tadpole cartilages only. The other system inducibly labels forming cartilages at any developmental stage. We examined cartilages of the skull (viscero‐ and neurocranium), and identified larval cartilages that either resorb or remodel into adult cartilages. Our data show that the adult otic capsules, tecti anterius and posterius, hyale, and portions of Meckel's cartilage are derived from larval chondrocytes. Our data also suggest that most adult cartilages form de novo, though we cannot rule out the potential for extreme larval chondrocyte proliferation or de‐ and re‐differentiation, which could dilute our fluorescent protein signal. The transgenic lineage tracing strategies developed here are the first examples of inducible, skeleton‐specific, lineage tracing in Xenopus.  相似文献   

3.
    
Several chemokine molecules control cell movements during early morphogenesis. However, it is unclear whether chemokine molecules affect cell fate. Here, we identified and characterized the CXC‐type chemokine ligand in Xenopus laevis, Xenopus CXCLh (XCXCLh), during early embryogenesis. XCXCLh is expressed in the dorsal vegetal region at the gastrula stage. Both overexpression and knockdown of XCXCLh in the dorsal region inhibited gastrulation. XCXCLh contributed to the attraction of mesendodermal cells and accelerated the reassembly of scratched culture cells. Also, XCXCLh contributed to early endodermal induction. Overexpression of VegTmRNA or high concentrations of calcium ions induced XCXCLh expression. XCXCLh may play roles in both cell movements and differentiation during early Xenopus embryogenesis.  相似文献   

4.
    
Regeneration of lost organs involves complex processes, including host defense from infection and rebuilding of lost tissues. We previously reported that Xenopus neuronal pentraxin I (xNP1) is expressed preferentially in regenerating Xenopus laevis tadpole tails. To evaluate xNP1 function in tail regeneration, and also in tail development, we analyzed xNP1 expression in tailbud embryos and regenerating/healing tails following tail amputation in the ‘regeneration’ period, as well as in the ‘refractory’ period, when tadpoles lose their tail regenerative ability. Within 10 h after tail amputation, xNP1 was induced at the amputation site regardless of the tail regenerative ability, suggesting that xNP1 functions in acute phase responses. xNP1 was widely expressed in regenerating tails, but not in the tail buds of tailbud embryos, suggesting its possible role in the immune response/healing after an injury. xNP1 expression was also observed in neural tissues/primordia in tailbud embryos and in the spinal cord in regenerating/healing tails in both periods, implying its possible roles in neural development or function. Moreover, during the first 48 h after amputation, xNP1 expression was sustained at the spinal cord of tails in the ‘regeneration’ period tadpoles, but not in the ‘refractory’ period tadpoles, suggesting that xNP1 expression at the spinal cord correlates with regeneration. Our findings suggest that xNP1 is involved in both acute phase responses and neural development/functions, which is unique compared to mammalian pentraxins whose family members are specialized in either acute phase responses or neural functions.  相似文献   

5.
    
From whole genome sequencing of an allotetraploid frog, Xenopus laevis, two homeologous sets (L and S) of four Hox clusters A through D (HoxA.L/S, HoxB.L/S, HoxC.L/S, and HoxD.L/S) and 13 paralogous groups (PGs) with 76 genes were identified, allowing us to carry out the first comprehensive analyses of hox gene expression in vertebrates. Expression of all hox genes during development and in adult tissues was analyzed by RNA‐sequencing. The expression levels of most hox genes were similar between homeologs, but in some pairs, large differences were observed and several of these were confirmed by RT‐PCR and whole mount in situ hybridization experiments. These results indicate that subfunctionalization of hox genes may have occurred since allotetraploidization. Furthermore, comprehensive analysis of hox gene expression during early development did not agree with the hypothesis of temporal collinearity especially in genes belonging to PG2 to PG10 .  相似文献   

6.
    
The tail organizer has been assessed by such transplantation methods as the Einsteck procedure. However, we found that simple wounding of blastocoel roof (BCR) made it possible to form secondary tails without any transplantation in Xenopus laevis. We revealed that the ectopic expression of Xbra was blocked by inhibiting the contact between BCR and blastocoel floor (BCF), and wounding per se seemed to be not directly related to the secondary tail formation. Therefore, the secondary tail might be induced by the contact between BCR and BCF due to the leak of blastocoel fluid from the wound. This secondary tail was similar to the original tail in the expression pattern of tail genes, and in the fact that the inhibition of fibroblast growth factor signaling prevented the secondary tail induction. Our results imply that the secondary tail formation reflects the developmental processes of the original tail, indicating that simple wounding of BCR is useful for the analysis of tail formation in normal development.  相似文献   

7.
    
Zebrafish is a good model for studying vertebrate development because of the availability of powerful genetic tools. We are interested in the study of the craniofacial skeletal structure of the zebrafish. For this purpose, we performed a gene trap screen and identified a Gal4 gene trap line, SAGFF(LF)134A. We then analyzed the expression pattern of SAGFF(LF)134A;Tg(UAS:GFP) and found that green fluorescent protein (GFP) was expressed not only in craniofacial skeletal elements but also in the vascular system, as well as in the nervous system. In craniofacial skeletal elements, strong GFP expression was detected not only in chondrocytes but also in the perichondrium. In the vascular system, GFP was expressed in endothelium-associated cells. In the spinal cord, strong GFP expression was found in the floor plate, and later in the dorsal radial glia located on the midline. Taking advantage of this transgenic line, which drives Gal4 expression in specific tissues, we crossed SAGFF(LF)134A with several UAS reporter lines. In particular, time-lapse imaging of photoconverted floor-plate cells of SAGFF(LF)134A;Tg(UAS:KikGR) revealed that the floor-plate cells changed their shape within 36 h from cuboidal/trapezoidal to wine glass shaped. Moreover, we identified a novel mode of association between axons and glia. The putative paths for the commissural axons, including pax8-positive CoBL interneurons, were identified as small openings in the basal endfoot of each floor plate. Our results indicate that the transgenic line would be useful for studying the morphogenesis of less-well-characterized tissues of interest, including the perichondrium, dorsal midline radial glia, late-stage floor plate, and vascular endothelium-associated cells.  相似文献   

8.
    
In many animals, the germ plasm is sufficient and necessary for primordial germ cell (PGC) formation. It contains germinal granules and abundant mitochondria (germline‐Mt). However, the role of germline‐Mt in germ cell formation remains poorly understood. In Xenopus, the germ plasm is distributed as many small islands at the vegetal pole, which gradually aggregates to form a single large mass in each of the four vegetal pole cells at the early blastula stage. Polymerized microtubules and the adapter protein kinesin are required for the aggregation of germ plasm. However, it remains unknown whether germline‐Mt trafficking is important for the cytoplasmic transport of germinal granules during germ plasm aggregation. In this study, we focused on the mitochondrial small GTPase protein Rhot1 to inhibit mitochondrial trafficking during the germ plasm aggregation. Expression of Rhot1ΔC, which lacks the C‐terminal mitochondrial transmembrane domain, inhibited the aggregation of germline‐Mt during early development. In Rhot1‐inhibited embryos, germinal granule components did not aggregate during cleavage stages, which reduced the number of PGCs on the genital ridge at tail‐bud stage. These results suggest that mitochondrial trafficking is involved in the aggregation of germinal granule components, which are essential for the formation of PGCs.  相似文献   

9.
    
Triticum aestivum aluminum‐activated malate transporter (TaALMT1) is the founding member of a unique gene family of anion transporters (ALMTs) that mediate the efflux of organic acids. A small sub‐group of root‐localized ALMTs, including TaALMT1, is physiologically associated with in planta aluminum (Al) resistance. TaALMT1 exhibits significant enhancement of transport activity in response to extracellular Al. In this study, we integrated structure–function analyses of structurally altered TaALMT1 proteins expressed in Xenopus oocytes with phylogenic analyses of the ALMT family. Our aim is to re‐examine the role of protein domains in terms of their potential involvement in the Al‐dependent enhancement (i.e. Al‐responsiveness) of TaALMT1 transport activity, as well as the roles of all its 43 negatively charged amino acid residues. Our results indicate that the N‐domain, which is predicted to form the conductive pathway, mediates ion transport even in the absence of the C‐domain. However, segments in both domains are involved in Al3+ sensing. We identified two regions, one at the N‐terminus and a hydrophobic region at the C‐terminus, that jointly contribute to the Al‐response phenotype. Interestingly, the characteristic motif at the N‐terminus appears to be specific for Al‐responsive ALMTs. Our study highlights the need to include a comprehensive phylogenetic analysis when drawing inferences from structure–function analyses, as a significant proportion of the functional changes observed for TaALMT1 are most likely the result of alterations in the overall structural integrity of ALMT family proteins rather than modifications of specific sites involved in Al3+ sensing.  相似文献   

10.
11.
12.
    
To generate albino lines of Xenopus tropicalis, we injected fertilized eggs with mRNAs encoding zinc‐finger nucleases (ZFNs) targeting the tyrosinase coding region. Surprisingly, vitiligo was observed on the skin of F0 frogs that had been injected with ZFN mRNAs, indicating that both tyrosinase genes in the genome were disrupted in all melanocytes within the vitiligo patches. Mutation analysis using genomic DNA from the skin revealed that two mosaic F0 frogs underwent spatially complex tyrosinase gene mutations. The data implies that the ZFN‐induced tyrosinase gene ablations occurred randomly over space and time throughout the entire body, possibly until the young tadpole stage, and that melanocyte precursors lacking functional tyrosinase proliferated and formed vitiligo patches. Several albino X. tropicalis, which are compound heterozygotes for biallelic tyrosinase mutations, were obtained by mating the mosaic F0 frogs. To our knowledge, this is the first report of the albino vertebrates generated by the targeted gene knockout.  相似文献   

13.
    
Recent developments in genomic resources and high‐throughput transgenesis techniques have allowed Xenopus to ‘metamorphose’ from a classic model for embryology to a leading‐edge experimental system for functional genomics. This process has incorporated the fast‐breeding diploid frog, Xenopus tropicalis, as a new model‐system for vertebrate genomics and genetics. Sequencing of the X. tropicalis genome is nearly complete, and its comparison with mammalian sequences offers a reliable guide for the genome‐wide prediction of cis‐regulatory elements. Unique cDNA sets have been generated for both X. tropicalis and X. laevis, which have facilitated non‐redundant, systematic gene expression screening and comprehensive gene expression analysis. A variety of transgenesis techniques are available for both X. laevis and X. tropicalis, and the appropriate procedure may be chosen depending on the purpose for which it is required. Effective use of these resources and techniques will help to reveal the overall picture of the complex wiring of gene regulatory networks that control vertebrate development.  相似文献   

14.
15.
16.
    
Dutch elm disease (DED), caused by the fungi Ophiostoma ulmi and O. novo‐ulmi, has reduced elm populations severely in Europe and North America. Breeding programmes are in action to find less susceptible elm varieties suitable for re‐establishing elm stands. Bark beetles, mainly Scolytus spp., are the only known natural vectors of DED. During twig feeding, beetles transfer Ophiostoma spores to healthy elms. Thus, less palatable elms should run a lower risk of DED infections. In feeding preference bioassays, we offered twigs from elms exhibiting different degree of susceptibility to O. novo‐ulmi, together with non‐host trees to Scolytus beetles. Scolytus multistriatus preferred wych elm, Ulmus glabra, to 100% in two‐choice tests, whereas S. laevis did not discriminate between a tolerant and a susceptible variety of field elm, U. minor. We suggest that the feeding assay is useful as a low‐tech method in breeding programmes for evaluating the suitability of promising elm genotypes to vector insects.  相似文献   

17.
18.
19.
    
Mit mutations that disrupt function of the mitochondrial electron transport chain can, inexplicably, prolong Caenorhabditis elegans lifespan. In this study we use a metabolomics approach to identify an ensemble of mitochondrial‐derived α‐ketoacids and α‐hydroxyacids that are produced by long‐lived Mit mutants but not by other long‐lived mutants or by short‐lived mitochondrial mutants. We show that accumulation of these compounds is dependent on concerted inhibition of three α‐ketoacid dehydrogenases that share dihydrolipoamide dehydrogenase (DLD) as a common subunit, a protein previously linked in humans with increased risk of Alzheimer's disease. When the expression of DLD in wild‐type animals was reduced using RNA interference we observed an unprecedented effect on lifespan – as RNAi dosage was increased lifespan was significantly shortened, but, at higher doses, it was significantly lengthened, suggesting that DLD plays a unique role in modulating length of life. Our findings provide novel insight into the origin of the Mit phenotype.  相似文献   

20.
    
The fire blight susceptible apple cultivar Malus × domestica Borkh. cv. ‘Gala’ was transformed with the candidate fire blight resistance gene FB_MR5 originating from the crab apple accession Malus × robusta 5 (Mr5). A total of five different transgenic lines were obtained. All transgenic lines were shown to be stably transformed and originate from different transgenic events. The transgenic lines express the FB_MR5 either driven by the constitutive CaMV 35S promoter and the ocs terminator or by its native promoter and terminator sequences. Phenotyping experiments were performed with Mr5‐virulent and Mr5‐avirulent strains of Erwinia amylovora, the causal agent of fire blight. Significantly less disease symptoms were detected on transgenic lines after inoculation with two different Mr5‐avirulent E. amylovora strains, while significantly more shoot necrosis was observed after inoculation with the Mr5‐virulent mutant strain ZYRKD3_1. The results of these experiments demonstrated the ability of a single gene isolated from the native gene pool of apple to protect a susceptible cultivar from fire blight. Furthermore, this gene is confirmed to be the resistance determinant of Mr5 as the transformed lines undergo the same gene‐for‐gene interaction in the host–pathogen relationship Mr5–E. amylovora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号