首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Po‐Ju Ke  Takefumi Nakazawa 《Oikos》2018,127(3):353-363
Organisms typically change their diets ontogenetically. Recent studies have shown that an ontogenetic diet shift undermines the resilience of stage‐structured food webs. Here, we study the integration of stage‐structured food‐web theory into theory of hybrid community (i.e. mixture of different interaction types), considering that not only diet but also interaction type often changes because of ontogenetic niche shift (e.g. the metamorphosis of pollinating insects, in which juveniles and adults are herbivores and pollinators, respectively). We developed and mathematically analysed a one‐consumer two‐resource model in which juvenile and adult consumers utilise different resources as antagonists and mutualists, respectively. Model analyses illustrated that the consumer either goes extinct or coexists with the resources depending on the initial condition when the resources have low carrying capacities while their community dynamics always converge to a single steady state when the resources have high carrying capacities. These dynamic features are different from those of the corresponding purely antagonistic module in previous studies, in which the consumer always goes extinct for low resource carrying capacities while the dynamics converge to either juvenile‐dominated or adult‐dominated state depending on the initial conditions for high resource carrying capacities. Taken together, we can suggest that ontogenetic antagonism–mutualism coupling is stabilising in that it increases the potential for species coexistence in unproductive environments while improving community resilience in productive environments. Further, these effects are generally robust to interaction nonlinearity. Beyond the previous concern of the instability in stage‐structured food‐webs, our results suggest that antagonism–mutualism coupling can play a crucial role in stabilising stage‐structured hybrid (e.g. plant–animal) communities under environmental changes. The present study represents an important first step in understanding how interaction type diversity can mediate the dynamics of stage‐structured communities.  相似文献   

2.
食物网中的上行效应和下行效应对于群落的动态和生态系统功能有十分重要的影响,旨在探讨互利关系和植物多样性对节肢动物群落中食物网不同营养级之间的影响。通过随机裂区试验方法,分别设置了3种蚂蚁-紫胶虫互利关系处理(有互利关系、无互利关系和自然对照)以及3种植物多样性处理(单一种植、2树种混植和3树种混植),于2016年8月和9月分两次用手捡法、网扫法和震落法采集试验地寄主植物上所有的节肢动物,并按照不同营养级将其分类。利用结构方程模型分析方法对不同营养级之间的相互作用的路径和强度进行了比较,结果显示:1)互利关系对捕食者和消费者均有显著的下行作用,有互利关系处理下蚂蚁对捕食者的路径强度要强于自然对照组,互利关系对捕食者的影响要强于对消费者的影响。2)植物多样性会通过影响植物的生物量而对消费者和捕食者产生显著的上行效应影响,这种影响会随着营养级的升高而显著减小。3)消费者主要受植物多样性的上行效应影响,而捕食者主要受互利关系的下行效应影响。有互利关系的食物网结构更加复杂,营养级之间的相互作用更为显著。探讨了以蚂蚁-紫胶虫互利关系为核心作用的紫胶林生态系统中互利关系和植物多样性对节肢动物食物网中...  相似文献   

3.
The relationship between structure and stability in ecological networks and the effect of spatial dynamics on natural communities have both been major foci of ecological research for decades. Network research has traditionally focused on a single interaction type at a time (e.g. food webs, mutualistic networks). Networks comprising different types of interactions have recently started to be empirically characterized. Patterns observed in these networks and their implications for stability demand for further theoretical investigations. Here, we employed a spatially explicit model to disentangle the effects of mutualism/antagonism ratios in food web dynamics and stability. We found that increasing levels of plant-animal mutualistic interactions generally resulted in more stable communities. More importantly, increasing the proportion of mutualistic vs. antagonistic interactions at the base of the food web affects different aspects of ecological stability in different directions, although never negatively. Stability is either not influenced by increasing mutualism—for the cases of population stability and species’ spatial distributions—or is positively influenced by it—for spatial aggregation of species. Additionally, we observe that the relative increase of mutualistic relationships decreases the strength of biotic interactions in general within the ecological network. Our work highlights the importance of considering several dimensions of stability simultaneously to understand the dynamics of communities comprising multiple interaction types.  相似文献   

4.
Conflict within mutually beneficial associations is predicted to destabilize relationships, and theoretical and empirical work exploring this has provided significant insight into the dynamics of cooperative interactions. Within mutualistic associations, the expression and regulation of conflict is likely more complex than in intraspecific cooperative relationship, because of the potential presence of: i) multiple genotypes of microbial species associated with individual hosts, ii) multiple species of symbiotic lineages forming cooperative partner pairings, and iii) additional symbiont lineages. Here we explore complexity of conflict expression within the ancient and coevolved mutualistic association between attine ants, their fungal cultivar, and actinomycetous bacteria (Pseudonocardia). Specifically, we examine conflict between the ants and their Pseudonocardia symbionts maintained to derive antibiotics against parasitic microfungi (Escovopsis) infecting the ants' fungus garden. Symbiont assays pairing isolates of Pseudonocardia spp. associated with fungus-growing ants spanning the phylogenetic diversity of the mutualism revealed that antagonism between strains is common. In contrast, antagonism was substantially less common between more closely related bacteria associated with Acromyrmex leaf-cutting ants. In both experiments, the observed variation in antagonism across pairings was primarily due to the inhibitory capabilities and susceptibility of individual strains, but also the phylogenetic relationships between the ant host of the symbionts, as well as the pair-wise genetic distances between strains. The presence of antagonism throughout the phylogenetic diversity of Pseudonocardia symbionts indicates that these reactions likely have shaped the symbiosis from its origin. Antagonism is expected to prevent novel strains from invading colonies, enforcing single-strain rearing within individual ant colonies. While this may align ant-actinomycete interests in the bipartite association, the presence of single strains of Pseudonocardia within colonies may not be in the best interest of the ants, because increasing the diversity of bacteria, and thereby antibiotic diversity, would help the ant-fungus mutualism deal with the specialized parasites.  相似文献   

5.
王庆  卢志兴  赵婧文  陈又清 《昆虫学报》2018,61(12):1430-1438
【目的】昆虫之间的互利关系和植物多样性在生态系统中具有重要的作用,本研究旨在探讨蚂蚁-紫胶虫互利关系的下行效应以及寄主植物多样性的上行效应对节肢动物群落各营养级的影响。【方法】试验样地位于云南省普洱市墨江县雅邑乡的人工紫胶林中。通过随机裂区试验方法,于2016年8月和9月分两次用手捡法、网扫法和震落法采集了蚂蚁-紫胶虫3种互利关系处理(有互利关系、无互利关系和自然对照)以及3种植物多样性处理(单一种植、2树种混植和3树种混植,分别代表植物多样性1, 2和3)下样地寄主植物上所有的节肢动物,并按照不同营养级将其分类。【结果】蚂蚁-紫胶虫互利关系会显著降低消费者多度[有互利关系(14.2±0.95)<自然对照(18.57±1.13)<无互利关系(23.27±1.38), (F=4.290, P=0.017)],植物多样性会显著提高消费者多度[植物多样性1(13.49±2.54)<植物多样性2(16.31±2.50)<植物多样性3(25.01±2.47), (F=56.03, P<0.001)];在两者的交互作用下,无论哪个植物多样性水平上,有互利关系处理的消费者多度都显著低于无互利关系处理的消费者多度 (F=6.850, P<0.001)。互利关系对捕食者多度无显著影响(F=1.277, P=0.284),植物多样性会显著增加捕食者多度[植物多样性1 (1.72±0.49) <植物多样性2 (3.42±0.54) <植物多样性3 (3.59±0.55), (F=10.976, P<0.001)],两者的交互作用对捕食者多度无显著影响(F=0.428, P=0.788)。互利关系和植物多样性会显著增加蚂蚁多度[自然对照(44.08±8.94) <有互利关系(324.82±65.35), (F=48.9, P<0.001)], [植物多样性1(86.31±12.51)<植物多样性3 (131.20±18.80) <植物多样性2(151.27±21.68), (F=137.85, P<0.001)], 两者的交互作用也会显著增加蚂蚁多度(F=80.31, P<0.001)。【结论】蚂蚁与紫胶虫的互利关系显著降低植物上的植食性害虫,对捕食者不产生显著作用,但显著提高蚂蚁多度;而植物多样性对节肢动物各营养级都有积极作用;两者会产生一定的联合作用,对各营养级产生不同的影响。  相似文献   

6.
This study was performed to analyse how a vegetative propagation pattern of plants affects the coexistence of species and subsequent species richness of the community. We compared community average clonal growth in the herbal communities of forests, wooded meadows, and open meadows in Laelatu, Estonia. The parameters used for the calculation of the community averages and measured for each species were ramet life span, rhizome branching, and clonal mobility. We also examined the intrinsic (i.e. independent of the environment) relationship between community clonal growth and plant species density. We found strong correlations between the environmental factors (productivity, light availability, and mowing regime) and community averages of clonal growth parameters, while species density was (negatively) correlated only with community average of rhizome increment. The community average of ramet life span decreased with the increasing biomass of the herb layer. No evidence was found to support the hypothesis that species-rich communities may consist of species with more contrasting mobility compared with species-poor communities. Independent of the effect of the environmental factors, species density was positively correlated with ramet density. There was intrinsic positive relationship between species density and community average of ramet life span at open meadow sites and intrinsic negative relationship between species density and community average of rhizome increment at wooded meadow sites. We conclude that in forest communities the capability of clonal plants to forage for light is favoured, while in unmown meadows a competitively strong phalanx growth form is advantageous. We established that ramet turnover increases and vegetative mobility decreases with increasing species diversity, although these two relationships depend strongly on the type of the studied community.Co-ordinating editor: J. Tuomi  相似文献   

7.
Plant community functional structure may drive ecosystem functions in relation with (i) the trait values characterizing dominant species, according to the “biomass ratio hypothesis” proposed by Grime, and (ii) thanks to trait dissimilarity among species, according to the “diversity hypothesis” proposed by Tilman. Both propositions have already yielded support but their relative importance and how they impact biomass production in field situations is still not well known. This study therefore tested (i) whether or not there was a close relationship between biomass production and the community-weighted mean trait values (CWM), as expected from the “biomass ratio hypothesis”, and (ii) the impact of the functional diversity (FDQ) on biomass production, which is expected to be positive according to the “diversity-hypothesis”. The study considered a range of plant assemblages occurring in a wet grassland and five above-ground and four below-ground plant traits were measured to characterize their functional structure. The effects of species diversity, soil water content, soil nitrogen availability and grazing intensity on biomass production were also determined.We showed that biomass production was not related either to species richness and diversity or to any of the resource and disturbance parameters considered. Conversely, the functional structure was found to explain up to 55% of the variability of the biomass production. The results obtained clearly supported the “biomass-ratio hypothesis”. Functional diversity was mainly found to negatively impact biomass production with only poor support to the “diversity hypothesis”. We suggest that such a dilution effect of increasing FDQ on community primary production may be typical of fertile habitats.In order to significantly improve our understanding of the relationship between functional diversity and ecosystem processes, further studies should consider plant assemblages that have been shaped over the long term and habitats across a wide range of productivity.  相似文献   

8.
Rudgers JA  Clay K 《Ecology letters》2008,11(8):831-840
Ecological theory holds that competition and predation are the most important biotic forces affecting the composition of communities. Here, we expand this framework by demonstrating that mutualism can fundamentally alter community and food web structure. In large, replicated field plots, we manipulated the mutualism between a dominant plant ( Lolium arundinaceum ) and symbiotic fungal endophyte ( Neotyphodium coenophialum ). The presence of the mutualism reduced arthropod abundance up to 70%, reduced arthropod diversity nearly 20%, shifted arthropod species composition relative to endophyte-free plots and suppressed the biomass and richness of other plant species in the community. Herbivorous arthropods were more strongly affected than carnivores, and for both herbivores and carnivores, effects of the mutualism appeared to propagate indirectly via organisms occurring more basally in the food web. The influence of the mutualism was as great or greater than previously documented effects of competition and predation on arthropod communities. Our work demonstrates that a keystone mutualism can significantly reduce arthropod biodiversity at a broad community scale.  相似文献   

9.
Many potentially mutualistic interactions are conditional, with selection that varies between mutualism and antagonism over space and time. We develop a genetic model of temporally variable coevolution that incorporates stochastic fluctuations between mutualism and antagonism. We use this model to determine conditions necessary for the coevolution of matching traits between a host and a conditional mutualist. Using an analytical approximation, we show that matching traits will coevolve when the geometric mean interaction is mutualistic. When this condition does not hold, polymorphism and trait mismatching are maintained, and coevolutionary cycles may result. Numerical simulations verify this prediction and suggest that it remains robust in the presence of temporal autocorrelation. These results are compared with those from spatial models with unrestricted movement. The comparisons demonstrate that gene flow is unnecessary for generating empirical patterns predicted by the geographic mosaic theory of coevolution.  相似文献   

10.
Many of the dynamic properties of coevolution may occur at the level of interacting populations, with local adaptation acting as a force of diversification, as migration between populations homogenizes these isolated interactions. This interplay between local adaptation and migration may be particularly important in structuring interactions that vary from mutualism to antagonism across the range of an interacting set of species, such as those between some plants and their insect herbivores, mammals and trypanosome parasites, and bacteria and plasmids that confer antibiotic resistance. Here we present a simple geographically structured genetic model of a coevolutionary interaction that varies between mutualism and antagonism among communities linked by migration. Inclusion of geographic structure with gene flow alters the outcomes of local interactions and allows the maintenance of allelic polymorphism across all communities under a range of selection intensities and rates of migration. Furthermore, inclusion of geographic structure with gene flow allows fixed mutualisms to be evolutionarily stable within both communities, even when selection on the interaction is antagonistic within one community. Moreover, the model demonstrates that the inclusion of geographic structure with gene flow may lead to considerable local maladaptation and trait mismatching as predicted by the geographic mosaic theory of coevolution.  相似文献   

11.
Mutualistic and antagonistic interactions coexist in nature. However, little is understood about their relative roles and interactive effects on multispecies coexistence. Here, using a three-species population dynamics model of a resource species, its exploiter, and a mutualist species, we show that a mixture of different interaction types may lead to dynamics that differ completely from those of the isolated interacting pairs. More specifically, a combination of globally stable antagonistic and mutualistic subsystems can lead to unstable population oscillations, suggesting the potential difficulty in the coexistence of antagonism and mutualism. Mutualism-induced instability arises from the indirect positive effect of mutualism on the exploiter. Furthermore, for a three-species system with a stronger mutualistic interaction to persist stably, a weaker antagonistic interaction is required. Network studies of communities composed of one type of interaction may not capture the dynamics of natural communities.  相似文献   

12.
Two basic models of mutualism are presented in which interactions among three species lead to mutualism between two of them. The models represent 2-species predator-prey or competition systems in which a third species acts as a mutualist with either the predator, the prey, or one of the competitors. The models include the assumptions that there is a cost of associating with the mutualist and that the mutualist population grows much more slowly than the other two populations. Special cases of these two models correspond to six qualitatively different types of mutualistic benefit, all of which are known to occur in nature: deterring predation, increasing prey availability, feeding on (or competing with) a predator, increasing competitive interactions, decreasing competitive interactions, and feeding on (or competing with) a competitor. These models and their special cases are subjected to a local stability analysis. The results show that mutualism based upon deterring predation, competing with a predator, or decreasing competitive interactions enhances local stability, while mutualism based upon increasing prey availability or increasing competitive interactions reduces local stability. These results clearly reject the idea that mutualism is an inherently unstable process, and reinforces the idea that each different kind of mutualism will have to be considered separately. Compared to 2-species models of mutualism, the 3-species models provide a more realistic representation of the structure of many mutualistic systems, the mechanisms by which one species benefits another, and the regulation of the interaction.  相似文献   

13.
Antoine Tardif  Bill Shipley 《Oikos》2015,124(8):1050-1057
We tested the hypothesis that interactions between plant species during the process of mixed‐species leaf litter decomposition increases with increasing functional diversity of leaves within the mixtures; specifically, there is a positive correlation between functional dispersion and the deviations from Grime's biomass‐ratio hypothesis, with a null intercept. We measured decomposition rates (mg g?1 d?1) of mixed‐species leaf litter from two experimental designs: 1) a microcosm experiment with litterbags of species mixtures combining six tree species, alone and in 42 combinations, and 2) an in situ litterbag experiment with all possible mixture combinations of four herb species (from one to four species). Interaction strengths and directions were measured as deviations from community‐weighted means (CWM) of monoculture decomposition values, following the biomass‐ratio hypothesis (BRH). Functional diversity was measured as Laliberté and Legendre's functional dispersion (FDis), using leaf dry matter content (LDMC), leaf nitrogen and carbon contents, and proportions of water soluble compounds, cellulose, hemicellulose and lignin. Correlations between FDis and deviations from BRH varied strongly, depending upon the combination of functional traits, the plant type or the environmental conditions, and the way in which prediction error was expressed (absolute or actual deviation). For tree species, FDis that was based on a combination of water soluble compounds, hemicellulose concentration, and LDMC was negatively correlated with interaction strength but positively with its absolute value. For herbs, interaction strength (absolute or actual) decreased as FDis of the mixtures increased, based on cellulose and lignin contents. There was no positive correlation between functional dispersion and the deviations from Grime's biomass‐ratio hypothesis, with a null intercept. Despite a relationship between litter interactions and functional divergence, this relationship was not generalisable. Other functional traits that were missing in our study might have played an important role.  相似文献   

14.
Key gaps to be filled in population and community ecology are predicting the strength of species interactions and linking pattern with process to understand species coexistence and their relative abundances. In the case of mutualistic webs, like plant–pollinator networks, advances in understanding species abundances are currently limited, mainly owing to the lack of methodological tools to deal with the intrinsic complexity of mutualisms. Here, we propose an aggregation method leading to a simple compartmental mutualistic population model that captures both qualitatively and quantitatively the size-segregated populations observed in a Mediterranean community of nectar-producing plant species and nectar-searching animal species. We analyse the issue of optimal aggregation level and its connection with the trade-off between realism and overparametrization. We show that aggregation of both plants and pollinators into five size classes or compartments leads to a robust model with only two tunable parameters. Moreover, if, in each compartment, (i) the interaction coefficients fulfil the condition of weak mutualism and (ii) the mutualism is facultative for at least one party of the compartment, then the interactions between different compartments are sufficient to guarantee global stability of the equilibrium population.  相似文献   

15.
The literature on whether community diversity has a positive effect on individuals' inter-ethnic attitudes (contact hypothesis) or a negative effect (threat hypothesis) remains inconclusive. Most studies infer mechanisms of contact or threat based on the relationship between diversity and mean levels of prejudice in a community. We suggest that both processes of threat and contact may be occurring with increasing diversity. By applying a measure of individual-level contact, this paper demonstrates that increasing community diversity does have a negative effect on inter-ethnic attitudes but only among individuals without inter-ethnic ties. Among those who do form ties, increasing diversity has no effect – that is, contact moderates the negative effect of community diversity. However, this relationship is further moderated by levels of disadvantage in the community. This paper has important implications for the use of the contact/threat hypotheses in studies of contextual diversity and the wider debate on rising diversity in the UK.  相似文献   

16.
Recent investigations have shown that two components of community trait composition are important for key ecosystem processes: (i) the community‐weighted mean trait value (CWM), related to the mass ratio hypothesis and dominant trait values in the community, and (ii) functional diversity (FD), related to the complementarity hypothesis and the divergence of trait values. However, no experiments controlling for the inherent dependence between CWM and FD have been conducted so far. We used a novel experimental framework to disentangle the unique and shared effects of CWM and FD in a leaf litter‐macrodetritivore model system. We manipulated isopod assemblages varying in species number, CWM and FD of litter consumption rate to test the relative contribution of these community parameters in the decomposition process. We showed that CWM, but also the combination of CWM and FD, is a main factor controlling litter decomposition. When we tested individual biodiversity components separately, CWM of litter consumption rate showed a significant effect on decomposition, while FD and species richness alone did not. Our study demonstrated that (i) trait composition rather than species diversity drives litter decomposition, (ii) dominant trait values in the community (CWM) play a chief role in driving ecosystem processes, corroborating the mass ratio hypothesis, and (iii) trait dissimilarity can contribute in modulating the overall biodiversity effects. Future challenge is to assess whether the generality of our finding, that is, that dominant trait values (CWM) predominate over trait dissimilarity (FD), holds for other ecosystem processes, environmental conditions and different spatial and temporal scales.  相似文献   

17.
Theory predicts that (i) vertical transmission of parasites (i.e. when they are passed directly from a host to its offspring) selects for benign association with the host and that (ii) vertically transmitted parasites that lower their hosts' fitness cannot persist if they are not able to infect horizontally (i.e. contagiously) other host individuals in the population. In this paper, we develop a mathematical model to examine whether mutualism is a prerequisite for persistence of exclusively vertically transmitted (from maternal plant to offspring via seeds) fungal endophytes in structured grass metapopulations. Interestingly, endophyte survival does not require plant mutualism, even in a metapopulation consisting of qualitatively identical patches, if vertical transmission of the fungus is perfect, i.e. if all established seedlings in offspring of the endophyte-infected plant are infected. In more realistic situations, when the metapopulation consists of qualitatively different patches, endophyte-infected plants may persist at the metapopulation level even if the vertical transmission is imperfect (due to hyphae inviability or failure to grow into all seeds) and the endophyte decreases the host grass fitness in certain environments. These results have biological importance because they (i) question the requirement of a mutualistic nature in exclusively vertically transmitted symbionts and (ii) emphasize the importance of habitat diversity in relation to symbiont success in vertical transmission.  相似文献   

18.
Food-chain length, the number of feeding links from the basal species to the top predator, is a key characteristic of biological communities. However, the determinants of food-chain length still remain controversial. While classical theory predicts that food-chain length should increase with increasing resource availability, empirical supports of this prediction are limited to those from simple, artificial microcosms. A positive resource availability–chain length relationship has seldom been observed in natural ecosystems. Here, using a theoretical model, we show that those correlations, or no relationships, may be explained by considering the dynamic food-web reconstruction induced by predator''s adaptive foraging. More specifically, with foraging adaptation, the food-chain length becomes relatively invariant, or even decreases with increasing resource availability, in contrast to a non-adaptive counterpart where chain length increases with increasing resource availability; and that maximum chain length more sharply decreases with resource availability either when species richness is higher or potential link number is larger. The interactive effects of resource availability, adaptability and community complexity may explain the contradictory effects of resource availability in simple microcosms and larger ecosystems. The model also explains the recently reported positive effect of habitat size on food-chain length as a result of increased species richness and/or decreased connectance owing to interspecific spatial segregation.  相似文献   

19.
In the last years, a remarkable theoretical effort has been made in order to understand the relation between stability and complexity in ecological communities. Yet, what maintains species diversity in real ecological communities is still an open question. The non‐random structures of ecological interaction networks have been recognized as one key ingredient impacting the maximum number of coexisting species within the ecological community. However most of the earlier theoretical studies have considered communities with only one interaction type (either antagonistic, competitive or mutualistic). Recently, it has been proposed that multiple interaction types might stabilize ecosystems and that, in this hybrid case, increasing complexity increases stability. Here we show that these results depend on ad hoc hypothesis that the authors used in their model and we highlight the need to disentangle the role of multiple interaction types and constant interaction effort allocation on community stability. Indeed, we find that mixing of mutualistic and predator–prey interaction types does not stabilize the community dynamics and we demonstrate that a positive correlation between complexity and stability is observed only if a constant effort allocation is imposed in the ecological interactions. Synthesis In recent years a sparkling research has been devoted to the search of new theoretical mechanisms to explain way ecosystems may persist despite their complexity. Here we show that, contrary to what recently suggested (Mougi et al. 2012), the mismatch between theoretical results and empirical evidences on the stability of ecological community is still there also for communities with both mutualistic and antagonistic interactions, and the ‘complexity‐stability’ paradox is still alive. Indeed, we demonstrate that their results arise as an artifact of the peculiar rescaling of the interaction strengths they imposed. Our study suggests that further theoretical studies and experimental evidences are still needed to better understand the role of interaction strengths in real ecological communities.  相似文献   

20.
Loeuille N 《Ecology letters》2010,13(12):1536-1545
In randomly assembled communities, diversity is known to have a destabilizing effect. Evolution may affect this result, but our theoretical knowledge of its role is mostly limited to models of small food webs. In the present article, I introduce evolution in a two-species Lotka-Volterra model in which I vary the interaction type and the cost constraining evolution. Regardless of the cost type, evolution tends to stabilize the dynamics more often in trophic interactions than for mutualism or competition. I then use simulations to study the effect of evolution in larger communities that contain all interaction types. Results suggest that evolution usually stabilizes the dynamics. This stabilizing effect is stronger when evolution affects trophic interactions, but happens for all interaction types. Stabilization decreases with diversity and evolution becomes destabilizing in very diverse communities. This suggests that evolution may not counteract the destabilizing effect of diversity observed in random communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号