首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Matricellular proteins, including periostin, are important for tissue regeneration.

Methods and Findings

Presently we investigated the function of periostin in cutaneous wound healing by using periostin-deficient (−/−) mice. Periostin mRNA was expressed in both the epidermis and hair follicles, and periostin protein was located at the basement membrane in the hair follicles together with fibronectin and laminin γ2. Periostin was associated with laminin γ2, and this association enhanced the proteolytic cleavage of the laminin γ2 long form to produce its short form. To address the role of periostin in wound healing, we employed a wound healing model using WT and periostin−/− mice and the scratch wound assay in vitro. We found that the wound closure was delayed in the periostin−/− mice coupled with a delay in re-epithelialization and with reduced proliferation of keratinocytes. Furthermore, keratinocyte proliferation was enhanced in periostin-overexpressing HaCaT cells along with up-regulation of phosphorylated NF-κB.

Conclusion

These results indicate that periostin was essential for keratinocyte proliferation for re-epithelialization during cutaneous wound healing.  相似文献   

2.
Abstract

Periostin, a matricellular protein in the fasciclin family, is expressed in tissues subjected to constant mechanical stress. Periostin modulates cell-to-extracellular matrix interactions and can bind to collagen, fibronectin, tenascin-C and several integrins. Our objective was to evaluate whether periostin is expressed in the human intervertebral disc. Immunohistochemical localization of periostin was carried out in tissue of human lumbar discs and lumbar discs of the sand rat (Psammomys obesus). Human discs also were examined for periostin gene expression. Immunohistochemical localization demonstrated periostin in the cytoplasm of annulus and nucleus cells, and occasionally in the surrounding pericellular and interterritorial extracellular matrix. Periostin distribution in the human disc was distinctive. Outer annulus contained the highest proportion of periostin-positive cells (88.8%), whereas inner annulus contained only 61.4%. The nucleus pulposus contained the fewest periostin-positive cells (18.5%). There was a significant negative correlation between the percentage of cells positive for periostin in the inner annulus and subject age. Periostin gene expression in the human disc also was confirmed using molecular microarray analysis. Because work by others has shown that periostin plays an important role in the biomechanical properties of other connective tissues (skin, tendon, heart valves), future research is needed to elucidate the role of periostin in disc, loading, aging and degeneration.  相似文献   

3.
To simulate clinical features in human chronic kidney disease (CKD), SD rats were subjected to 5/6 nephrectomy in this study. We found that periostin gene was upregulated in the remnant kidneys using Agilent gene microarrays, and further explored its role via in vivo and in vitro experiments. Intrarenal renin–angiotensin system (RAS) was activated in 5/6 nephrectomized rats and partly deactivated by injection of adenoviruses encoding short hairpin RNA against periostin (sh-periostin). Renal fibrosis in nephrectomized rats and profibrotic transforming growth factor-β-induced epithelial–mesenchymal transition (EMT) and ERK1/2 activation in NRK-52E cells were suppressed by sh-periostin. Moreover, knockdown of periostin decreased the generation of Interleukin 6 (IL6) and tumor necrosis factor-α (TNF-α) and accelerated p62 degradation in the remnant kidneys. Both HK-2 cells treated with recombinant periostin and NRK-52E cells infected with adenoviruses expressing periostin produced more IL6 and TNF-α than control cells and displayed impaired autophagy as evidenced by inhibition of LC3II to LC3I conversion, Beclin 1 expression, and p62 degradation. By treating cells with rapamycin, an inhibitor of mamalian target of rapamycin known to activate autophagy, we noted that periostin-induced inflammation was inhibited. Additionally, HK-2 cells transfected with periostin overexpression plasmid generated more CCL2 and CXCL10, two important chemotactic factors, than untransfected cells. Conditioned medium from HK-2 cells overexpressing periostin augmented chemotaxis of THP-1 macrophages. Collectively, our work demonstrates that knockdown of periostin attenuates 5/6 nephrectomy-induced intrarenal RAS activation, fibrosis, and inflammation in rats. These findings advance our understanding of periostin's role in CKD induced by nephron loss.  相似文献   

4.
5.
CCN3 is a matricellular protein that belongs to the CCN family. CCN3 consists of 4 domains: insulin-like growth factor-binding protein-like domain (IGFBP), von Willebrand type C-like domain (VWC), thrombospondin type 1-like domain (TSP1), and the C-terminal domain (CT) having a cysteine knot motif. Periostin is a secretory protein that binds to extracellular matrix proteins such as fibronectin and collagen. In this study, we found that CCN3 interacted with periostin. Immunoprecipitation analysis revealed that the TSP1-CT interacted with the 4 repeats of the Fas 1 domain of periostin. Immunofluorescence analysis showed co-localization of CCN3 and periostin in the periodontal ligament of mice. In addition, targeted disruption of the periostin gene in mice decreased the matricellular localization of CCN3 in the periodontal ligament. Thus, these results indicate that periostin was required for the matricellular localization of CCN3 in the periodontal ligament, suggesting that periostin mediated an interaction between CCN3 and the extracellular matrix.  相似文献   

6.
Periostin is over expressed in many epithelial malignant cancers, including lung cancer, breast cancer, ovarian cancer and colon cancer. It is related with the progression and migration of breast and ovarian cancer cells in vitro. The aim of this study was to investigate the serum level of periostin in non-small cell lung cancer (NSCLC) and its relationship with established biological and prognostic factors by enzyme-linked-immunosorbent serologic assay. We also observe the function of periostin on the proliferation and migration of human lung adenocarcinoma cell line (A549) and discuss the mechanism. The mean value for serum periostin (POSTN) was elevated in NSCLC patients (242.84 ± 5.33 pg/ml) compared to the normal healthy volunteers (215.66 ± 11.67 pg/ml) (p = 0.030). The serum level of periostin of NSCLC patients had no connection with gender, age, pathological type, TNM stage, lymph node status, tumor size and invasiveness. We constructed a plasmid named pEGFP-N1/POSTN expressing full-length human periostin. Transfecting the plasmid to A549 cells and periostin was efficiently expressed in transfected A549 cells. Our data showed that periostin could promote the proliferation and migration of A549 cells by inducing vimentin and N-cadherin expression and downregulating E-cadherin expression. These results strongly suggest that periostin is a novel molecular which play an important role during the progression and development of NSCLC.  相似文献   

7.
8.
Periostin is a matricellular protein that interacts with various integrin molecules on the cell surface. Although periostin is expressed in inflamed colonic mucosa, its role in the regulation of intestinal inflammation remains unclear. We investigated the role of periostin in intestinal inflammation using Postn-deficient (Postn-/-) mice. Intestinal epithelial cells (IECs) were transfected by Postn small interfering RNAs. Periostin expression was determined in colon tissue samples from ulcerative colitis (UC) patients. Oral administration of dextran sulfate sodium (DSS) or rectal administration of trinitrobenzene sulfonic acid, induced severe colitis in wild-type mice, but not in Postn-/- mice. Administration of recombinant periostin induced colitis in Postn-/- mice. The periostin neutralizing-antibody ameliorated the severity of colitis in DSS-treated wild-type mice. Silencing of Postn inhibited inteleukin (IL)-8 mRNA expression and NF-κB DNA-binding activity in IECs. Tumor necrosis factor (TNF)-α upregulated mRNA expression of Postn in IECs, and recombinant periostin strongly enhanced IL-8 expression in combination with TNF-α, which was suppressed by an antibody against integrin αv (CD51). Periostin and CD51 were expressed at significantly higher levels in UC patients than in controls. Periostin mediates intestinal inflammation through the activation of NF-κB signaling, which suggests that periostin is a potential therapeutic target for inflammatory bowel disease.  相似文献   

9.
Being a secreted protein, periostin is a multifunctional matricellular glycoprotein. In vitro, periostin has the ability to promote the proliferation and migration of fibroblasts. Previously, it was demonstrated that periostin is mainly produced by cancer-associated fibroblasts or tumor stromal cells. In the present study, we show that periostin regulates capsule formation in a positive manner and inhibits tumor growth. Consistent with a previous finding, several tumor cell lines did not exhibit expression of periostin in vitro or in vivo; and the growth of tumors that had been allografted into periostin −/− mice was significantly accelerated compared with that of the same kind of tumors grafted into periostin +/+ mice. Immunostaining and biochemical analyses revealed that mature collagen was detected abundantly in the capsules and interstitium of the wild-type-grafted tumors but not in those of the periostin −/− grafted tumors. Moreover, the number of activated tumor stromal cells was decreased significantly in the periostin −/− grafted tumors. Our studies suggest that host-derived periostin negatively regulates tumor growth by promoting capsule formation and by mediating changes in the deposition and organization of the tumor microenvironment coordinated by periostin-producing stromal cells.  相似文献   

10.
11.
The periostin is a matricellular protein expressed in collagen-rich tissues including some dental and periodontal tissues where it is regulated by mechanical forces, growth factors and cytokines. Interestingly the expression of this protein has been found modified in different gingival pathologies although the expression of periostin in normal human gingiva was never investigated. Here we used Western blot and double immunofluorescence coupled to laser-confocal microscopy to investigated the occurrence and distribution of periostin in different segments of the human gingival in healthy subjects. By Western blot a protein band with an estimated molecular mass of 94 kDa was observed. Periostin was localized at the epithelial-connective tissue junction, or among the fibers of the periodontal ligament, and never co-localized with cytokeratin or vimentin thus suggesting it is an extracellular protein. These results demonstrate the occurrence of periostin in adult human gingiva; its localization suggests a role in the bidirectional interactions between the connective tissue and the epithelial cells, and therefore in the physiopathological conditions in which these interactions are altered.Key words: Periostin, matricellular proteins, human gingiva  相似文献   

12.
Extracellular matrix (ECM) underlies a complicated multicellular architecture that is subjected to significant forces from mechanical environment. Although various components of the ECM have been enumerated, mechanisms that evolve the sophisticated ECM architecture remain to be addressed. Here we show that periostin, a matricellular protein, promotes incorporation of tenascin-C into the ECM and organizes a meshwork architecture of the ECM. We found that both periostin null mice and tenascin-C null mice exhibited a similar phenotype, confined tibial periostitis, which possibly corresponds to medial tibial stress syndrome in human sports injuries. Periostin possessed adjacent domains that bind to tenascin-C and the other ECM protein: fibronectin and type I collagen, respectively. These adjacent domains functioned as a bridge between tenascin-C and the ECM, which increased deposition of tenascin-C on the ECM. The deposition of hexabrachions of tenascin-C may stabilize bifurcations of the ECM fibrils, which is integrated into the extracellular meshwork architecture. This study suggests a role for periostin in adaptation of the ECM architecture in the mechanical environment.  相似文献   

13.
Epidermal tissue repair represents a complex series of temporal and dynamic events resulting in wound closure. Matricellular proteins, not normally expressed in quiescent adult tissues, play a pivotal role in wound repair and associated extracellular matrix remodeling by modulating the adhesion, migration, intracellular signaling, and gene expression of inflammatory cells, pericytes, fibroblasts and keratinocytes. Several matricellular proteins show temporal expression during dermal wound repair, but the expression pattern of the recently identified matricellular protein, periostin, has not yet been characterized. The primary aim of this study was to assess whether periostin protein is present in healthy human skin or in pathological remodeling (Nevus). The second aim was to determine if periostin is expressed during dermal wound repair. Using immunohistochemistry, periostin reactivity was detected in the keratinocytes, basal lamina, and dermal fibroblasts in healthy human skin. In pathological nevus samples, periostin was present in the extracellular matrix. In excisional wounds in mice, periostin protein was first detected in the granulation tissue at day 3, with levels peaking at day 7. Periostin protein co-localized with α-smooth muscle actin-positive cells and keratinocytes, but not CD68 positive inflammatory cells. We conclude that periostin is normally expressed at the cellular level in human and murine skin, but additionally becomes extracellular during tissue remodeling. Periostin may represent a new therapeutic target for modulating the wound repair process.  相似文献   

14.
Vascular endothelial growth factor and its receptor the kinase domain receptor play critical roles in the pathogenesis of coronary artery disease. Periostin is an up-regulator of kinase domain receptor expression. The purpose of this study was to determine whether polymorphisms in periostin are associated with the risk of coronary artery disease. Two single nucleotide polymorphisms (SNP C-33G, SNP A-953T) within the promoter region were chosen for further analyses. A case–control study was carried out with patients of Han Chinese ethnicity, which consisted of 492 coronary artery disease cases and 498 controls. Genotyping was performed by means of PCR and restriction fragment length polymorphism (PCR–RFLP) and the plasma level of periostin was measured by enzyme-linked immunosorbent assay (ELISA). In our study, the TT genotype of SNP-A953T was present in the general Chinese population (3.5%), but not in the Han Chinese from Beijing Project (HAPMAP CHB). Plasma periostin concentrations were elevated significantly in patients with coronary artery disease (7.96 ± 8.33 nmol/l) compared with those in healthy volunteers (3.93 ± 1.71 nmol/l) (P = 0.005). There was a significant correlation between the 953T genotype and the plasma level of periostin (r 2 = −0.490, P = 0.039). The prevalence of the TT genotype in patients was associated with a slightly lower risk of coronary artery disease (OR = 0.443, 95% CI = 0.200–0.982), but was not significant after correction (OR = 0.427, 95% CI = 0.146–1.250). The periostin-33G allele frequency was not significantly different in cases versus controls. Our data suggest that plasma periostin level may serve as a biomarker for the risk of coronary artery disease, but the periostin polymorphisms SNPC-33G and SNPA-953T were not significantly associated with the risk of coronary artery disease in this Chinese population. Although a major effect of the SNPs in the periostin genes on coronary artery disease susceptibility was excluded, the effect of the A-953T SNP on susceptibility and protein expression needs further investigation.  相似文献   

15.
Periostin is a 90 kDa secreted protein, originally identified in murine osteoblast-like cells, with a distribution restricted to collagen-rich tissues and certain tumors. In this paper, we first analyzed the expression of periostin mRNA and protein in human fetal osteoblasts (hFOB) and human osteosarcoma (hOS) cell lines by RT real-time PCR and Western blot, respectively. The hFOB 1.19 and three hOS (MHM, KPDXM and Eggen) showed highly variable periostin mRNA levels and protein. Second, we showed that the expression of periostin mRNA was inversely related to the cells' abilities to differentiate and mineralize. Then, we investigated the regulation of periostin mRNA in hFOB after siRNA treatment and in mouse primary osteoblasts (mOB) treated with PTH. Knock-down of periostin mRNA, down-regulated PTHrP, but did not affect the expression of other important markers of differentiation such as RUNX2. In addition, periostin mRNA was transiently up-regulated in osteoblasts by PTH. Finally, the localization of periostin and its partially co-localization with collagen 1a1 mRNA and protein was studied in mouse embryos and postnatal pups using in situ hybridization and immunohistochemistry, respectively. In conclusion, the present study provides novel observations related to the expression, distribution and regulation of periostin in bone cells and extracellular matrix.  相似文献   

16.
Periostin appears to be a unique extracellular protein secreted by fibroblasts that is upregulated following injury to the heart or changes in the environment. Periostin has the ability to associate with other critical extracellular matrix (ECM) regulators such as TGF-β, tenascin, and fibronectin, and is a critical regulator of fibrosis that functions by altering the deposition and attachment of collagen. Periostin is known to be highly expressed in carcinoma cells, but not in normal breast tissues. The protein has a structural similarity to insect fasciclin-1 (Fas 1) and can be induced by transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP)-2. To investigate the molecular interaction of periostin and bone morphogenetic protein, we modeled these three-dimensional structures and their binding sites. We demonstrated direct interaction between periostin and BMP1/2 in vitro using several biochemical and biophysical assays. We found that the structures of the first, second, and fourth Fas1 domains in periostin are similar to that of the fourth Fas 1 domain of TGFBIp. However, the structure of the third Fas 1 domain in periostin is different from those of the first, second, and fourth Fas1 domains, while it is similar to the NMR structure of Fasciclin-like protein from Rhodobacter sphaeroides. These results will useful in further functional analysis of the interaction of periostin and bone morphogenetic protein.  相似文献   

17.
We investigated the expression status of periostin in breast cancer stem cells and its clinical implications in order to lay a foundation for managing breast cancer. CD44+/CD24−/line- tumor cells (CSC) from clinical specimens were sorted using flow cytometry. Periostin expression status was detected in CSC cells and 1,086 breast cancer specimens by Western blot and immunohistochemistry staining, with the CSC ratio determined by immunofluorescence double staining. The relationship between the periostin protein and clinico-pathological parameters and prognosis was subsequently determined. As a result, CSC cells are more likely to generate new tumors in mice and cell microspheres that are deficient in NOD/SCID compared to the control group. Periostin protein was expressed higher in CSC cells compared to the control cells and was found to be related to CSC chemotherapy resistance. Moreover, periostin expression was found to be related to the CSC ratio in 1,086 breast cancer specimens (P = 0.001). In total, 334 (30.76%) of the 1,086 breast cases showed high periostin expression. After universal and Spearman regression correlation analysis, periostin was observed to be related to histological grade, CSC ratio, lymph node metastasis, tumor size, and triple-negative breast cancer (all P<0.05). Furthermore, periostin was shown to attain a significantly more distant bone metastasis and worse disease-specific survival than those with none or low-expressed periostin protein (P = 0.001). In the Cox regression test, periostin protein was detected as an independent prognostic factor (P = 0.001). In conclusion, periostin was found to be related to the CSC and an independent prognostic factor for breast cancer. It is also perhaps a potential target to breast cancer.  相似文献   

18.

Background

Metastasis to regional lymph nodes via lymphatic vessels plays a key role in cancer progression. Tumor lymphangiogenesis is known to promote lymphatic metastasis, and vascular endothelial growth factor C (VEGF-C) is a critical activator of tumor lymphangiogenesis during the process of metastasis. We previously identified periostin as an invasion- and angiogenesis-promoting factor in head and neck squamous cell carcinoma (HNSCC). In this study, we discovered a novel role for periostin in tumor lymphangiogenesis.

Methods and Findings

Periostin overexpression upregulated VEGF-C mRNA expression in HNSCC cells. By using conditioned media from periostin-overexpressing HNSCC cells, we examined tube formation of lymphatic endothelial cells. Conditioned media from periostin-overexpressing cells promoted tube formation. To know the correlation between periostin and VEGF-C, we compared Periostin expression with VEGF-C expression in 54 HNSCC cases by immunohistochemistry. Periostin expression was correlated well with VEGF-C expression in HNSCC cases. Moreover, correlation between periostin and VEGF-C secretion was observed in serum from HNSCC patients. Interestingly, periostin itself promoted tube formation of lymphatic endothelial cells independently of VEGF-C. Periostin-promoted lymphangiogenesis was mediated by Src and Akt activity. Indeed possible correlation between periostin and lymphatic status in periostin-overexpressing xenograft tumors and HNSCC cases was observed.

Conclusions

Our findings suggest that periostin itself as well as periostin-induced upregulation of VEGF-C may promote lymphangiogenesis. We suggest that periostin may be a marker for prediction of malignant behaviors in HNSCC and a potential target for future therapeutic intervention to obstruct tumoral lymphatic invasion and lymphangiogenesis in HNSCC patients.  相似文献   

19.
Periostin (gene Postn) is a secreted extracellular matrix protein involved in cell recruitment and adhesion and plays an important role in odontogenesis. In bone, periostin is preferentially expressed in the periosteum, but its functional significance remains unclear. We investigated Postn−/− mice and their wild type littermates to elucidate the role of periostin in the skeletal response to moderate physical activity and direct axial compression of the tibia. Furthermore, we administered a sclerostin-blocking antibody to these mice in order to demonstrate the influence of sustained Sost expression in their altered bone phenotypes. Cancellous and cortical bone microarchitecture as well as bending strength were altered in Postn−/− compared with Postn+/+ mice. Exercise and axial compression both significantly increased bone mineral density and trabecular and cortical microarchitecture as well as biomechanical properties of the long bones in Postn+/+ mice by increasing the bone formation activity, particularly at the periosteum. These changes correlated with an increase of periostin expression and a consecutive decrease of Sost in the stimulated bones. In contrast, mechanical stimuli had no effect on the skeletal properties of Postn−/− mice, where base-line expression of Sost levels were higher than Postn+/+ and remained unchanged following axial compression. In turn, the concomitant injection of sclerostin-blocking antibody rescued the bone biomechanical response in Postn−/− mice. Taken together, these results indicate that the matricellular periostin protein is required for Sost inhibition and thereby plays an important role in the determination of bone mass and microstructural in response to loading.  相似文献   

20.
Neurons with similar functions including neuronal connectivity and gene expression form discrete condensed structures within the vertebrate brain. This is exemplified within the circuitry formed by the cortical layers and the neuronal nuclei. It is well known that the Reelin protein is required for development of these neuronal structures in rodents and human, but the function of Reelin remains controversial. In this report, we used “layer‐specific markers” of the cerebral cortex to carry out detailed observations of spatial distribution of the neuronal subpopulations in the brain of the Reelin deficient mouse, reeler. We observed a spatially dispersed expression of the markers in the reeler cerebral cortex. These markers are expressed also in other laminated and non‐laminated structures of brain, in which we observed similar abnormal gene expression. Our observations suggest that neurons within the brain structures (such as the layers and the nuclei), which normally exhibit condensed distribution of marker expressions, loosen their segregation or scatter by a lack of Reelin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号