首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a Ca2+-releasing messenger. Biological data suggest that its receptor has two binding sites: one high-affinity locking site and one low-affinity opening site. To directly address the presence and function of these putative binding sites, we synthesized and tested analogues of the NAADP antagonist Ned-19. Ned-19 itself inhibits both NAADP-mediated Ca2+ release and NAADP binding. A fluorometry bioassay was used to assess NAADP-mediated Ca2+ release, whereas a radioreceptor assay was used to assess binding to the NAADP receptor (only at the high-affinity site). In Ned-20, the fluorine is para rather than ortho as in Ned-19. Ned-20 does not inhibit NAADP-mediated Ca2+ release but inhibits NAADP binding. Conversely, Ned-19.4 (a methyl ester of Ned-19) inhibits NAADP-mediated Ca2+ release but cannot inhibit NAADP binding. Furthermore, Ned-20 prevents the self-desensitization response characteristic of NAADP in sea urchin eggs, confirming that this response is mediated by a high-affinity allosteric site to which NAADP binds in the radioreceptor assay. Collectively, these data provide the first direct evidence for two binding sites (one high- and one low-affinity) on the NAADP receptor.  相似文献   

2.
Recent studies propose the existence of two distinct Ca2+ compartments in human platelets based on the expression of different SERCA isoforms with distinct sensitivity to thapsigargin and 2,5-di-(tert-butyl)-1,4-hydroquinone (TBHQ). Using fura-2-loaded human platelets we have found that depletion of the TBHQ sensitive store reduces thrombin--but not ADP--or vasopressin (AVP)-induced Ca2+ release. Redistribution of cytosolic Ca2+ after thrombin stimulation resulted in overloading of the TBHQ-sensitive store. This phenomenon was not observed with ADP or AVP. We found that NAADP decreases the Ca2+ concentration into the stores in permeabilized platelets, which is prevented by depletion of the TBHQ-sensitive store. Nimodipine, an inhibitor of the NAADP receptor, reduced thrombin-induced Ca2+ release from the TBHQ-sensitive stores, without having any effect on the responses elicited by ADP or AVP. Finally, the phospholipase C inhibitor, U-73122, abolished ADP- and AVP-induced Ca2+ release, suggesting that their responses are entirely dependent on IP3 generation. In contrast, treatment with both U-73122 and nimodipine was required to abolish thrombin-induced Ca2+ release. We suggest that thrombin evokes Ca2+ release from TBHQ-sensitive and insensitive stores, which requires both NAADP and IP3, respectively, while ADP and AVP exert an IP3-dependent release of Ca2+ from the TBHQ-insensitive compartment in human platelets.  相似文献   

3.
Nicotinic acid adenine dinucleotide phosphate (NAADP+) has been identified as a novel second messenger triggering Ca2+ release from intracellular stores. Here we report that murine cortical astrocytes in culture and in acute slices respond with transient intracellular Ca2+ increases to extracellularly applied NAADP+ and express the NAADP+-producing enzyme CD38. The Ca2+ transients triggered by NAADP+ occurred with an average delay of 35 s as compared with ATP-triggered Ca2+ signaling, suggesting that NAADP+ may have to enter the cell to act. Blockage of connexin hemichannels (a possible entry route for NAADP+ into the cell) reduced the number of astrocytes responding to NAADP+. Disruption of lysosomes as the suggested site of NAADP+ receptors reduced the number of astrocytes responding to NAADP+ strongly. The NAADP+-triggered Ca2+ signal also depended on intact endoplasmic reticulum Ca2+ stores linked to activation of inositol 1,4,5-trisphosphate receptors and on the activity of voltage-gated Ca2+ channels. Adenosine receptor-mediated signaling contributes to the NAADP+-evoked signal, since it is strongly reduced by the adenosine receptor blocker CGS-15943. Moreover, NAADP+ triggered responses in all other cell types (cultured cerebellar neurons, microglia, and oligodendrocytes) of the central nervous system.  相似文献   

4.
Nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent Ca2+ mobilizing second messenger discovered to date, has been implicated in Ca2+ signaling in some lymphomas and T cell clones. In contrast, the role of NAADP in Ca2+ signaling or the identity of the Ca2+ stores targeted by NAADP in conventional naive T cells is less clear. In the current study, we demonstrate the importance of NAADP in the generation of Ca2+ signals in murine naive T cells. Combining live-cell imaging methods and a pharmacological approach using the NAADP antagonist Ned-19, we addressed the involvement of NAADP in the generation of Ca2+ signals evoked by TCR stimulation and the role of this signal in downstream physiological end points such as proliferation, cytokine production, and other responses to stimulation. We demonstrated that acidic compartments in addition to the endoplasmic reticulum were the Ca2+ stores that were sensitive to NAADP in naive T cells. NAADP was shown to evoke functionally relevant Ca2+ signals in both naive CD4 and naive CD8 T cells. Furthermore, we examined the role of this signal in the activation, proliferation, and secretion of effector cytokines by Th1, Th2, Th17, and CD8 effector T cells. Overall, NAADP exhibited a similar profile in mediating Ca2+ release in effector T cells as in their counterpart naive T cells and seemed to be equally important for the function of these different subsets of effector T cells. This profile was not observed for natural T regulatory cells.  相似文献   

5.
NAADP (nicotinic acid-adenine dinucleotide phosphate)-induced Ca2+ release has been proposed to occur selectively from acidic stores in several cell types, including sea urchin eggs. Using fluorescence measurements, we have investigated whether NAADP-induced Ca2+ release alters the pH(L) (luminal pH) within these acidic stores in egg homogenates and observed their prompt, concentration-dependent alkalinization by NAADP (but not beta-NAD+ or NADP). Like Ca2+ release, the pH(L) change was desensitized by low concentrations of NAADP suggesting it was secondary to NAADP receptor activation. Moreover, this was a direct effect of NAADP upon the acidic stores and not secondary to increases in cytosolic Ca2+ as it was not mimicked by IP3 (inositol 1,4,5-trisphosphate), cADPR (cyclic adenine diphosphoribose), ionomycin, thapsigargin or by direct addition of Ca2+, and was not blocked by EGTA. The results of the present study further support acidic stores as targets for NAADP and for the first time reveal an adjunct role for NAADP in regulating the pH(L) of intracellular organelles.  相似文献   

6.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca2+ mobilizing nucleotide essentially involved in T cell activation. Using combined microinjection and single cell calcium imaging, we demonstrate that co-injection of NAADP and the D-myo-inositol 1,4,5-trisphosphate antagonist heparin did not inhibit Ca2+ mobilization. In contrast, co-injection of the ryanodine receptor antagonist ruthenium red efficiently blocked NAADP induced Ca2+ signalling. This pharmacological approach was confirmed using T cell clones stably transfected with plasmids expressing antisense mRNA targeted specifically against ryanodine receptors. NAADP induced Ca2+ signaling was strongly reduced in these clones. In addition, inhibition of Ca2+ entry by SK&F 96365 resulted in a dramatically decreased Ca2+ signal upon NAADP injection. Gd3+, a known blocker of Ca2+ release activated Ca2+ entry, only partially inhibited NAADP mediated Ca2+ signaling. These data indicate that in T cells (i) ryanodine receptor are the major intracellular Ca2+ release channels involved in NAADP induced Ca2+ signals, and that (ii) such Ca2+ release events are largely amplified by Ca2+ entry.  相似文献   

7.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent activator of Ca2+ release from intracellular stores known today. Although recent reports have suggested an important function of NAADP in human T lymphocytes, direct evidence for receptor-induced formation of NAADP is yet missing in these cells. Thus, we developed a highly sensitive and specific enzyme assay capable of quantifying low fmol amounts of NAADP. In unstimulated T cells, the NAADP concentration amounted to 4.4 +/- 1.6 nm (0.055 +/- 0.028 pmol/mg of protein). Stimulation of the cells via the T cell receptor/CD3 complex resulted in biphasic elevation kinetics of cellular NAADP levels and was characterized by a bell-shaped concentration-response curve for NAADP. In contrast, the NAADP concentration was elevated neither upon activation of the ADP-ribose/TRPM2 channel Ca2+ signaling system nor by an increase of the intracellular Ca2+ concentration upon thapsigargin stimulation. T cell receptor/CD3 complex-mediated NAADP formation was dependent on the activity of tyrosine kinases because genistein completely blocked NAADP elevation. Thus, we propose a regulated formation of NAADP upon specific stimulation of the T cell receptor/CD3 complex, suggesting a function of NAADP as a Ca2+-mobilizing second messenger during T cell activation.  相似文献   

8.
The effects of organic and inorganic calcium antagonists on washed platelets from rat and human have been studied. Platelet aggregation was assessed by turbidimetry. Endogenous serotonin release was measured on the same sample by means of electrochemically treated carbon fiber electrodes. The organic calcium antagonist, nitrendipine, and the inorganic calcium channel blockers (Co2+, Mn2+, Cd2+, La3+) drastically inhibited rat and human platelet aggregation induced by thrombin, ADP or adrenaline in the presence of 0.32 mM Ca2+. In our conditions, the thrombin-induced release of endogenous serotonin was found to be external Ca2+-dependent and completely inhibited by 20 microM nitrendipine or 1 mM Cd2+. In addition, Ba2+ or Sr2+ ions can be substituted for Ca2+ to bring about platelet aggregation as well as endogenous serotonin secretion. In Ba2+ or Sr2+-containing media, rat platelet aggregation and/or serotonin secretion can be inhibited by either nitrendipine or Cd2+. Finally, we have also studied the thrombin- and external Ca2+-dependence of radiolabeled calcium uptake by rat platelets. We found that the thrombin-induced 45Ca uptake was inhibited by either 18 microM nitrendipine or 1 mM Cd2+. These results provide strong evidence for the existence of an influx of divalent cations (Ca2+, Sr2+, Ba2+) triggering platelet function. They also suggest, although they do not prove, that the translocation of these cations occurs through an agonist-operated channel as proposed by Hallam and Rink (FEBS Lett. 186 (1986) 175-179).  相似文献   

9.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a molecule capable of initiating the release of intracellular Ca2+ required for many essential cellular processes. Recent evidence links two-pore channels (TPCs) with NAADP-induced release of Ca2+ from lysosome-like acidic organelles; however, there has been no direct demonstration that TPCs can act as NAADP-sensitive Ca2+ release channels. Controversial evidence also proposes ryanodine receptors as the primary target of NAADP. We show that TPC2, the major lysosomal targeted isoform, is a cation channel with selectivity for Ca2+ that will enable it to act as a Ca2+ release channel in the cellular environment. NAADP opens TPC2 channels in a concentration-dependent manner, binding to high affinity activation and low affinity inhibition sites. At the core of this process is the luminal environment of the channel. The sensitivity of TPC2 to NAADP is steeply dependent on the luminal [Ca2+] allowing extremely low levels of NAADP to open the channel. In parallel, luminal pH controls NAADP affinity for TPC2 by switching from reversible activation of TPC2 at low pH to irreversible activation at neutral pH. Further evidence earmarking TPCs as the likely pathway for NAADP-induced intracellular Ca2+ release is obtained from the use of Ned-19, the selective blocker of cellular NAADP-induced Ca2+ release. Ned-19 antagonizes NAADP-activation of TPC2 in a non-competitive manner at 1 μm but potentiates NAADP activation at nanomolar concentrations. This single-channel study provides a long awaited molecular basis for the peculiar mechanistic features of NAADP signaling and a framework for understanding how NAADP can mediate key physiological events.  相似文献   

10.
Intracellular Ca(2+) signals provide astrocytes with a specific form of excitability that enables them to regulate synaptic transmission. In this study, we demonstrate that NAADP-AM, a membrane-permeant analogue of the new second messenger nicotinic acid-adenine dinucleotide phosphate (NAADP), mobilizes Ca(2+) in astrocytes and that the response is blocked by Ned-19, an antagonist of NAADP signalling. We also show that NAADP receptors are expressed in lysosome-related acidic vesicles. Pharmacological disruption of either NAADP or lysosomal signalling reduced Ca(2+) responses induced by ATP and endothelin-1, but not by bradykinin. Furthermore, ATP increased endogenous NAADP levels. Overall, our data provide evidence for NAADP being an intracellular messenger for agonist-mediated calcium signalling in astrocytes.  相似文献   

11.
Platelets from copper-deficient rats have been used as a model to investigate the role of copper in receptor-mediated cellular responses. Copper deficiency doubles the rate of dense granule secretion and increases myosin association with the platelet cytoskeleton following thrombin stimulation. Mechanisms underlying the effects of copper deficiency on thrombin-induced signals that elicit dense granule secretion involve suppression of protein kinase C activity and impairment of Ca2+ release from intracellular stores. Copper deficiency also reduces the cellular GTP content of platelets. This may limit receptor effector coupling through GTP-dependent regulatory proteins leading to protein kinase C activation and the release of Ca2+ from intracellular stores. The reduction in GTP content during copper deficiency results from its utilization to maintain cellular ATP levels in response to severely inhibited cytochrome c oxidase activity in platelet mitochondria. Thus, the role of copper in maintaining normal signal transduction may be indirectly related to its biological function in mitochondria.  相似文献   

12.
J S Elce  L Sigmund    M J Fox 《The Biochemical journal》1989,261(3):1039-1042
Calpain-catalysed hydrolysis of platelet substrates such as cytoskeletal and calmodulin-binding proteins, and of protein kinase C, is assumed to contribute to platelet aggregation. We have measured calpain I activation by immunoblotting, and [Ca2+]i (cytoplasmic Ca2+ concn.) by fura-2 fluorescence, in parallel with measurement of aggregation, in stirred human platelets treated at different [Ca2+]ext (extend Ca2+ concns.) with A23187, leupeptin, phorbol ester and thrombin. Hydrolysis of actin-binding protein, and [3H]5-hydroxytryptamine release, were also measured in some cases. A rise in [Ca2+]i, platelet aggregation and calpain activation often occurred together. With some combinations of agonists and [Ca2+]ext, however, this correlation was clearly not maintained. It was shown: (a) that activation of calpain and its hydrolysis of platelet substrates were not strictly necessary conditions for platelet secretion and aggregation; (b) conversely, that calpain activation could occur without aggregation.  相似文献   

13.
The effects of 2'- and 3'-O-(4-benzoylbenzoyl)-ATP (BzATP) on intracellular Ca2+ mobilization and cyclic AMP accumulation were investigated using rat brain capillary endothelial cells which express an endogenous P2Y1 receptor, human platelets which are known to express a P2Y1 receptor, and Jurkat cells stably transfected with the human P2Y1 receptor. In endothelial cells, BzATP was a competitive inhibitor of 2-methylthio ADP (2-MeSADP) and ADP induced [Ca2+]i responses (Ki = 4.7 microM) and reversed the inhibition by ADP of adenylyl cyclase (Ki = 13 microM). In human platelets, BzATP inhibited ADP-induced aggregation (Ki = 5 microM), mobilization of intracellular Ca2+ stores (Ki = 6.3 microM), and inhibition of adenylyl cyclase. In P2Y1-Jurkat cells, BzATP inhibited ADP and 2-MeSADP-induced [Ca2+]i responses (Ki = 2.5 microM). It was concluded that BzATP is an antagonist of rat and human P2Y1 receptors and of platelet aggregation. In contrast to other P2Y1 receptor antagonists (A2P5P and A3P5P) which inhibit only ADP-induced Ca2+ mobilization, BzATP inhibits both the Ca2+- and the cAMP-dependent intracellular signaling pathways of ADP. These results provide further evidence that P2Y1 receptors contribute to platelet ADP responses.  相似文献   

14.
Nicotinic acid adenine dinucleotide phosphate (NAADP) has been shown to be a powerful Ca2+ release agent in numerous systems, including echinoderms, plants, and mammalian cells. NAADP has been shown to release Ca2+ via a separate mechanism to IP3 and ryanodine receptors, and specific binding sites have recently been characterised. However, functional studies have shown that there is a functional interplay between the NAADP-sensitive mechanism and the other two. In particular, it appears that activation of the NAADP receptor might act as a trigger to facilitate responses from IP3 and ryanodine receptors. To further characterise this interplay, we have investigated the effects of luminal and cytosolic Ca2+ on the NAADP receptor in sea urchin egg homogenates. We report that neither cytosolic nor luminal Ca2+ appears to influence NAADP binding. Conversely, emptying of stores significantly amplifies NAADP-induced fractional Ca2+-release, providing a mechanism of self-adjustment independent of store loading.  相似文献   

15.
Data in the previous paper suggest that epinephrine can mobilize a small pool of arachidonic acid via an enzymatic pathway distinct from phospholipase C and that this pathway is blocked by perturbations that block Na+/H+ exchange. The present studies demonstrate that epinephrine and ADP stimulate a phosphatidylinositol-hydrolyzing phospholipase A2 activity in human platelets. This occurs even when measurable phospholipase C activation, platelet secretion, and secondary aggregation are blocked with the thromboxane A2 receptor antagonist SQ29548. Furthermore, perturbants of Na+/H+ exchange diminish lysophosphatidylinositol production in response to epinephrine, ADP, and thrombin, but not to the Ca2+ ionophore A23187. Artificial alkalinization of the platelet interior with methylamine reverses the effect of the Na+/H+ antiporter inhibitor, ethylisopropylamiloride, on thrombin-stimulated lysolipid production, suggesting that the alkalinization of the platelet interior which would occur secondary to activation of Na+/H+ exchange might play an important role in phospholipase A2 activation. In addition, treatment of platelets with methylamine increases the sensitivity of phospholipase A2 to activation by the Ca2+ ionophore A23187, suggesting that changes in pH and Ca2+ may regulate phospholipase A2 activity synergistically. Finally, epinephrine causes a prompt decrease in platelet-chlortetracyclin fluorescence even in the presence of cyclooxygenase inhibitors, suggesting that epinephrine is able to mobilize membrane-bound Ca2+ independent of phospholipase C activation. Taken together, the data suggest that epinephrine-provoked stimulation of phospholipase A2 activity may occur as a result of Ca2+ mobilization and a concomitant intraplatelet alkalinization resulting from accelerated Na+/H+ exchange.  相似文献   

16.
Ca2+ signaling in spermatozoa plays a crucial role during processes such as capacitation and release of the acrosome, but the underlying molecular mechanisms still remain unclear. Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca2+-releasing second messenger in a variety of cellular processes. The presence of a NAADP synthesizing enzyme in sea urchin sperm has been previously reported, suggesting a possible role of NAADP in sperm Ca2+ signaling. In this work we used in vitro enzyme assays to show the presence of a novel NAADP synthesizing enzyme in human sperm, and to characterize its sensitivity to Ca2+ and pH. Ca2+ fluorescence imaging studies demonstrated that the permeable form of NAADP (NAADP-AM) induces intracellular [Ca2+] increases in human sperm even in the absence of extracellular Ca2+. Using LysoTracker®, a fluorescent probe that selectively accumulates in acidic compartments, we identified two such stores in human sperm cells. Their acidic nature was further confirmed by the reduction in staining intensity observed upon inhibition of the endo-lysosomal proton pump with Bafilomycin, or after lysosomal bursting with glycyl-l-phenylalanine-2-naphthylamide. The selective fluorescent NAADP analog, Ned-19, stained the same subcellular regions as LysoTracker®, suggesting that these stores are the targets of NAADP action.  相似文献   

17.
NAADP receptors   总被引:4,自引:0,他引:4  
Galione A  Ruas M 《Cell calcium》2005,38(3-4):273-280
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a recently described Ca2+ mobilizing messenger. First described in the sea urchin egg, it has been shown to mobilize Ca2+ from intracellular stores. It is a remarkably potent molecule, and recent reports show that its cellular levels change in response to a variety of agonists confirming its role as a Ca2+ mobilizing messenger. In many cases NAADP interacts with other Ca2+ mobilizing messengers such as inositol 1,4,5 trisphosphate (IP3 and cyclic adenosine diphosphate ribose (cADPR) in shaping cytosolic Ca2+ signals. What is not clear is the molecular nature of the NAADP-sensitive Ca2+ release mechanism and its sub-cellular localization. In this review we focus on the recent progress made in sea urchin eggs, which indicates that NAADP activates a novel Ca2+ release channel distinct from the relatively well-characterized IP3 and ryanodine receptors. Furthermore, in the sea urchin egg, the NAADP-sensitive store appears to be separate from the endoplasmic reticulum (ER) and is most likely an acidic store. These findings have also been reinforced by similar findings by some in mammalian cells. Finally, we discuss ongoing strategies to characterise NAADP-binding proteins which will greatly enhance our understanding of NAADP-mediated Ca2+ signalling, and lead to the development of more selective tools to probe the role of this messenger.  相似文献   

18.
Interaction of the platelet GPIb-V-IX complex with surface immobilized von Willebrand factor (vWf) is required for the capture of circulating platelets and their ensuing activation. In previous work, it was found that GPIb/vWf-mediated platelet adhesion triggers Ca2+ release from intracellular stores, leading to cytoskeletal reorganization and filopodia extension. Despite the potential functional importance of GPIb-induced cytoskeletal changes, the signaling mechanisms regulating this process have remained ill-defined. The studies presented here demonstrate an important role for phospholipase C (PLC)-dependent phosphoinositide turnover for GPIb-dependent cytoskeletal remodeling. This is supported by the findings that the vWf-GPIb interaction induced a small increase in inositol 1,4,5-triphosphate (IP3) and that treating platelets with the IP3 receptor antagonist APB-2 or the PLC inhibitor U73122 blocked cytosolic Ca2+ flux and platelet shape change. Normal shape change was observed in G alpha q-/- mouse platelets, excluding a role for PLC beta isoforms in this process. However, decreased shape change and Ca2+ mobilization were observed in mice lacking PLC gamma 2, demonstrating that this isotype played an important, albeit incomplete, role in GPIb signaling. The signaling pathways utilized by GPIb involved one or more members of the Src kinase family as platelet shape change and Ca2+ flux were inhibited by the Src kinase inhibitors PP1 and PP2. Strikingly, shape change and Ca2+ release occurred independently of immunoreceptor tyrosine-based activation motif (ITAM)-containing receptors, because these platelet responses were normal in human platelets treated with the anti-Fc gamma RIIA blocking monoclonal antibody IV.3 and in mouse platelets deficient in the FcR gamma chain. Taken together, these studies define an important role for PLC gamma 2 in GPIb signaling linked to platelet shape change. Moreover, they demonstrate that GPIb-dependent calcium flux and cytoskeletal reorganization involves a signaling pathway distinct from that utilized by ITAM-containing receptors.  相似文献   

19.
Ca2+ ions are involved in the regulation of many diverse functions in animal and plant cells, e.g. muscle contraction, secretion of neurotransmitters, hormones and enzymes, fertilization of oocytes, and lymphocyte activation and proliferation. The intracellular Ca2+ concentration can be increased by different molecular mechanisms, such as Ca2+ influx from the extracellular space or Ca2+ release from intracellular Ca2+ stores. Release from intracellular Ca2+ stores is accomplished by the small molecular compounds D-myo-inositol 1,4,5-trisphosphate (InsP3), cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP). This review will focus on the effects of cADPR in different cells and tissues, the mechanisms of cADPR-mediated Ca2+ release and Ca2+ entry, extracellular effects of cADPR, and the role of cADPR in a cell system studied in detail, human T-lymphocytes.  相似文献   

20.
The mechanism of IP3-induced activation of saponin-permeabilised platelets has been examined. Saponin permeabilization resulted in the leakage of low-Mr substances into and from the cells without loss of cytoplasmic proteins. Addition of IP3 rapidly induced a dose-related formation of thromboxane B2 and release into the medium, leading to the responses of shape change, aggregation and [14C]5HT release. These responses were inhibited by the thromboxane A2 receptor antagonist AH23848. The IP3-induced release of 45Ca from intracellular stores was not affected by indomethacin. Synthesis of thromboxane was inhibited if Ca2+ elevation was prevented by using Ca-EGTA buffers during permeabilization. These studies indicate that IP3-induced activation was due to Ca2+ mobilisation leading to phospholipase activation and thromboxane synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号