首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seminal plasma contains various types of extracellular vesicles, including ‘prostasomes’. Prostasomes are small vesicles secreted by prostatic epithelial cells that can be recruited by and fuse with sperm cells in response of progesterone that is released by oocyte surrounding cumulus cells. This delivers Ca2 + signaling tools that allow the sperm cell to gain hypermotility and undergo the acrosome reaction. Conditions for binding of prostasomes to sperm cells are however unclear. We found that classically used prostasome markers are in fact heterogeneously expressed on distinct populations of small and large vesicles in seminal plasma. To study interactions between prostasomes and spermatozoa we used the stallion as a model organism. A homogeneous population of ~ 60 nm prostasomes was first separated from larger vesicles and labeled with biotin. Binding of biotinylated prostasomes to individual live spermatozoa was then monitored by flow cytometry. Contrary to assumptions in the literature, we found that such highly purified prostasomes bound to live sperm only after capacitation had been initiated, and specifically at pH ≥ 7.5. Using fluorescence microscopy, we observed that prostasomes bound primarily to the head of live sperm. We propose that in vivo, prostasomes may bind to sperm cells in the uterus, to be carried in association with sperm cells into oviduct and to fuse with the sperm cell only during the final approach of the oocyte. This article is part of a Special Issue entitled: An Updated Secretome.  相似文献   

2.
精浆胞外囊泡是一种存在于精浆的膜性囊泡,按分泌器官分为附睾小体和前列腺小体。囊泡可与精子细胞膜发生融合,通过传递内容物或介导信号通路进而调节精子功能。它含有多种活性物质,其中蛋白质组分可影响精子活力以及顶体反应,并有清除损伤精子和促进细胞粘附的作用;脂质组分具有调节靶细胞质膜稳定性的作用;核酸组分主要参与免疫反应、跨代遗传及男性不育;离子则是多种酶的辅助因子,在调节酶活性和精浆微环境中发挥重要作用。不同组分对精子功能的影响不尽相同,本文将对此方面的研究进展进行详尽的综述,以期为该领域相关研究人员提供一定的参考。  相似文献   

3.
Galectin-3 is a β-galactoside-binding protein involved in immunomodulation, cell interactions, cancer progression, and pathogenesis of infectious organisms. We report the identification and characterization of galectin-3 in human semen. In the male reproductive tract, the ~30 kDa galectin-3 protein was identified in testis, epididymis, vas deferens, prostate, seminal vesicle, and sperm protein extracts. In seminal plasma, galectin-3 was identified in the soluble fraction and in prostasomes, cholesterol-rich, membranous vesicles that are secreted by the prostate and incorporated into seminal plasma during ejaculation. Two-dimensional immunoblot analysis of purified prostasomes identified five galectin-3 isoelectric variants with a pI range of 7.0 to 9.2. Affinity purification and tandem mass spectrometry of β-galactoside-binding proteins from prostasomes confirmed the presence of galectin-3 in prostasomes and identified a truncated galectin-3 variant. The intact galectin-3 molecule contains a carbohydrate recognition domain and a non-lectin domain that interacts with protein and lipid moieties. The identification of a monovalent galectin-3 fragment with conserved carbohydrate-binding activity indicates the functional relevance of this truncation and suggests a regulatory mechanism for galectin-3 in prostasomes. Surface biotinylation studies suggested that galectin-3 and the truncated galectin-3 variant are localized to the prostasome surface. Prostasomes are proposed to function in immunosuppression and regulation of sperm function in the female reproductive tract, are implicated in facilitating sexually-transmitted infections, and are indicated in prostate cancer progression. Given the overlap in functional significance, the identification of galectin-3 in prostasomes lays the groundwork for future studies of galectin-3 and prostasomes in reproduction, disease transmission, and cancer progression.  相似文献   

4.
The epididymis is a long, tightly coiled tube within the lumen of which sperm matures. Sperm maturation involves morphological and biochemical changes in the sperm plasma membrane in response to epididymal secretions and their various proteins. Some of these proteins become outer membrane components while others become integral membrane proteins; transfer of some proteins to the sperm plasma membrane may be mediated by epididymosomes. Nevertheless, the molecular pathways by which spermatozoa acquire fertilizing capacity during their transit through the epididymis remain ambiguous. In a recent study of stallion epididymal sperm, we found that sperm harvested from different parts of the epididymis (caput, corpus and cauda) had a varying, but generally poor, ability to undergo the acrosome reaction in vitro. At ejaculation, however, sperm mix with seminal plasma which contains various components, including the small membranous vesicles known as prostasomes, that may enable the sperm to undergo physiological activation. Seminal plasma components may have a 'washing' effect and help to remove 'de-capacitation' factors that coat the sperm during storage in the cauda epididymis; alternatively seminal plasma and prostasomes may contain factors that more directly promote sperm activation. This article reviews current information on the roles of epididymal and accessory gland fluids on the acquisition of fertilizing capacity by stallion sperm.  相似文献   

5.
Prostasomes are membranous vesicles (150-200 nm diameter) present in human semen. They are secreted by the prostate gland and contain large amounts of cholesterol, sphingomyelin and calcium, and some of their proteins are enzymes. Prostasomes are involved in a number of biological functions. In previous work, we discovered that prostasomes may fuse to sperm at neutral or at slightly acidic pH values. This mechanism may deliver calcium to sperm, thereby influencing sperm functions. We measured sperm [Ca2+]i with the fura-2 AM method and found that it increased after mixing prostasomes and sperm at pH values allowing fusion (pH 5-7). The increase of [Ca2+]i was proportional to the extent of fusion as measured through the relief of R18 self-quenching. We also examined the increase of sperm [Ca2+]i and the extent of fusion as a function of sperm to prostasome ratio and, also in this case, there was proportionality between the extent of fusion and the increase of [Ca2+]i that reached its maximal values in about 10-20 min. However, a detectable increase of [Ca2+]i was attained after 2 min of fusion. This would represent a new mechanism to influence sperm [Ca2+]i besides ion-exchange systems and ATP-dependent pumps. The value of [Ca2+]i remained elevated, unless Na+ was also present in the external medium. Therefore, the mechanism of fusion might influence deeply the physiology of sperm by producing a transient increase of [Ca2+]i.  相似文献   

6.
Sperm uptake of glycosyl phosphatidylinositol (GPI)-linked proteins from luminal fluids has been shown to occur in male and estrous female reproductive tracts. In males, this is attributed to membranous vesicles secreted into the epididymis and prostate. While epididymosomes have been characterized, there have been no reports of the presence of vesicles in female luminal fluids. Here we report the presence of vesicles, characterized as "uterosomes," in the murine estrous female reproductive fluid; and use Sperm Adhesion Molecule 1 (SPAM1/PH-20), a well-known hyaluronidase found in male and female fluids, as a model to investigate vesicle-mediated GPI-linked protein transfer to sperm. Epididymosomes and uterosomes isolated after ultracentrifugation of epididymal (ELF) and uterine luminal fluid (ULF) were analyzed by electron microscopy and shown to be approximately 10-70 and approximately 15-50 nm in diameter. The structural integrity of uterosomes was confirmed by their resistance to hypo-osmotic and freeze/thaw stresses; and immunogold labeling localized SPAM1 to their outer membrane surface, as was the case for epididymosomes. SPAM1 was acquired by caudal sperm during incubation in epididymosomes and uterosomes; uptake was abolished when the GPI anchor was enzymatically cleaved. Sperm analyzed by confocal and transmission electron microscopy (TEM) after incubation in fluorescently labeled vesicles revealed the label on the membrane over the acrosome and midpiece of the flagella, where SPAM1 normally resides. High magnification TEM images demonstrated vesicles juxtaposed to the sperm plasma membrane potentially transferring SPAM1. Taken together, these results implicate vesicular docking as the mechanism of vesicle-mediated GPI-linked protein transfer to sperm from murine reproductive fluids.  相似文献   

7.
Mammalian seminal plasma contains membranous vesicles (MV), which differ in composition and origin. Among these particles, human prostasomes and equine prostasome-like MV have been the most studied. The aim of the present work is to characterize the biochemical composition and membrane fluidity of MV isolated from boar seminal plasma. The MV from boar seminal plasma were isolated by ultracentrifugation and further purification by gel filtration on Sephadex G-200. The MV were examined by electron microscopy (EM), amount of cholesterol, total phospholipid, protein content, and phospholipid composition were analyzed. Membrane fluidity of MV and spermatozoa were estimated from the electron spin resonance (ESR) spectra of the 5-doxilstearic acid incorporated into the vesicle membranes by the order parameter (S). The S parameter gives a measure of degree of structural order in the membrane and is defined as the ratio of the spectral anisotropy in the membranes to the maximum anisotropy obtained in a rigidly oriented system. The S parameter takes into consideration that S = 1 for a rapid spin-label motion of about only one axis and S = 0 for a rapid isotropic motion. Intermediate S values between S = 0 and S = 1 represents the consequence of decreased membrane fluidity. The EM revealed the presence of bilaminar and multilaminar electron-dense vesicles. Cholesterol to phospholipid molar ratio from the isolated MV was 1.8. Phospholipid composition showed a predominance of sphingomyelin. The S parameter for porcine MV and for boar spermatozoa was 0.73 +/- 0.02 and 0.644 +/- 0.008, respectively, with the S for MV being greater (p < 0.001) than the S for spermatozoa. The high order for S found for boar MV was in agreement with the greater cholesterol/phospholipids ratio and the lesser ratio for phosphatidylcholine/sphingomyelin. Results obtained in the present work indicate that MV isolated from boar semen share many biochemical and morphological characteristics with equine prostasome-like MV and human prostasomes. The characteristics of the porcine MV of the seminal plasma, however, differed from those of boar sperm plasma membranes.  相似文献   

8.
Prostasomes are membranous vesicles (150–200 nm diameter) present in human semen. They are secreted by the prostate gland and contain large amounts of cholesterol, sphingomyelin and Ca2+. In addition, some of their proteins are enzymes. Prostasomes enhance the motility of ejaculated sperm and are involved in a number of biological functions. In a previous work, we found that prostasome can fuse to spermatozoa at slightly acidic pH values, as demonstrated by the transfer of the lipophilic octadecylrhodamine probe. In this paper, we study the interactions of two leukocyte populations (polymorphonuclear and mononuclear) with prostasomes and find a pH-dependent adhesion (revealed by microscopic observation), but no fusion. These phenomena may be relevant for the functions of leukocytes in human reproduction.  相似文献   

9.
Human semen contains several components among which spermatozoa, membranous vesicles called 'prostasomes', secreted by the prostate gland and unorganized material. Prostasomes possess an unusual lipid composition, contain a number of proteins and small molecules and have been claimed to take a part in the immune response, in seminal fluid liquefaction and in sperm motility. Since sperm may come in contact with an acidic environment in the vagina, it may be of some interest to know whether prostasomes may affect spermatozoon motility or may protect spermatozoa upon the exposure to an acidic milieu. Human semen was supplied by donors. From whole semen we collected spermatozoa by centrifugation and used the supernatant to prepare prostasomes (centrifugation at 105,000 g for 120 min, followed by purification step on Sephadex G 200); spermatozoa were then collected by a swim-up procedure and exposed to an acidic pH medium (from 5 to 7) in the presence or absence of prostasomes. Spermatozoa motility was subsequently assessed with a superimposed image analysis system (SIAS). Results indicate that the motility of spermatozoa was affected by the pH value of the medium. Acidic media reduced the percentage of motile cells and decreased the straight line velocity of spermatozoa (VLS). Prostasomes had a protective effect and increased the percentage of motile cells. However, they did not change the characteristics of motility (curvilinear and straight). Prostasomes may be considered as a system for counteracting the negative effects of acidic pH values that may be present in the vagina after coitus.  相似文献   

10.
Small membranous vesicles, between 25- and 75-nm diameter, were collected by high-speed centrifugation from the ram cauda epididymal fluid and were found to be normal constituents of this fluid and of the seminal plasma. The SDS-PAGE protein pattern of these vesicles was specific and very different from that of the caudal fluid, seminal plasma, sperm extract, and cytoplasmic droplets. After two-dimensional electrophoresis separation and mass spectrometry analysis, several proteins were identified and grouped into i) membrane-linked enzymes, such as dipeptidyl peptidase IV (DPP-IV), neprilysin (NEP), phosphodiesterase-I (E-NPP3), and protein G-beta; ii) vesicle-associated proteins, such as lactadherin (MFEG8-PAS6/7) and vacuolar ATPase; iii) several cytoskeleton-associated proteins, such as actin, ezrin and annexin; and iv) metabolic enzymes. The presence of some of these proteins as well as several different hydrophobic proteins secreted by the epididymis was further confirmed by immunoblotting. These markers showed that the majority of the vesicles originated from the cauda epididymal region. The physical and biochemical characteristics of these vesicles suggest they are the equivalent of the exosomes secreted by several cell types and epithelium. The main membrane-linked proteins of the vesicles were not retrieved in the extract from cauda or ejaculated sperm, suggesting that these vesicles did not fuse with sperm in vivo.  相似文献   

11.
Human prostasomes, exosome-like microvesicles secreted by acinar cells of the prostate gland, contain chromosomal DNA. Agarose gel electrophoresis of DNA from seminal prostasomes displayed fragments of over 12 kb and smaller, with a distinct band around 1 kb that was excised, cloned, and sequenced. The sequences showed 8 out of 25 clones (32%) originating from genes. We elaborated the concept further by carrying out a genome-wide DNA copy number analysis of prostasomal DNA, hypothesizing that human prostasomes contain fragments of DNA randomly selected from the entire genome. Acridine orange-stained prostasomes were incubated with freshly prepared sperm for different times, and a transfer of acridine orange-stained prostasomal DNA to sperm (preferentially the head region) was observed. Fluorescence microscopy of slices in the center of 14 optical slides of the sperm head displayed an even fluorescence rather than a halo-like one, indicating DNA-uptake rather than just binding along the sperm head membrane.  相似文献   

12.
Fusion of Human Sperm to Prostasomes at Acidic pH   总被引:9,自引:0,他引:9  
Prostasomes are membranous vesicles (150–200 nm diameter) present in human semen. They are secreted by the prostate and contain large amounts of cholesterol, sphingomyelin and Ca2+. In addition, some of their proteins are enzymes. Prostasomes enhance the motility of ejaculated spermatozoa and are involved in a number of additional biological functions. The possibility that they may fuse to sperm has never been proved. In this work, we studied the fusion of sperm to prostasomes by using various methods (relief of octadecyl Rhodamine B fluorescence self-quenching, fluorescence microscopy and flow cytometry) and we found that it occurs at acidic pH (4–5), but not at pH 7.5 pH-dependent fusion relies on the integrity of one or more proteins and is different from the Ca2+-stimulated fusion between rat liver liposomes and spermatozoa that does not require any protein and occurs at neutral pH. We think that the H+-dependent fusion of prostasomes to sperm may have physiological importance by modifying the lipid and protein pattern of sperm membranes. Received: 19 June 1996/Revised: 4 September 1996  相似文献   

13.
Prostasomes are particular lipid vesicles secreted by the human prostate and found in the semen. No specific action has yet been attributed to prostasomes, but they appear to act at various levels. For example, prostasomes enhance sperm motility in vitro and participate in the immunomodulation properties of seminal plasma. Excessive production of reactive oxygen species (ROS) in human semen has a negative influence on the functional capacities of spermatozoa. The presence of leukocytes in semen is associated with increased production of ROS that can be harmful to sperm cells, under certain conditions. Previous results tend to suggest a possible role of prostasomes on ROS production in human semen. After reviewing the literature concerning the structural and functional characteristics of prostasomes and the role of ROS in human semen, we report our results concerning the influence of prostasomes on ROS production and the consequences on semen. We have demonstrated that prostasomes exert an antioxidant function in human semen. This function is effective both on polymorphonuclear neutrophils and on sperm cells. The mechanism of action of prostasomes is unusual, as they act on ROS production mainly on the plasma membranes of neutrophils. They induce a decrease of NADPH-oxidase activity associated with rigidification of the plasma membrane. Prostasomes protect the functional capacities of spermatozoa during an oxidative stress created by the presence of NADPH in the incubation medium.  相似文献   

14.
Cellular prion protein (Prp(C)) is a glycoprotein usually associated with membranes via its glycosylphosphatidylinositol (GPI) anchor. The trans-conformational form of this protein (Prp(SC)) is the suggested agent responsible for transmissible neurodegenerative spongiform encephalopathies. This protein has been shown on sperm and in the reproductive fluids of males. Antibodies directed against the C-terminal sequence near the GPI-anchor site, an N-terminal sequence, and against the whole protein showed that the Prp isoforms were compartmentalized within the reproductive tract of the ram. Immunoblotting with the three antibodies showed that the complete protein and both N- and C-terminally truncated and glycosylated isoforms are present within cauda epididymal fluid and seminal plasma. Moreover, we demonstrate that in these fluids, the Prp(C) isoforms are both in a soluble state as well as associated with small membranous vesicles (epididymosomes). We also report that only one major glycosylated 25 kDa C-terminally truncated Prp(C) isoform is associated with sperm from the testis, cauda epididymis, and semen, and this form is also present in the sperm cytoplasmic droplets that are released during maturation. In sperm, this C-terminal truncated form was found to be associated with membrane lipid rafts present in the mature sperm, suggesting a role for it in the terminal stages of sperm maturation.  相似文献   

15.
A variety of sexual selection mechanisms have been implicated to drive the variability of the male reproductive tract in internal fertilizers, while studies on external fertilizers have been largely limited to exploring the influence of sperm competition on testis size and sperm number. Males in the Gobiidae, a speciose teleost family of demersal spawners with external fertilization, are known to be characterized by accessory structures to the sperm duct called seminal vesicles. These seminal vesicles secrete a mucus-enriched seminal fluid. Seminal vesicle size and function have been demonstrated to be influenced by sperm competition at the intraspecific level. With the aim to test the factors influencing the development of these male organs at the interspecific level, an independent contrast analysis was performed on 12 species, differing in mating system type, sperm competition risk, and duration of egg deposition. The type of mating system appears to be the main factor significantly affecting development of seminal vesicles, with males of monogamous species completely lacking or having extremely reduced organs.  相似文献   

16.
Acquisition of fertilization ability by spermatozoa during epididymal transit occurs in part by the transfer of molecules from membranous vesicles called epididymosomes. Epididymosomes are heterogeneous in terms of both size and molecular composition. Exosomes and other related small membranous vesicles (30–120 nm) containing tetraspanin proteins on their surface are found in many biological fluids. In this study, we demonstrate that these vesicles are present in bovine cauda epididymal fluid as a subpopulation of epididymosomes. They contain tetraspanin CD9 in addition to other proteins involved in sperm maturation such as P25b, GliPr1L1, and MIF. In order to study the mechanism of protein transfer to sperm, DilC12-labeled unfractionated epididymosomes or CD9-positive microvesicles were coincubated with epididymal spermatozoa, and their transfer was evaluated by flow cytometry. CD9-positive microvesicles from epididymal fluid specifically transferred molecules to spermatozoa, whereas those prepared from blood were unable to do so. The CD9-positive microvesicles transferred molecules to the same sperm regions (acrosome and midpiece) as epididymosomes, with the same kinetics; however, the molecules were preferentially transferred to live sperm and, in contrast to epididymosomes, Zn2+ did not demonstrate potentiated transfer. Tetraspanin CD9 was associated with other proteins on the membrane surface of CD9-positive microvesicles according to coimmunoprecipitation experiments. CD26 cooperated with CD9 in the molecular transfer to sperm since the amount of molecules transferred was significantly reduced in the presence of specific antibodies. In conclusion, CD9-positive microvesicles are present in bovine cauda epididymal fluid and transfer molecules to live maturing sperm in a tissue-specific manner that involves CD9 and CD26.  相似文献   

17.
Regulation of calcium content in bovine spermatozoa   总被引:2,自引:0,他引:2  
Plasma membrane vesicles isolated from bovine epididymal and ejaculated spermatozoa have widely different capabilities for transporting Ca2+. Spermatozoa were ruptured by nitrogen cavitation, and the plasma membrane fraction was harvested after low speed and sucrose gradient centrifugation; purity was assessed by marker enzyme analyses, electron microscopy, and sedimentation properties. Plasma membrane vesicles isolated from epididymal sperm accumulate Ca2+ passively at a faster rate and to a greater extent than vesicles prepared from ejaculated sperm. Ca2+ transport across bovine sperm plasma membranes is an ATP-independent, Na+-dependent process that obligatorily exchanges intravesicular Na+ for external Ca2+. The rate of Na+/Ca2+ exchange is significantly lower in ejaculated sperm vesicles than in those of epididymal sperm. Bovine plasma membranes contain little or no Ca2+-dependent ATPase activity. It is suggested that, at the time of ejaculation, calcium flux into bovine sperm is prevented by the interaction of the plasma membrane with putative factors in seminal fluid that specifically interfere with Na+/Ca2+ exchange. We have isolated a protein from seminal plasma that prevents calcium accumulation by bovine epididymal sperm (Rufo, G. A., Jr., Singh, J. P., Babcock, D. F., and Lardy, H. A. (1982) J. Biol. Chem. 257, 4627-4632). A protein with properties resembling those of the seminal calcium transport inhibitor is found on the membrane vesicles from ejaculated sperm but not on membranes from epididymal sperm. We conclude that this protein binds strongly to the plasma membrane of bovine sperm and is responsible for preventing calcium uptake by ejaculated sperm.  相似文献   

18.
We have investigated the origin of the sperm motility inhibitor (SPMI) from boar seminal plasma. SPMI was measured by its capacity to inhibit the motility of demembranated spermatozoa and by an enzyme-linked immunosorbant assay (ELISA). Among the various reproductive and now reproductive tissues and fluids tested, only the seminal vesicle fluid and seminal plasma contained significant amounts of SPMI biological activity and SPMI antigen. Like other seminal vesicle fluid proteins, SPMI is diluted 6- to 8-fold upon ejaculation. By immunohistochemical detection at the light microscope with antibodies obtained from rabbits immunized with SPMI purified from boar seminal plasma, SPMI was found in the cytosol and/or on the plasma membrane bordering the lumen of the seminal vesicles. At the electron microscope level, SPMI appeared to be present only on the surface of the secretory cells. The data indicate that SPMI originates from a single tissue, the seminal vesicle, and suggest that only the mature form present on the luminal surface of the gland can react with the antibody generated from rabbits immunized with the secreted form of SPMI. © 1993 Wiley-Liss, Inc.  相似文献   

19.
A novel method for isolation of cilia and ciliary membrane vesicles from Paramecium tetraurelia has been developed. Using a continuous Percoll gradient of low osmolarity after fragmentation of purified cilia by French Press treatment two membrane fractions with different buoyant densities were obtained. These fractions were further purified by conventional discontinuous sucrose density gradients and characterized biochemically and by electron microscopy. Guanylate cyclase, a membrane bound enzyme, was found almost exclusively in membrane vesicles of high buoyant density while the voltage-sensitive calcium-channel of the ciliary membrane was predominantly localized in low density vesicles. Examination of both fractions by SDS polyacrylamide gel electrophoresis revealed only minor differences in protein pattern in the 34 and 64 kilodaltons range. Morphologically both membrane vesicle fractions had a diameter of about 300 nm, however, the high density vesicle fraction contained a considerably larger amount of multilamellar structures with a multishell, onion-like appearance. Freeze-fracture analysis failed to detect differences in intramembrane particle content between low and high density vesicles. The possible biological relevance of the spatial separation of the calcium-sensor enzyme guanylate cyclase and the voltage-sensitive calcium-channels in the ciliary membrane is discussed in terms of a diffusion controlled mechanism for graded signal transmission.  相似文献   

20.
The organization of membrane subdomains in mammalian sperm has recently generated controversy, with several reports describing widely differing localization patterns for the ganglioside GM1. Using the pentameric B subunit of cholera toxin (CTB), we found GM1 to be restricted to the plasma membrane overlying the acrosome in the heads of live murine sperm. Interestingly, CTB had minimal binding to live bovine and human sperm. To investigate whether this difference in GM1 localization was because of species differences or differences between collection from the epididymis (mouse) or an ejaculate (bull, human), we examined epididymal bovine and human sperm. We found that GM1 localized to the plasma membrane overlying the acrosome in sperm from these species. To determine whether some component of seminal plasma was interfering with the ability of CTB to access GM1, we incubated epididymal mouse sperm with fluid from murine seminal vesicles and epididymal bull sperm with bovine seminal plasma. This treatment largely abolished the ability of the CTB to bind to GM1, producing a fluorescence pattern similar to that reported for the human. The most abundant seminal plasma protein, PDC-109, was not responsible for this loss. As demonstration that the seminal plasma was not removing GM1, sperm exposed to seminal plasma were fixed before CTB addition, and again displayed fluorescence over the acrosome. These observations reconcile inconsistencies reported for the localization of GM1 in sperm of different species, and provide evidence for the segregation of GM1 to a stable subdomain in the plasma membrane overlying the acrosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号