首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
GIT1 is a scaffold for ERK1/2 activation in focal adhesions   总被引:6,自引:0,他引:6  
GIT1 (G protein-coupled receptor kinase-interacting protein 1) has been shown to regulate focal adhesion disassembly. We previously reported that GIT1 associates with MEK1 and acts as a scaffold to enhance ERK1/2 activation. Here, we show that GIT1 co-localizes with ERK1/2 in focal adhesions and regulates cell migration in vascular smooth muscle cells, HEK293 cells, and HeLa cells. Immunofluorescence showed that GIT1 co-localized with phospho-ERK1/2 in focal adhesions after epidermal growth factor stimulation. Because Src is required for both GIT1 tyrosine phosphorylation and focal adhesion disassembly, we studied the effects of Src on GIT1-ERK1/2 interactions. PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine) inhibited association of GIT1 with ERK1/2, and their co-localization in focal adhesions was dramatically decreased in SYF-/- cells. GIT1 small interfering RNA significantly inhibited ERK1/2 recruitment to and activation in focal adhesions. GIT1 small interfering RNA and mutated GIT1 lacking the MEK1 binding domain significantly decreased epidermal growth factor-stimulated cell spreading and migration, suggesting that GIT1-mediated events such as ERK1/2 activation are required for spreading and migration. In summary, the present study further supports a key role for GIT1 (a MEK1-binding protein) as a scaffold for signal transduction in focal adhesions.  相似文献   

2.
The mammalian target of rapamycin complex 1 (mTORC1) integrates mitogenic and stress signals to control growth and metabolism. Activation of mTORC1 by amino acids and growth factors involves recruitment of the complex to the lysosomal membrane and is further supported by lysosome distribution to the cell periphery. Here, we show that translocation of lysosomes toward the cell periphery brings mTORC1 into proximity with focal adhesions (FAs). We demonstrate that FAs constitute discrete plasma membrane hubs mediating growth factor signaling and amino acid input into the cell. FAs, as well as the translocation of lysosome-bound mTORC1 to their vicinity, contribute to both peripheral and intracellular mTORC1 activity. Conversely, lysosomal distribution to the cell periphery is dispensable for the activation of mTORC1 constitutively targeted to FAs. This study advances our understanding of spatial mTORC1 regulation by demonstrating that the localization of mTORC1 to FAs is both necessary and sufficient for its activation by growth-promoting stimuli.  相似文献   

3.
Although elevated expression and increased tyrosine phosphorylation of focal adhesion kinase (FAK) are crucial for tumor progression, the mechanism by which FAK promotes oncogenic transformation is unclear. We have therefore determined the role of FAK phosphorylation at tyrosine 861 in the oncogenic transformation of NIH3T3 fibroblasts. FAK phosphorylation at tyrosine 861 was increased in both constitutively H-Ras-transformed and H-Ras-inducible NIH3T3 cells, in parallel with cell transformation. However, H-Ras-inducible cells transfected with the nonphosphorylatable mutant FAK Y861F showed decreased migration/invasion, focus forming activity and anchorage-independent growth, compared with either wild-type or kinase-defective FAK. In contrast to unaltered FAK/Src activity, the association of FAK and p130(CAS) was decreased in FAK Y861F-transfected cells, and FAK phosphorylation at tyrosine 861 enhanced this association in vitro. Consistently, FAK Y861F-transfected cells were defective in activation of c-Jun NH(2)-terminal kinase and in expression of matrix metalloproteinase-9 during transformation. Taken together, these results strongly suggest that FAK phosphorylation at tyrosine 861 is crucial for H-Ras-induced transformation through regulation of the association of FAK with p130(CAS).  相似文献   

4.
Cell polarity is critical for cell migration and requires localized signal transduction in subcellular domains. Recent evidence demonstrates that activation of ERK1/2 (extracellular‐signal‐regulated kinase 1/2) in focal adhesions is essential for cell migration. GIT1 (G‐protein‐coupled receptor kinase‐interacting protein 1) has been shown to bind paxillin and regulate focal‐adhesion disassembly. We have previously reported that GIT1 binds to MEK1 [MAPK (mitogen‐activated protein kinase)/ERK kinase 1] and acts as a scaffold to enhance ERK1/2 activation in response to EGF (epidermal growth factor). In the present study we show that GIT1 associates with ERK1/2 in focal adhesions and this association increases after EGF stimulation. The CC (coiled‐coil) domain of ERK1/2 is required for association with GIT1, translocation to focal adhesions, and cell spreading and migration. Immunofluorescent staining showed that, after EGF stimulation, GIT1 co‐localized with pERK1/2 (phosphorylated ERK1/2) in focal adhesions. The binding of GIT1 and ERK1/2 was functionally important, since transfecting an ERK2 mutant lacking the CC domain [ERK2(del CC)] significantly decreased pERK1/2 translocation to focal adhesions, cell spreading and migration induced by EGF. In summary, the CC domain of ERK1/2 is necessary for binding to GIT1, for ERK1/2 activation in focal adhesions, and for cell spreading and migration.  相似文献   

5.
The small GTPase RhoA regulates a wide spectrum of cellular functions including transformation and cytoskeletal reorganization. A large number of proteins have been identified as targets of RhoA, but their specific roles in these processes are not clear. Phospholipase D (PLD) was shown to be one such target several years ago; more recent work from our laboratory and others has demonstrated that of the two mammalian PLD isozymes, PLD1 but not PLD2 is activated by RhoA and this activation proceeds through direct binding both in vitro and in vivo. In this study, using a series of RhoA mutants, we have defined a PLD1-specific interacting site on RhoA composed of the residues Asn41, Trp58 and Asp76, using the yeast two-hybrid system, co-immunoprecipitation, and a PLD in vivo assay. The results further substantiate our previous finding that RhoA activates PLD1 through direct interaction. These mutants were then used to investigate the role of PLD1 in the cytoskeletal reorganization stimulated by RhoA signaling. Our results show that PLD1 is not required for the RhoA-mediated stress fiber and focal adhesion formation. The lack of importance of PLD1 signaling in RhoA-mediated cytoskeletal reorganization is further supported by the observation that PLD1 depletion using an shRNA approach and tetracycline-induced overexpression of the wild-type and the catalytically inactive mutant of PLD1 in stable cell lines do not alter stress fiber and focal adhesion formation.  相似文献   

6.
《The Journal of cell biology》1993,123(4):993-1005
The integrin family of heterodimeric cell surface receptors play critical roles in multiple biological processes by mediating cellular adhesion to the extracellular matrix (ECM). Adhesion triggers intracellular signaling cascades, including tyrosine phosphorylation and elevation of [Ca2+]i. The Focal Adhesion Kinase (FAK or pp125FAK), a protein tyrosine kinase that colocalizes with integrins in cellular focal adhesions, is a prime candidate for a mediator of integrin signaling events. Here we report an analysis of the domain structure of FAK in which we have identified a contiguous stretch of 159 amino acids within the COOH terminus essential for correct subcellular localization. When placed in the context of an unrelated cytosolic protein, this Focal Adhesion Targeting (FAT) sequence functions to efficiently mediate the focal adhesion localization of this fusion protein. Furthermore, this analysis suggests that pp125FAK cannot be activated oncogenically by mutation. This result could be explained if pp125FK either exhibits a narrow substrate specificity or is diametrically opposed by cellular phosphatases or other cellular processes.  相似文献   

7.
Maintenance of bone structural integrity depends in part on the rate of apoptosis of bone-forming osteoblasts. Because substrate adhesion is an important regulator of apoptosis, we have investigated the role of focal adhesions in regulating bone cell apoptosis. To test this, we expressed a truncated form of -actinin (ROD-GFP) that competitively displaces endogenous -actinin from focal adhesions, thus disrupting focal adhesions. Immunofluorescence and morphometric analysis of vinculin and tyrosine phosphorylation revealed that ROD-GFP expression dramatically disrupted focal adhesion organization and reduced tyrosine phosphorylation at focal adhesions. In addition, Bcl-2 protein levels were reduced in ROD-GFP-expressing cells, but caspase 3 cleavage, poly(ADP-ribose) polymerase cleavage, histone H2A.X phosphorylation, and cytotoxicity were not increased due to ROD-GFP expression alone. Increases in both ERK and Akt phosphorylation were also observed in ROD-GFP-expressing cells, although inhibition of either ERK or Akt individually or together failed to induce apoptosis. However, we did find that ROD-GFP expression sensitized, whereas -actinin-GFP expression protected, cells from TNF--induced apoptosis. Further investigation revealed that activation of TNF--induced survival signals, specifically Akt phosphorylation and NF-B activation, was inhibited in ROD-GFP-expressing cells. The reduced expression of antiapoptotic Bcl-2 and inhibited survival signaling rendered ROD-GFP-expressing cells more susceptible to TNF--induced apoptosis. Thus we conclude that -actinin plays a role in regulating cell survival through stabilization of focal adhesions and regulation of TNF--induced survival signaling. tumor necrosis factor-; survival; cytoskeleton; nuclear factor-B  相似文献   

8.
Cell migration involves a multitude of signals that converge on cytoskeletal reorganization, essential for development, immune responses and tissue repair. Using knockdown and dominant negative approaches, we show that the microtubule-associated Ste20-like kinase SLK is required for focal adhesion turnover and cell migration downstream of the FAK/c-src complex. Our results show that SLK co-localizes with paxillin, Rac1 and the microtubules at the leading edge of migrating cells and is activated by scratch wounding. SLK activation is dependent on FAK/c-src/MAPK signaling, whereas SLK recruitment to the leading edge is src-dependent but FAK independent. Our results show that SLK represents a novel focal adhesion disassembly signal.  相似文献   

9.
Focal adhesion kinase (FAK) has been implicated to be a point of convergence of integrin and growth factor signaling pathways. Here we report that FAK directly interacts with the hepatocyte growth factor receptor c-Met. Phosphorylation of c-Met at Tyr-1349 and, to a lesser extent, Tyr-1356 is required for its interaction with the band 4.1 and ezrin/radixin/moesin homology domain (FERM domain) of FAK. The F2 subdomain of the FAK FERM domain alone is sufficient for Met binding, in which a patch of basic residues (216KAKTLRK222) are critical for the interaction. Met-FAK interaction leads to FAK activation and subsequent contribution to hepatocyte growth factor-induced cell motility and cell invasion. Our results provide evidence that constitutive Met-FAK interaction may be a critical determinant for tumor cells to acquire invasive potential.  相似文献   

10.
The tyrosine kinase Fyn is a member of the Src family kinases which are important in many integrin‐mediated cellular processes including cell adhesion and migration. Fyn has multiple phosphorylation sites which can affect its kinase activity. Among these phosphorylation sites, the serine 21 (S21) residue of Fyn is a protein kinase A (PKA) recognition site within an RxxS motif of the amino terminal SH4 domain of Fyn. In addition, S21 is critical for Fyn kinase‐linked cellular signaling. Mutation of S21A blocks PKA phosphorylation of Fyn and alters its tyrosine kinase activity. Expression of Fyn S21A in cells lacking Src family kinases (SYF cell) led to decreased tyrosine phosphorylation of focal adhesion kinase resulting in reduced focal adhesion targeting, which slowed lamellipodia dynamics and thus cell migration. These changes in cell motility were reflected by the fact that cells expressing Fyn S21A were severely deficient in their ability to assemble and disassemble focal adhesions. Taken together, our findings indicate that phosphorylation of S21 within the pPKA recognition site (RxxS motif) of Fyn regulates its tyrosine kinase activity and controls focal adhesion targeting, and that this residue of Fyn is critical for transduction of signals arising from cell‐extracellular matrix interactions. J. Cell. Physiol. 226: 236–247, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Vascular endothelial growth factor (VEGF) stimulates endothelial cell (EC) migration. The protein kinase Akt activates the endothelial NO synthase (eNOS) by phosphorylation of Ser-1177. Therefore, we investigated the contribution of Akt-mediated eNOS phosphorylation to VEGF-induced EC migration. Inhibition of NO synthase or overexpression of a dominant negative Akt abrogated VEGF-induced cell migration. In contrast, overexpression of constitutively active Akt was sufficient to induce cell migration. Moreover, transfection of an Akt site phospho-mimetic eNOS (S1177D) potently stimulated EC migration, whereas a non-phosphorylatable mutant (S1177A) inhibited VEGF-induced EC migration. Our data indicate that eNOS activation via phosphorylation of Ser-1177 by Akt is necessary and sufficient for VEGF-mediated EC migration.  相似文献   

12.
3-Phosphoinositide-dependent protein kinase 1 (PDK1) is a signal integrator that activates the AGC superfamily of serine/threonine kinases. PDK1 is phosphorylated on tyrosine by oxidants, although its regulation by agonists that stimulate G-protein-coupled receptor signaling pathways and the physiological consequences of tyrosine phosphorylation in this setting have not been fully identified. We found that angiotensin II stimulates the tyrosine phosphorylation of PDK1 in vascular smooth muscle in a calcium- and c-Src-dependent manner. The calcium-activated tyrosine kinase Pyk2 acts as a scaffold for Src-dependent phosphorylation of PDK1 on Tyr9, which permits phosphorylation of Tyr373 and -376 by Src. This critical function of Pyk2 is further supported by the observation that Pyk2 and tyrosine-phosphorylated PDK1 colocalize in focal adhesions after angiotensin II stimulation. Importantly, infection of smooth muscle cells with a Tyr9 mutant of PDK1 inhibits angiotensin II-induced tyrosine phosphorylation of paxillin and focal adhesion formation. These observations identify a novel interaction between PDK1 and Pyk2 that regulates the integrity of focal adhesions, which are major compartments for integrating signals for cell growth, apoptosis, and migration.  相似文献   

13.
Aurora B kinase activity is required for successful cell division. In this paper, we show that Aurora B is phosphorylated at serine 331 (Ser331) during mitosis and that phosphorylated Aurora B localizes to kinetochores in prometaphase cells. Chk1 kinase is essential for Ser331 phosphorylation during unperturbed prometaphase or during spindle disruption by taxol but not nocodazole. Phosphorylation at Ser331 is required for optimal phosphorylation of INCENP at TSS residues, for Survivin association with the chromosomal passenger complex, and for complete Aurora B activation, but it is dispensable for Aurora B localization to centromeres, for autophosphorylation at threonine 232, and for association with INCENP. Overexpression of Aurora B(S331A), in which Ser331 is mutated to alanine, results in spontaneous chromosome missegregation, cell multinucleation, unstable binding of BubR1 to kinetochores, and impaired mitotic delay in the presence of taxol. We propose that Chk1 phosphorylates Aurora B at Ser331 to fully induce Aurora B kinase activity. These results indicate that phosphorylation at Ser331 is an essential mechanism for Aurora B activation.  相似文献   

14.
Protein-tyrosine phosphatase-alpha (PTPalpha) activates Src family kinases (SFKs) to promote the integrin-stimulated early autophosphorylation of focal adhesion kinase (FAK). We report here that integrin stimulation induces tyrosine phosphorylation of PTPalpha. PTPalpha was dephosphorylated upon fibroblast detachment from the substratum and rephosphorylated when cells were plated on the integrin ligand fibronectin. alpha PTP phosphorylation occurred at Tyr789 and required SFKs (Src or Fyn/Yes), FAK, and an intact cytoskeleton. It also required active PTPalpha or constitutively active Src. These observations indicate that PTPalpha activates SFKs and that the subsequently activated SFK.FAK tyrosine kinase complex in turn phosphorylates PTPalpha. Reintroduction of wild-type PTPalpha or unphosphorylatable PTPalpha(Y789F) (but not inactive PTPalpha) into PTPalpha-null fibroblasts restored defective integrin-induced SFK activation, FAK phosphorylation, and paxillin phosphorylation. PTPalpha(Y789F) and inactive PTPalpha could not rescue delayed actin stress fiber assembly and focal adhesion formation or defective cell migration. This study distinguishes two roles of PTPalpha in integrin signaling: an early role as an activator of SFKs and FAK with no requirement for PTPalpha phosphorylation and a later downstream role in cytoskeleton-associated events for which PTPalpha phosphorylation at Tyr789 is essential.  相似文献   

15.
Focal adhesion kinase (FAK) is phosphorylated on tyrosine and serine residues after cell activation. In the present work, we investigated the relationship between tyrosine and serine phosphorylation of FAK in promoting endothelial cell migration in response to vascular endothelial growth factor (VEGF). We found that VEGF induces the activation of the Rho-dependent kinase (ROCK) downstream from vascular endothelial growth factor receptor (VEGFR) 2. In turn, activated ROCK directly phosphorylates FAK on Ser732. Proline-rich tyrosine kinase-2 (Pyk2) is also activated in response to VEGF. Its activation requires the clustering of integrin alphavbeta3 and triggers directly the phosphorylation of Tyr407 within FAK, an event necessary for cell migration. Interestingly, ROCK-mediated phosphorylation of Ser732 is essential for Pyk2-dependent phosphorylation of Tyr407, because the latter is abrogated in cells expressing a FAK mutant that is nonphosphorylatable on Ser732. We suggest that VEGF elicits the activation of the VEGFR2-ROCK pathway, leading to phosphorylation of Ser732 within FAK. In turn, phosphorylation of Ser732 would change the conformation of FAK, making it accessible to Pyk2 activated in response to its association with integrin beta3. Then, activated Pyk2 triggers the phosphorylation of FAK on Tyr407, promoting cell migration.  相似文献   

16.
Podosomes are dynamic actin-enriched membrane structures that play an important role in invasive cell motility and extracellular matrix degradation. They are often found to assemble into large rosettelike structures in highly invasive cells. However, the mechanism of this assembly remains obscure. In this study, we identified focal adhesion kinase (FAK) as a key molecule necessary for assembly. Moreover, phosphorylation of p130Cas and suppression of Rho signaling by FAK were found to be important for FAK to induce the assembly of podosome rosettes. Finally, we found that suppression of vimentin intermediate filaments by FAK facilitates the assembly of podosome rosettes. Collectively, our results strongly suggest a link between FAK, podosome rosettes, and tumor invasion and unveil a negative role for Rho signaling and vimentin filaments in podosome rosette assembly.  相似文献   

17.
Mena [mammalian Ena (Enabled)]/VASP (vasodilator-stimulated phosphoprotein) proteins are the homologues of Drosophila Ena. In Drosophila, Ena is a substrate of the tyrosine kinase DAbl (Drosophila Abl). However, the link between Abl and the Mena/VASP family is not fully understood in mammals. We previously reported that Abi-1 (Abl interactor 1) promotes phosphorylation of Mena and BCAP (B-cell adaptor for phosphoinositide 3-kinase) by bridging the interaction between c-Abl and the substrate. In the present study we have identified VASP, another member of the Mena/VASP family, as an Abi-1-bridged substrate of Abl. VASP is phosphorylated by Abl when Abi-1 is co-expressed. We also found that VASP interacted with Abi-1 both in vitro and in vivo. VASP was tyrosine-phosphorylated in Bcr-Abl-positive leukaemic cells in an Abi-1-dependent manner. Co-expression of c-Abl and Abi-1 or the phosphomimetic Y39D mutation in VASP resulted in less accumulation of VASP at focal adhesions. VASP Y39D had a reduced affinity to the proline-rich region of zyxin. Interestingly, overexpression of both phosphomimetic and unphosphorylated forms of VASP, but not wild-type VASP, impaired adhesion of K562 cells to fibronectin. These results suggest that the phosphorylation and dephosphorylation cycle of VASP by the Abi-1-bridged mechanism regulates association of VASP with focal adhesions, which may regulate adhesion of Bcr-Abl-transformed leukaemic cells.  相似文献   

18.
It has been proposed that the focal adhesion kinase (FAK) mediates focal adhesion formation through tyrosine phosphorylation during cell adhesion. We investigated the role of FAK in focal adhesion structure and function. Loading cells with a glutathione-S-transferase fusion protein (GST-Cterm) containing the FAK focal adhesion targeting sequence, but not the kinase domain, decreased the association of endogenous FAK with focal adhesions. This displacement of endogenous FAK in both BALB/c 3T3 cells and human umbilical vein endothelial cells loaded with GST-Cterm decreased focal adhesion phosphotyrosine content. Neither cell type, however, exhibited a reduction in focal adhesions after GST-Cterm loading. These results indicate that FAK mediates adhesion-associated tyrosine phosphorylation, but not the formation of focal adhesions. We then examined the effect of inhibiting FAK function on other adhesion-dependent cell behavior. Cells microinjected with GST-Cterm exhibited decreased migration. In addition, cells injected with GST-Cterm had decreased DNA synthesis compared with control-injected or noninjected cells. These findings suggest that FAK functions in the regulation of cell migration and cell proliferation.  相似文献   

19.
20.
Members of the plexin protein family are known regulators of axon guidance, but recent data indicate that they have broader functions in the regulation of embryonic morphogenesis. Here we provide further evidence of this by showing that PlexinA1 is expressed in Xenopus neural crest cells and is required for their migration. PlexinA1 expression is detected in migrating cranial neural crest cells and knockdown of PlexinA1 expression using Morpholino oligonucleotides inhibits neural crest migration. PlexinA1 likely affects neural crest migration by interaction with PTK7, a regulator of planar cell polarity that is required for neural crest migration. PlexinA1 and PTK7 interact in immunoprecipitation assays and show phenotypic interaction in co-injection experiments. Considering that plexins and PTK7 have been shown to genetically interact in Drosophila axon guidance and chick cardiac morphogenesis, our data suggest that this interaction is evolutionary conserved and may be relevant for a broad range of morphogenetic events including the migration of neural crest cells in Xenopus laevis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号