首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuropeptide Y (NPY) produced in the arcuate nucleus (ARC) of the hypothalamus stimulates feeding both directly by activating NPY receptors and indirectly through release of the orexigenic peptides, galanin and beta-endorphin (beta-END), in the paraventricular nucleus (PVN) and surrounding neural sites. Orexin A and orexin B, produced outside the ARC in the lateral hypothalamic area (LH), have recently been shown to stimulate feeding. In the present studies we tested the hypothesis that NPYergic signaling may mediate feeding stimulated by orexins. In adult male rats injected intracerebroventricularly (i.c.v.) with orexin A (3, 10, 15 nmol) or orexin B (3, 10, 30 nmol) feeding was stimulated in a dose-dependent manner; maximal feeding was seen after 15 nmol orexin A and 30 nmol orexin B. To determine whether NPY may mediate this orexin stimulated feeding, we used 1229U91, a selective NPY Y1 receptor antagonist (NPY-A). Whereas NPY-A on its own was ineffective, it suppressed NPY-induced feeding. Furthermore, NPY-A completely blocked the feeding evoked by either orexin A (15 nmol) or orexin B (30 nmol). These results show that orexin A and B stimulate feeding and further suggest that these excitatory effects may be mediated by NPYergic signaling through Y1 receptors. These findings are in accord with the view that the orexin-NPY pathway may comprise a functional link upstream from NPY within the hypothalamic appetite regulating network.  相似文献   

2.
The hypothalamus is the most important region in the control of food intake and body weight. The ventromedial "satiety center" and lateral hypothalamic "feeding center" have been implicated in the regulation of feeding and energy homeostasis by various studies of brain lesions. The discovery of orexin peptides, whose neurons are localized in the lateral hypothalamus and adjacent areas, has given us new insight into the regulation of feeding. Dense fiber projections are found throughout the brain, especially in the raphe nucleus, locus coeruleus, paraventricular thalamic nucleus, arcuate nucleus, and central gray. Orexins mainly stimulate food intake, but by the virtue of wide immunoreactive projections throughout the brain and spinal cord, orexins interact with various neuronal pathways to potentiate divergent functions. In this review, we summarize recent progress in the physiological, neuroanatomical, and molecular studies of the novel neuropeptide orexins (hypocretins).  相似文献   

3.
Ghrelin stimulates feeding when administered centrally and peripherally. The lateral hypothalamus (LH) is thought to mediate ghrelin-induced hyperphagia. Thus, we examined central mechanisms underlying feeding generated by LH ghrelin. We determined that 0.3nmol of LH-injected ghrelin was the lowest dose increasing food consumption and it induced Fos immunoreactivity (IR; a marker of neuronal activation) in feeding-related brain areas, including the hypothalamic paraventricular, arcuate, and dorsomedial nuclei, amygdala, and nucleus of the solitary tract. Also, LH ghrelin induced Fos IR in LH orexin neurons. We conclude that the LH, as part of larger central circuitry, integrates orexigenic properties of ghrelin.  相似文献   

4.
Orexin A is produced in caudal lateral, posterior, perifornical, and dorsomedial hypothalamic areas. Orexin A in the rostro-dorsal lateral hypothalamic area (rLHa) stimulates feeding and activates several feeding-regulatory brain areas. We hypothesized that aging diminishes feeding and c-Fos-immunoreactivity (c-Fos-ir; marker of neuronal activation) response to orexin A. Young (3 mo), middle-aged (12 mo), and old (24 mo) male Fischer 344 rLHa-cannulated rats were injected with orexin A (0.5, 1, and 2 nmol). Food intake was measured at 1, 2, and 4 h. c-Fos-ir in hypothalamic, limbic, and hindbrain regions was measured in two additional sets of rLHa-orexin A injected rats. In a separate study, orexin A effects on feeding and c-Fos-ir were measured in 6-mo-old rats. Orexin A significantly elevated feeding in rats aged 3, 6, and 12 mo in the 0-1 and 1-2- h time intervals, whereas in old rats this was significant in the 1-2 h time interval only. At 1 h, 6-8 (of 14) brain areas showed elevated c-Fos-ir in response to orexin A in 3- and 6-mo-old rats, but 24-mo-old rats exhibited attenuated or absent c-Fos-ir response in all brain regions except the hypothalamic paraventricular nucleus (PVN) and rostral nucleus of the solitary tract (rNTS). Orexin A did not elevate c-Fos-ir in 3-mo-old rats at 2 h after injection, whereas the PVN and mediodorsal thalamic nucleus (MD) showed elevated c-Fos-ir at 2 h in 24-mo-old rats. These data suggest that delayed and diminished feeding responses in old animals may be due to ineffective neural signaling and implicate the orexin A network as one feeding system affected by aging.  相似文献   

5.
Orexin A, synthesised in the posterolateral hypothalamus, has widespread distribution including the paraventricular nucleus (PVN), which is rich in thyrotropin-releasing hormone (TRH) neurones. Nerve fibres in the PVN synapse on neurones that send polysynaptic projections to brown adipose tissue (BAT), which is important in thermogenesis. A number of observations suggests orexin A may be involved in regulation of metabolism and thermogenesis. We investigated the effect of orexin A injected intracerebroventricularly (ICV) on thyroid-stimulating hormone (TSH) and thyroid hormones in male rats. We then examined the effect of chronic iPVN injections of orexin A on plasma TSH and uncoupling protein-1 (UCP-1) protein in BAT. Orexin A (3 nmol) administered ICV significantly suppressed plasma TSH at 10 and 90 min. Orexin A (0.3 nmol) administered into the PVN twice daily for 3 days significantly increased day-time 2-h food intake, but did not significantly alter nocturnal food intake. Though chronic iPVN orexin A altered diurnal food intake, there was no effect on 24-h food intake or body weight. Furthermore, orexin A administered chronically into the PVN did not alter UCP-1 level in BAT, or plasma hormones relative to saline injected animals. Chronic iPVN orexin A does not appear to influence thermogenesis through activation of UCP-1 or the thyroid axis.  相似文献   

6.
In humans, nonexercise activity thermogenesis (NEAT) increases with positive energy balance. The mediator of the interaction between positive energy balance and physical activity is unknown. In this study, we address the hypothesis that orexin A acts in the hypothalamic paraventricular nucleus (PVN) to increase nonfeeding-associated physical activity. PVN-cannulated rats were injected with either orexin A or vehicle during the light and dark cycle. Spontaneous physical activity (SPA) was measured using arrays of infrared activity sensors and night vision videotaped recording (VTR). O(2) consumption and CO(2) production were measured by indirect calorimetry. Feeding behavior was assessed by VTR. Regardless of the time point of injection, orexin A (1 nmol) was associated with dramatic increases in SPA for 2 h after injection (orexin A: 6.27 +/- 1.95 x 10(3) beam break count, n = 24; vehicle: 1.85 +/- 1.13 x 10(3), n = 38). This increase in SPA was accompanied by compatible increase in O(2) consumption. Duration of feeding was increased only when orexin A was injected in the early light phase and accounted for only 3.5 +/- 2.5% of the increased physical activity. In a dose-response experiment, increases in SPA were correlated with dose of orexin A linearly up to 2 nmol. PVN injections of orexin receptor antagonist SB-334867 were associated with decreases in SPA and attenuated the effects of PVN-injected orexin A. Thus orexin A can act in PVN to increase nonfeeding-associated physical activity, suggesting that this neuropeptide might be a mediator of NEAT.  相似文献   

7.
Recent advances in peptidomics have enabled the identification of previously uncharacterized peptides. However, sequence information alone does not allow us to identify candidates for bioactive peptides. To increase an opportunity to discover bioactive peptides, we have focused on C-terminal amidation, a post-translational modification shared by many bioactive peptides. We analyzed peptides secreted from human medullary thyroid carcinoma TT cells that produce amidated peptides, and we identified two novel amidated peptides, designated neuroendocrine regulatory peptide (NERP)-1 and NERP-2. NERPs are derived from distinct regions of the neurosecretory protein that was originally identified as a product of a nerve growth factor-responsive gene in PC12 cells. Mass spectrometric analysis of the immunoprecipitate using specific antibodies as well as reversed phase-high performance liquid chromatography coupled with radioimmunoassay analysis of brain extract demonstrated the endogenous presence of NERP-1 and NERP-2 in the rat. NERPs are abundant in the paraventricular and supraoptic nuclei of the rat hypothalamus and colocalized frequently with vasopressin but rarely with oxytocin. NERPs dose-dependently suppressed vasopressin release induced by intracerebroventricular injection of hypertonic NaCl or angiotensin II in vivo. NERPs also suppressed basal and angiotensin II-induced vasopressin secretion from hypothalamic explants in vitro. Bioactivity of NERPs required C-terminal amidation. Anti-NERP IgGs canceled plasma vasopressin reduction in response to water loading, indicating that NERPs could be potent endogenous suppressors of vasopressin release. These findings suggest that NERPs are novel modulators in body fluid homeostasis.  相似文献   

8.
Galanin-like peptide (GALP) is a novel orexigenic neuropeptide that is recently isolated from the porcine hypothalamus. GALP-containing neurons predominantly locate in the hypothalamic arcuate nucleus (ARC). The expression of GALP mRNA within the ARC is increased after the administration of leptin. GALP-containing neurons express leptin receptor and contain alpha-melanocyte-stimulating hormone. We have recently reported that neuropeptide Y (NPY)- and orexin-containing axon terminals are in close apposition with GALP-containing neurons in the ARC. In addition, GALP-containing neurons express orexin-1 receptor (OX1-R). Thus, GALP may function under the influence of leptin and orexin. However, the target neurons of GALP have not yet been clarified. To clarify the neuronal interaction between GALP-containing and other feeding regulating neurons, double-immunostaining method using antibodies against GALP- and orexin- or melanin-concentrating hormone (MCH) was performed in the rat lateral hypothalamus (LH). GALP-immunoreactive fibers appeared to project to the LH around the fornix. They were also found from the rostral to the caudal part of the ARC, paraventricular nucleus (PVH), stria terminalis (BST), medial preoptic area (MPA), and lateral septal nucleus (LSV). Moreover, GALP-like immunoreactive nerve fibers were directly contacted with orexin- and melanin-concentrating hormone (MCH)-like immunoreactive neurons in the LH. Our findings strongly suggest that GALP-containing neurons interact with orexin- and/or MCH-containing neurons in the lateral hypothalamus and that it participates in the regulation of feeding behavior in harmony with other feeding-regulating neurons in the hypothalamus.  相似文献   

9.
Orexins (forms A and B) belong to a new family of peptides that, as neuropeptide Y (NPY), stimulate food intake when centrally injected. The ob/ob mouse is a well-characterized model of hyperphagia and obesity associated with strong metabolic disturbances and a central dysregulation of peptides involved in the control of feeding. In the present report, we investigated the hypocretin (Hcrt)/orexin (OX) peptide pathway in lean and ob/ob mice. Prepro-Hcrt/OX mRNA expression, measured by in situ hybridization was restricted to the lateral hypothalamus area. It was significantly decreased in ob/ob mice (-18%; p<0.01). When estimated by real time RT-PCR in the whole hypothalamus, this decrease amounted to 65% (p<0.001). Hcrt-1/OX-A peptide concentrations, measured by RIA in microdissected hypothalamic nuclei were high in the lateral hypothalamus (LH) and lower in the arcuate (ARC) and paraventricular nuclei (PVN). In ob/ob mice, OX-A levels were significantly lower than in lean mice in the LH (-34%; p<0.02) and in the PVN (-72%; p<0.005). Acute intracerebroventricular injection of Hcrt-1/OX-A (1-10 nmol) stimulated feeding in lean, but not in ob/ob mice, whereas Hcrt-2/OX-B (1-10 nmol) had the opposite effect. Acute third ventricle (i3vt) injections of Hcrt/OX peptides in ob/ob mice transiently increased their metabolic rate and stimulated lipid substrate utilization. These findings provide direct evidence that Hcrt/OX peptides are down-regulated in the hypothalamus of ob/ob mice, contrary to the NPY system. The present data argues that Hcrt/OX peptides are not primarily responsible for the metabolic syndrome of the ob/ob mice. The diminution in the OX tone might participate in a counterregulatory system necessary to limit the adverse effects of NPY on food intake and body weight.  相似文献   

10.
A locally generated angiotensin system in rat carotid body   总被引:7,自引:0,他引:7  
Lam SY  Leung PS 《Regulatory peptides》2002,104(1-3):97-103
Orexinergic neurons originating in the perifornical, lateral hypothalamus project to numerous brain sites including neuroendocrine centers known to be important in the physiologic response to stress. Those projections suggest an action of endogenous orexin on adrenocorticotropin (ACTH) release, either by neuromodulatory effects in the paraventricular nucleus (PVN), or by neuroendocrine actions in the pituitary gland following release into the median eminence. We sought to determine if exogenously applied orexin A might act in the brain to alter ACTH release and to determine if a site of action in the hypothalamic paraventricular nucleus could be identified. Cerebroventricular administration of orexin A in conscious male rats resulted in a dose-related elevation in circulating ACTH levels. At 30 min post-infusion, ACTH levels were elevated 2.5-fold by the low dose of orexin A (0.3 nmol), 5.7-fold by the middle dose tested (1.0 nmol), and 7.5-fold by the highest dose tested (3.0 nmol). Pretreatment with a CRH-antagonist (i.v.) blocked the ability of i.c.v. administered orexin A to activate the hypothalamo-pituitary-adrenal (HPA) axis. Bath application of orexin A in hypothalamic slice preparations resulted in depolarizations (8.0+/-0.6 mV), accompanied by increases in spike frequency in identified magno- and parvocellular neurons in the PVN. Our data suggest a potential role for endogenous orexin in the hypothalamic regulation of stress hormone secretion.  相似文献   

11.
Apolipoprotein (apo) A-IV is an anorexigenic gastrointestinal peptide that is also synthesized in the hypothalamus. The goal of these experiments was to determine whether apo A-IV interacts with the central melanocortin (MC) system in the control of feeding. The third ventricular (i3vt) administration of a subthreshold dose of apo A-IV (0.5 microg) potentiated i3vt MC-induced (metallothionein-II, 0.03 nmol) suppression of 30-min feeding in Long-Evans rats. A subthreshold dose of the MC antagonist (SHU9119, 0.1 nmol, i3vt) completely attenuated the anorectic effect of i3vt apo A-IV (1.5 microg). The i3vt apo A-IV significantly elevated the expression of c-Fos in neurons of the paraventricular nucleus of the hypothalamus, but not in the arcuate nucleus or median eminence. In addition, c-Fos expression was not colocalized with proopiomelanocortin-positive neurons. These data support a synergistic interaction between apo A-IV and melanocortins that reduces food intake by acting downstream of the arcuate.  相似文献   

12.
Recent studies show that brain-derived neurotrophic factor (BDNF) decreases feeding and body weight after peripheral and ventricular administration. BDNF mRNA and protein, and its receptor tyrosine kinase B (TrkB) are widely distributed in the hypothalamus and other brain regions. However, there are few reports on specific brain sites of actions for BDNF. We evaluated the effect of BDNF in the hypothalamic paraventricular nucleus (PVN) on feeding. BDNF injected unilaterally or bilaterally into the PVN of food-deprived and nondeprived rats significantly decreased feeding and body weight gain within the 0- to 24-h and 24- to 48-h postinjection intervals. Effective doses producing inhibition of feeding behavior did not establish a conditioned taste aversion. PVN BDNF significantly decreased PVN neuropeptide Y (NPY)-induced feeding at 1, 2, and 4 h following injection. BDNF administration in the PVN abolished food-restriction-induced NPY gene expression in the hypothalamic arcuate nucleus. In conclusion, BDNF in the PVN significantly decreases food intake and body weight gain, suggesting that the PVN is an important site of action for BDNF in its effects on energy metabolism. Furthermore, BDNF appears to interact with NPY in its anorectic actions, although a direct effect on NPY remains to be established.  相似文献   

13.
Summary Immunohistochemically, nerve fibers and terminals reacting with anti-N-terminal-specific but not with anti-C-terminal-specific glucagon antiserum were observed in the following rat hypothalamic regions: paraventricular nucleus, supraoptic nucleus, anterior hypothalamus, arcuate nucleus, ventromedial hypothalamic nucleus and median eminence. Few fibers and terminals were demonstrated in the lateral hypothalamic area and dorsomedial hypothalamic nucleus. Radioimmunoassay data indicated that the concentration of gut glucagon-like immunoreactivity was higher in the ventromedial nucleus than in the lateral hypothalamic area. In food-deprived conditions, this concentration increased in both these parts. This was also verified in immunostained preparations in which a marked enhancement of gut glucagon-like immunoreactivity-containing fibers and terminals was observed in many hypothalamic regions. Several immunoreactive cell bodies were found in the ventromedial and arcuate nuclei of starved rats. Both biochemical and morphological data suggest that glucagon-related peptides may act as neurotransmitters or neuromodulators in the hypothalamus and may be involved in the central regulatory mechanism related to feeding behavior and energy metabolism.  相似文献   

14.
The neuropeptide orexin (hypocretin) increases energy expenditure partially through increasing spontaneous physical activity. The ability of exogenous orexin to alter body weight has never been established, however. We sought to determine whether orexin‐A microinjected into the paraventricular nucleus of the hypothalamus (PVN) induced weight loss in rats. Chronic guide cannulae were implanted into rats, aimed at the PVN. Rats were given daily microinjections of orexin (0.5 nmol) or vehicle into the PVN for 6 days; food intake and body weight were measured daily. In a separate group of rats, we injected orexin‐A and vehicle intra‐PVN and measured daily activity levels. Daily orexin treatment induced weight loss: orexin‐A‐treated rats lost significantly more weight than their vehicle‐injected counterparts without a significant difference in food intake. Rats were significantly more active after intra‐PVN orexin compared to vehicle. These results support the concept that orexinergic agents have the potential to produce negative energy balance through increasing physical activity. This presents a promising, untapped potential resource for weight loss.  相似文献   

15.
To further understand the functions of the orexin/hypocretin system, we examined the expression and regulation of the orexin/hypocretin receptor (OX1R and OX2R) mRNA in the brain by using quantitative in situ hybridization. Expression of OX1R and OX2R mRNA exhibited distinct distribution patterns. Within the hypothalamus, expression for the OX1R mRNA was largely restricted in the ventromedial (VMH) and dorsomedial hypothalamic nuclei, while high levels of OX2R mRNA were contained in the paraventricular nucleus, VMH, and arcuate nucleus as well as in mammilary nuclei. In the amygdala, OX1R mRNA was expressed throughout the amygdaloid complex with robust labeling in the medial nucleus, while OX2R mRNA was only present in the posterior cortical nucleus of amygdala. High levels of OX2R mRNA were also observed in the ventral tegmental area. Moreover, both OX1R and OX2R mRNA were observed in the hippocampus, some thalamic nuclei, and subthalamic nuclei. Furthermore, we analyzed the effect of fasting on levels of OX1R and OX2R mRNA in the hypothalamic and amygdaloid subregions. After 20 h of fasting, levels of OX1R mRNA were significantly increased in the VMH and the medial division of amygdala. An initial decrease (14 h) and a subsequent increase (20 h) in OX1R mRNA levels after fasting were observed in the dorsomedial hypothalamic nucleus and lateral division of amygdala. Levels of OX2R mRNA were augmented in the arcuate nucleus, but remained unchanged in the dorsomedial hypothalamic nucleus, paraventricular hypothalamic nucleus, and amygdala following fasting. The time-dependent and region-specific regulatory patterns of OX1R and OX2R suggest that they may participate in distinct neural circuits under the condition of food deprivation.  相似文献   

16.
Orexin A injected into the lateral hypothalamus (LH) stimulates feeding and activates neurons in brain sites regulating feeding and arousal. The feeding effects of orexin A have been demonstrated during the light cycle, a time when rats are normally resting, and the effect of orexin A on activity after injection into the LH has not been previously measured. Thus, it is unclear whether LH orexin A-induced feeding is secondary to enhanced arousal. To address this, LH-cannulated rats habituated to a running wheel were injected with either orexin A (1000 pmol) or vehicle during light and dark cycles. Food intake and running wheel rotations were measured for 2 h. Spontaneous physical activity (SPA) was also measured during the dark cycle. During the light cycle, orexin A in the LH stimulated feeding in the presence and absence of a running wheel and increased number of running wheel rotations in the presence and absence of food. During the dark cycle, orexin A in the LH induced SPA (+/- presence of food), but had no effect on feeding. These data show that LH orexin A stimulation of feeding is not always coincident with increased activity, suggesting that feeding induced by LH-injected orexin A is not consequent to enhanced arousal.  相似文献   

17.
The arcuate nucleus (ARC) of the hypothalamus has been identified as a prime feeding regulating center in the brain. Several feeding regulating peptides, such as neuropeptide Y (NPY) and proopiomelanocortin (POMC), are present in neurons of the ARC, which also serves as a primary targeting site for leptin, a feeding inhibiting hormone secreted predominantly by adipose tissues, and for orexin (OX)-containing neurons. OX is expressed exclusively around the lateral hypothalamus, an area also established as a feeding regulating center. Some recent physiological analyses have shown that NPY- and POMC-containing neurons are activated or inactivated by leptin and OX. Moreover, we have already shown, using double immunohistochemical staining techniques, that NPY- and POMC-containing neurons express leptin receptors (LR) and orexin type 1 receptors (OX-1R). However, no morphological study has yet described the possibility of whether or not these arcuate neurons are influenced by both leptin and OX simultaneously. In order to address this issue, we performed histochemistry on ARC neurons using a triple immunofluorescence method. We found that 77 out of 213 NPY- and 99 out of 165 POMC-immunoreactive neurons co-localized with both LR- and OX-1R-immunoreactivities. These findings strongly suggest that both NPY- and POMC-containing neurons are regulated simultaneously by both leptin and OX.  相似文献   

18.
The anorexigenic gut hormones oxyntomodulin (OXM) and glucagon-like peptide-1 (GLP-1) are thought to physiologically regulate appetite and food intake. Using manganese-enhanced magnetic resonance imaging, we have shown distinct patterns of neuronal activation in the hypothalamus in response to intraperitoneal injections into fasted mice of 900 and 5400 nmol/kg OXM or 900 nmol/kg GLP-1. Administration of OXM at either dose resulted in a reduced rate of signal enhancement, reflecting a reduction in neuronal activity, in the arcuate, paraventricular, and supraoptic nuclei of the hypothalamus. Conversely, GLP-1 caused a reduction in signal enhancement in the paraventricular nucleus only and an increase in the ventromedial hypothalamic nucleus. Our data show that these two apparently similar peptides generate distinct patterns of activation within the hypothalamus, suggesting that GLP-1 and OXM may act via different hypothalamic pathways.  相似文献   

19.
Cholecystokinin, bombesin or gastrin (2 microliter of 50 ng/microliter) was injected stereotaxically into the paraventricular nucleus of the hypothalamus, the arcuate/ventromedial area, the subfornical organ, the area postrema and the cerebral aqueduct of Sprague-Dawley rats and the effects of these injections on food and water intake were studied. While the injection of cholecystokinin reduced food intake when it was injected into both hypothalamic loci, food and water intake were most severely affected by the injection of this peptide into the cerebral aqueduct. Bombesin reduced food intake after its injection into all areas except the subfornical organ and reliable reductions in water intake were seen after injection of this peptide into all areas except the paraventricular nucleus. Minor reductions in food intake were seen following gastrin injection into the paraventricular nucleus while increased water consumption was observed after this peptide was injected into the paraventricular nucleus and cerebral aqueduct. In a second study 6-hydroxydopamine injections (2 microliter of 8 micrograms/microliter were made into the five areas studied 10 days before animals were injected with 100 micrograms/kg of cholecystokinin (i.p.). All 6-hydroxydopamine-injected animals reduced their food and water intake in response to the cholecystokinin challenge as did intact controls. These results indicate that while the changes in food and water intake produced by the central injection of cholecystokinin, bombesin or gastrin may involve central catecholamine systems, those occurring after its systemic administration do not. Therefore, if the release of gastrointestinal peptides during natural feeding is part of a homeostatic mechanism regulating hunger and satiety, this mechanism may operate without directly involving central catecholamine systems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号