首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell-cell communication within the follicle involves many signaling molecules, and this process may be mediated by secretion and uptake of exosomes that contain several bioactive molecules including extra-cellular miRNAs. Follicular fluid and cells from individual follicles of cattle were grouped based on Brilliant Cresyl Blue (BCB) staining of the corresponding oocytes. Both Exoquick precipitation and differential ultracentrifugation were used to separate the exosome and non-exosomal fraction of follicular fluid. Following miRNA isolation from both fractions, the human miRCURY LNA™ Universal RT miRNA PCR array system was used to profile miRNA expression. This analysis found that miRNAs were present in both exosomal and non-exosomal fraction of bovine follicular fluid. We found 25 miRNAs differentially expressed (16 up and 9 down) in exosomes and 30 miRNAs differentially expressed (21 up and 9 down) in non-exosomal fraction of follicular fluid in comparison of BCB- versus BCB+ oocyte groups. Expression of selected miRNAs was detected in theca, granulosa and cumulus oocyte complex. To further explore the potential roles of these follicular fluid derived extra-cellular miRNAs, the potential target genes were predicted, and functional annotation and pathway analysis revealed most of these pathways are known regulators of follicular development and oocyte growth. In order to validate exosome mediated cell-cell communication within follicular microenvironment, we demonstrated uptake of exosomes and resulting increase of endogenous miRNA level and subsequent alteration of mRNA levels in follicular cells in vitro. This study demonstrates for the first time, the presence of exosome or non-exosome mediated transfer of miRNA in the bovine follicular fluid, and oocyte growth dependent variation in extra-cellular miRNA signatures in the follicular environment.  相似文献   

2.
To explore whether granulosa cell (GC)-derived exosomes (GC-Exos) and follicular fluid-derived exosomes (FF-Exos) have functional similarities in follicle development and to establish relevant experiments to validate whether GC-Exos could serve as a potential substitute for follicular fluid-derived exosomes to improve folliculogenesis. GC-Exos were characterized. MicroRNA (miRNA) profiles of exosomes from human GCs and follicular fluid were analyzed in depth. The signature was associated with folliculogenesis, such as phosphatidylinositol 3 kinases-protein kinase B signal pathway, mammalian target of rapamycin signal pathway, mitogen-activated protein kinase signal pathway, Wnt signal pathway, and cyclic adenosine monophosphate signal pathway. A total of five prominent miRNAs were found to regulate the above five signaling pathways. These miRNAs include miRNA-486-5p, miRNA-10b-5p, miRNA-100-5p, miRNA-99a-5p, and miRNA-21-5p. The exosomes from GCs and follicular fluid were investigated to explore the effect on folliculogenesis by injecting exosomes into older mice. The proportion of follicles at each stage is counted to help us understand folliculogenesis. Exosomes derived from GCs were isolated successfully. miRNA profiles demonstrated a remarkable overlap between the miRNA profiles of FF-Exos and GC-Exos. The shared miRNA signature exhibited a positive influence on follicle development and activation. Furthermore, exosomes derived from GCs and follicular fluid promoted folliculogenesis in older female mice. Exosomes derived from GCs had similar miRNA profiles and follicle-promoting functions as follicular fluid exosomes. Consequently, GC-Exos are promising for replacing FF-Exos and developing new commercial reagents to improve female fertility.  相似文献   

3.
The extracellular matrix (ECM) plays a prominent role in ovarian function by participating in processes such as cell migration, proliferation, growth, and development. Although some of these signaling processes have been characterized in the mouse, the relative quantity and distribution of ECM proteins within developing follicles of the ovary have not been characterized. This study uses immunohistochemistry and real-time PCR to characterize the ECM components type I collagen, type IV collagen, fibronectin, and laminin in the mouse ovary according to follicle stage and cellular compartment. Collagen I was present throughout the ovary, with higher concentrations in the ovarian surface epithelium and follicular compartments. Collagen IV was abundant in the theca cell compartment with low-level expression in the stroma and granulosa cells. The distribution of collagen was consistent throughout follicle maturation. Fibronectin staining in the stroma and theca cell compartment increased throughout follicle development, while staining in the granulosa cell compartment decreased. Heavy staining was also observed in the follicular fluid of antral follicles. Laminin was localized primarily to the theca cell compartment, with a defined ring at the exterior of the follicular granulosa cells marking the basement membrane. Low levels of laminin were also apparent in the stroma and granulosa cell compartment. Taken together, the ECM content of the mouse ovary changes during follicular development and reveals a distinct spatial and temporal pattern. This understanding of ECM composition and distribution can be used in the basic studies of ECM function during follicle development, and could aid in the development of in vitro systems for follicle growth.  相似文献   

4.
Exosomes have recently emerged as key mediators of different physiological and pathological processes. However, there has been few report about proteomic analysis of exosomes derived from human follicular fluid and their association with the occurrence of PCOS. Herein, we used TMT‐tagged quantitative proteomic approach to identify proteomic profiles in exosomes derived from follicular fluid of PCOS patients and healthy controls. We identified 662 proteins in exosomes derived from human ovarian follicular fluid. Eighty‐six differently expressed proteins (P < .05) were found between PCOS and healthy women. The alterations in the proteomic profile were related to the inflammation process, reactive oxygen species metabolic process, cell migration and proliferation. Importantly, we observed that follicular fluid exosomes contain S100 calcium‐binding protein A9 (S100‐A9) protein. Exosome‐enriched S100‐A9 significantly enhanced inflammation and disrupted steroidogenesis via activation of nuclear factor kappa B (NF‐κB) signalling pathway. These data demonstrate that exosomal proteins are differentially expressed in follicular fluid during disease process, and some proteins may play important roles in the regulation of granulosa cell function. These results highlight the importance of exosomes as extracellular communicators in ovarian follicular development.  相似文献   

5.
Several studies have characterized exosomes derived from different cell sources. In this work we set the goal of proteomic characterization of two less studied populations of membrane vesicles, microvesicles (100-800 nm) and apoptotic bodies (> 800 nm) released by thymus cells of BALB/c mice. The vesicles were isolated by the combination of differential centrifugation and gravity driven multistep filtration of the supernatant of thymus cell cultures. The size distribution of vesicle preparations was determined by transmission electron microscopy. Proteins were released from the vesicles, digested in solution, and analyzed using nano-HPLC/MS(MS). Ingenuity pathway analysis was used to identify functions related to membrane vesicle proteins. In apoptotic bodies and microvesicles we have identified 142 and 195 proteins, respectively. A striking overlap was detected between the proteomic compositions of the two subcellular structures as 108 proteins were detected in both preparations. Identified proteins included autoantigens implicated in human autoimmune diseases, key regulators of T-cell activation, molecules involved in known immune functions or in leukocyte rolling and transendothelial transmigration. The presence and abundance of proteins with high immunological relevance within thymocyte-derived apoptotic bodies and microvesicles raise the possibility that these subcellular structures may substantially modulate T-cell maturation processes within the thymus.  相似文献   

6.
Microvesicles (exosomes) are important mediators of intercellular communication, playing a role in immune regulation, cancer progression, and the spread of infectious agents. The biological functions of these small vesicles are dependent on their composition, which is regulated by mechanisms that are not well understood. Although numerous proteomic studies of these particles exist, little is known about their glycosylation. Carbohydrates are involved in protein trafficking and cellular recognition. Glycomic analysis may thus provide valuable insights into microvesicle biology. In this study, we analyzed glycosylation patterns of microvesicles derived from a variety of biological sources using lectin microarray technology. Comparison of the microvesicle glycomes with their parent cell membranes revealed both enrichment and depletion of specific glycan epitopes in these particles. These include enrichment in high mannose, polylactosamine, α-2,6 sialic acid, and complex N-linked glycans and exclusion of terminal blood group A and B antigens. The polylactosamine signature derives from distinct glycoprotein cohorts in microvesicles of different origins. Taken together, our data point to the emergence of microvesicles from a specific membrane microdomain, implying a role for glycosylation in microvesicle protein sorting.  相似文献   

7.
This paper reviews the communication between the developing follicular germ cell, the oocyte, and its companion somatic cells, the granulosa cells. Both gap junctions and paracrine factors mediate this communication. Direct transfer of low molecular weight factors through the gap junctions is essential for oocyte growth and the regulation of meiosis. Paracrine factors secreted by granulosa cells, such as the c-kit ligand, also participate in these processes. Oocytes secrete paracrine factors that affect follicular organization, granulosa cell proliferation, and the ability of cumulus granulosa cells to produce hyaluronic acid. Thus the bidirectional communication between the germ cell and the somatic components of the ovarian follicle is essential for the development and function of both.  相似文献   

8.
MicroRNAs (miRNAs) are released from cells in association with proteins or microvesicles. We previously reported that malignant transformation changes the assortment of released miRNAs by affecting whether a particular miRNA species is released or retained by the cell. How this selectivity occurs is unclear. Here we report that selectively exported miRNAs, whose release is increased in malignant cells, are packaged in structures that are different from those that carry neutrally released miRNAs (n-miRNAs), whose release is not affected by malignancy. By separating breast cancer cell microvesicles, we find that selectively released miRNAs associate with exosomes and nucleosomes. However, n-miRNAs of breast cancer cells associate with unconventional exosomes, which are larger than conventional exosomes and enriched in CD44, a protein relevant to breast cancer metastasis. Based on their large size, we call these vesicles L-exosomes. Contrary to the distribution of miRNAs among different microvesicles of breast cancer cells, normal cells release all measured miRNAs in a single type of vesicle. Our results suggest that malignant transformation alters the pathways through which specific miRNAs are exported from cells. These changes in the particles and their miRNA cargo could be used to detect the presence of malignant cells in the body.  相似文献   

9.
Atrial natriuretic peptide (ANP) has been reported to be locally synthesized in the ovary although its physiological roles are still unknown. To define the origin of ovarian ANP, we demonstrated the presence and release of immunoreactive (ir) ANP in pig granulosa cells and characterized its biochemical properties. Serial dilution curves made with the extracts of pig granulosa cells, their perfusates and follicular fluid were paralleled to the standard curve of ANP. The amount of irANP in the granulosa cell was 2 fg/cell. The total amount of irANP in granulosa cells significantly correlated with the levels of irANP in follicular fluid. Additionally, the total content of irANP in the follicle negatively correlated with the follicular size. On reverse phase HPLC, the major form of irANP in granulosa cells and follicular fluid was high molecular weight but that in perfusate was low molecular weight. In Northern blot analysis, ANP mRNA was detected in the pig granulosa cells. Immunohistochemistry showed ANP prohormone location in granulosa cells of rat ovary. These data strongly suggest that the granulosa cells synthesize and secrete ANP.  相似文献   

10.
Prothrombin, once converted to its enzymatically active form (i.e., thrombin), induces a broad spectrum of cellular responses in both vascular and avascular tissues. Bovine ovarian granulosa cells isolated from healthy follicles of various sizes contain both prothrombin mRNA and immunologically reactive prothrombin that appears to be identical to prothrombin in follicular fluid and plasma. When tissue factor, the primary physiological activator of thrombin generation in plasma, is used to initiate thrombin formation, the profile of prothrombin-to-thrombin conversion is similar in follicular fluid and plasma. The conclusion that biologically functional prothrombin is synthesized by granulosa cells is further supported by evidence that mRNA for gamma-glutamyl carboxylase, an enzyme essential for the vitamin K-dependent posttranslational modification of prothrombin, is expressed in granulosa cells in a manner similar to prothrombin mRNA. Thrombin's biological effects are mediated through selective proteolytic cleavage and activation of specific receptors. Bovine granulosa cells possess thrombin receptor (PAR-1) mRNA, and as seen with prothrombin mRNA and gamma-glutamyl carboxylase mRNA, cells isolated from small follicles possess more PAR-1 mRNA than cells from large follicles. Thrombin receptor expression by cells in close proximity to an active thrombin-generating system suggests that these factors may be important mediators of cellular function in the ovarian follicle.  相似文献   

11.
12.
Tumor growth and metastatic spreading are heavily affected by the P2X7 receptor as well as microvesicles and exosomes release into the tumor microenvironment. P2X7 receptor stimulation is known to trigger vesicular release from immune and central nervous system cells. However, P2X7 role in microvesicles and exosomes delivery from tumor cells was never analyzed in depth. Here we show that P2X7 is overexpressed in patients affected by metastatic malignant melanoma and that its expression closely correlates with reduced overall survival. Antagonism of melanoma cell-expressed P2X7 receptor inhibited in vitro anchorage-independent growth and migration and in vivo dissemination and lung metastasis formation. P2X7 stimulation triggered the release of miRNA-containing microvesicles and exosomes from melanoma cells, profoundly altering the nature of their miRNA content, as well as their dimensions and quantity. Among the more than 200 miRNAs that we found up-or-down-modulated for each vesicular fraction tested, we identified three miRNAs, miR-495-3p, miR-376c-3p, and miR-6730-3p, that were enriched in both the exosome and microvesicle fraction in a P2X7-dependent fashion. Interestingly, upon transfection, these miRNAs promoted melanoma cell growth or migration, and their vesicular release was minimized by P2X7 antagonism. Our data unveil an exosome/microvesicle and miRNA-dependent mechanism for the pro-metastatic activity of the P2X7 receptor and highlight this receptor as a suitable prognostic biomarker and therapeutic target in malignant melanoma.Subject terms: Ligand-gated ion channels, Metastasis, Melanoma, Ion channel signalling, miRNAs  相似文献   

13.
Insulin-like growth factors (IGFs) found in extracellular fluids are bound to specific binding proteins. Recently a high molecular weight IGF-binding protein (IGF-BP3) has been isolated from porcine ovarian follicular fluid based on its inhibition of follicle stimulating hormone-stimulated estradiol production in rat granulosa cells. The complete primary structure of the porcine IGF-BP3 was deduced by molecular cloning. Using the porcine cDNA as a probe, we have now isolated and characterized cDNAs encoding rat IGF-BP3 from a pregnant mare serum gonadotropin-stimulated ovarian library. The predicted amino acid sequence revealed a mature polypeptide consisting of 265 amino acids with 18 cysteines and 4 potential Asn-linked glycosylation sites. Northern analysis of the IGF-BP3 mRNA in rat tissues showed a single 2.6 kb band in liver, kidney, stomach, heart, adrenal, ovary, testis, spleen, lung, small and large intestine in varying amounts, but the message is below the limit of detection in hypothalamus and brain cortex.  相似文献   

14.
Dejmek A 《Acta cytologica》2003,47(6):1059-1062
BACKGROUND: Fine needle aspiration is a valuable tool in the diagnosis of ovarian cysts, especially in the young and when a nonneoplastic cyst is suspected. High cellularity, epitheliallike clusters and cellular atypia in aspirates from functional cysts are known features that may lead to an erroneous diagnosis of malignancy. Granulosa cells in ovarian cystic fluids may originate in follicular cysts or cystic granulosa cell tumors. In luteinized follicular cysts the cells usually have ample cytoplasm and tend to form clusters. This report draws attention to a case where abundant, dispersed cells lacking cytoplasm led to the incorrect diagnosis of a granulosa cell tumor. CASE: In an ovarian cystic aspirate from a 34-year-old woman, the fluid was highly cellular, with a striking predominance of cells interpreted as granulosa cells. Granulosa cells are often found in aspirates from functional cysts, but striking cellularity, prominent nuclear grooves and lack of luteinization made us consider a granulosa cell tumor rather than a follicle-derived cyst. Surgery was performed, and histology revealed a benign serous cystadenoma but also numerous maturing follicles and follicular cysts with thick layers of granulosa cells. The aspirate obviously did not represent the cystadenoma but one of the prominent follicular cysts. CONCLUSION: An understanding of the cytologic features of functional ovarian cysts, including the pitfalls, is necessary to avoid a false diagnoses of a neoplastic lesion. For a correct interpretation of the cytologic findings, close communication with the clinician and with the radiologist performing the aspiration is of vital importance.  相似文献   

15.
Insulin like growth factor 1 and regulation of ovarian function in mammals   总被引:2,自引:0,他引:2  
Various growth factors have been proposed to play endocrine and/or paracrine role in mammalian ovarian follicular development. The insulin like growth factor 1 (IGF-1) is one such factor. More and more reports now support the existence of an intra-ovarian IGF system including receptors and binding proteins. The role of IGF-1 in ovary is to amplify gonadotropin hormone action in terms of increased steroidogenesis by ovarian granulosa cell and granulosa cell proliferation. The synthesis and proteolysis of insulin like growth factor binding proteins, under the control of follicle stimulating hormone, regulate the intra-follicular availability of IGF-1, which further determines the sensitivity of granulosa cells to gonadotropins. Besides gonadotropins, IGF-1 has been implicated in somatotropin hormone action in the ovarian function. Exact mechanism of IGF-1 action in the ovarian follicles needs to be worked out to elucidate whether or not IGF-1 is indispensable in addition to know endocrine factors like gonadotropic and ovarian steroid hormones. This will pave the way for better understanding of control(s) which ensure final development of dominant follicle(s) and atresia of other follicles of the cohort.  相似文献   

16.
Export of microRNAs and microRNA-protective protein by mammalian cells   总被引:1,自引:0,他引:1  
The discovery of microRNAs (miRNAs) as a new class of regulators of gene expression has triggered an explosion of research activities, but has left many unanswered questions about how this regulation functions and how it is integrated with other regulatory mechanisms. A number of miRNAs have been found to be present in plasma and other body fluids of humans and mice in surprisingly high concentrations. This observation was unexpected in two respects: first, the fact that these molecules are present at all outside the cell at significant concentrations and second, that these molecules appear to be stable outside of the cell. In light of this it has been suggested that the biological function of miRNAs may also extend outside of the cell and mediate cell–cell communication. We report here that after serum deprivation several human cell lines tested promptly export a substantial amount of miRNAs into the culture medium and the export process is largely energy dependent. The exported miRNAs are found both within and outside of the 16.5 and 120 K centrifugation pellets which contain most of the known cell-derived vesicles, the microvesicles and exosomes. We have identified some candidate proteins involved in this system, and one of these proteins may also play a role in protecting extracellular miRNAs from degradation. Our results point to a hitherto unrecognized and uncharacterized miRNA trafficking system in mammalian cells that is consistent with the cell–cell communication hypothesis.  相似文献   

17.
Soluble-NSF attachment protein receptor (SNARE) proteins play a role in vesicle fusion, exocytosis, and intracellular trafficking in neuronal cells as well as in fertilization and embryogenesis. We investigated the expression patterns of two SNARE proteins, SNAP-25 and synaptotagmin VII (SytVII), and their regulation by pregnant mare serum gonadotropin (PMSG) during mouse ovarian follicular development. Ovaries were obtained at 0, 12, 24, 36, and 48 h post-PMSG injection of immature mice. SNAP-25 and SytVII mRNA expression levels increased gradually in a time-dependant manner. However, protein levels revealed different patterns of expression, suggesting different translational regulation following PMSG stimulation. SNAP-25 and SytVII expression was closely associated with thickening of the granulosa cell (GC) layer and follicle morphological changes from a flattened to a cuboidal shape. To explore follicle stimulating hormone receptor (FSHR)-mediated regulation of their expression, GCs from preantral follicles were cultured to examine the effects of FSHR siRNA knockdown. FSHR siRNA abolished upregulation of the SNAREs in both PMSG and FSH-stimulated GCs. This abolished gene expression was rescued by adding dibutyryl cyclic AMP to the cultures. These results suggest that SNAP-25 and SytVII expression is regulated via the FSHR-cAMP pathway during follicular development.  相似文献   

18.
We show in this study that human T cells purified from peripheral blood, T cell clones, and Jurkat T cells release microvesicles in the culture medium. These microvesicles have a diameter of 50-100 nm, are delimited by a lipidic bilayer membrane, and bear TCR beta, CD3epsilon, and zeta. This microvesicle production is regulated because it is highly increased upon TCR activation, whereas another mitogenic signal, such as PMA and ionomycin, does not induce any release. T cell-derived microvesicles also contain the tetraspan protein CD63, suggesting that they originate from endocytic compartments. They contain adhesion molecules such as CD2 and LFA-1, MHC class I and class II, and the chemokine receptor CXCR4. These transmembrane proteins are selectively sorted in microvesicles because CD28 and CD45, which are highly expressed at the plasma membrane, are not found. The presence of phosphorylated zeta in these microvesicles suggests that the CD3/TCR found in the microvesicles come from the pool of complexes that have been activated. Proteins of the transduction machinery, tyrosine kinases of the Src family, and c-Cbl are also observed in the T cell-derived microvesicles. Our data demonstrate that T lymphocytes produce, upon TCR triggering, vesicles whose morphology and phenotype are reminiscent of vesicles of endocytic origin produced by many cell types and called exosomes. Although the exact content of T cell-derived exosomes remains to be determined, we suggest that the presence of TCR/CD3 at their surface makes them powerful vehicles to specifically deliver signals to cells bearing the right combination of peptide/MHC complexes.  相似文献   

19.
Murine ovarian folliculogenesis commences after birth involving oocyte growth, somatic cell differentiation and structural remodeling of follicle stromal boundaries. The extracellular metalloproteinase ADAMTS-1 has activity against proteoglycans and collagen and is produced by the granulosa cells of ovarian follicles. Mice with ADAMTS-1 gene disruption are subfertile due to an unknown mechanism resulting in severely reduced ovulation. Here we show that ADAMTS-1 is necessary for structural remodeling during ovarian follicle growth. A significant reduction in the number of healthy growing follicles and corresponding follicle dysmorphogenesis commencing at the stage of antrum formation was identified in ADAMTS-1-/- ovaries. Morphological analysis and immunostaining of basement membrane components identified stages of follicle dysgenesis from focal disruption in ECM integrity to complete loss of follicular structures. Cells expressing the thecal marker Cyp-17 were lost from dysgenic regions, while oocytes and dispersed cells expressing the granulosa cell marker anti-mullerian hormone persisted in ovarian stroma. Furthermore, we found that the ovarian lymphatic system develops coincidentally with follicular development in early postnatal life but is severely delayed in ADAMTS-1-/- ovaries. These novel roles for ADAMTS-1 in structural maintenance of follicular basement membranes and lymphangiogenesis provide new mechanistic understanding of folliculogenesis, fertility and disease.  相似文献   

20.
The intercellular transfer of misfolded proteins has received increasing attention in various neurodegenerative diseases characterized by the aggregation of specific proteins, as observed in Alzheimer’s, Parkinson’s and Huntington’s disease. One hypothesis holds that intercellular dissemination of these aggregates within the central nervous system results in the seeded assembly of the cognate soluble protein in target cells, similar to that proposed for transmissible prion diseases. The molecular mechanisms underlying the intercellular transfer of these proteinaceous aggregates are poorly understood. Various transfer modes of misfolded proteins including continuous cell-cell contacts such as nanotubes, unconventional secretion or microvesicle/exosome-associated dissemination have been suggested. Cells can release proteins, lipids and nucleic acids by vesicular exocytosis pathways destined for horizontal transfer. Encapsulation into microvesicular/exosomal vehicles not only protects these molecules from degradation and dilution in the extracellular space but also facilitates delivery over large distances, e.g. within the blood flow or interstitial fluid. Specific surface ligands might allow the highly efficient and targeted uptake of these vesicles by recipient cells. In this review, we focus on the cell biology and function of neuronal microvesicles/exosomes and discuss the evidence for pathogenic intercellular protein transfer mediated by vesicular carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号