首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative and nitrative stress markers in glaucoma   总被引:1,自引:0,他引:1  
Glaucoma is a progressive optic neuropathy and is the leading cause of blindness in the United States and other industrialized countries. Elevated pressure in the eye is a risk factor for glaucoma and indeed experimental studies of induced pressure elevation in nonhuman primate's results in typical glaucomatous optic nerve damage. However, normal intraocular pressure can also lead to loss of vision in glaucoma. Although the initiating causes leading to glaucoma are unknown, oxidative and nitrative stress appears to play a role in the progressive neuronal death that is characteristic of glaucomatous optic nerve damage. Increased markers of oxidative stress that have been reported in glaucoma include protein nitrotyrosine, carbonyls in proteins, lipid oxidation products and oxidized DNA bases. Studies have also highlighted the role of nitric oxide in glaucoma by reporting the presence of inducible nitric oxide synthase in the iris-ciliary body, retina and in the glaucomatous optic nerve head of experimental rat models. This review discusses the role of reactive oxygen and nitrogen species in the pathogenesis of glaucoma and examines the relevance of antioxidants in neurodegeneration associated with the disease. It is concluded that oxidative and nitrative stress have a pathogenic role in glaucoma.  相似文献   

2.
Optic nerve head (ONH) astrocytes from patients with glaucomatous optic neuropathy exhibit increased production of 5alpha-androstane-3alpha,17beta-diol (3alpha-diol), a neuroactive metabolite of 5alpha-dihydrotestosterone (5alpha-DHT). To determine whether ONH astrocytes are androgen target cells, and whether 3alpha-diol is capable of regulating astrocyte functions, we studied the response of human ONH astrocytes to 3alpha-diol compared with 17beta-hydroxy-17alpha-methyl-estra-4,9,11-trien-3-one (R1881), a synthetic 5alpha-DHT agonist. In ONH astrocytes, both 3alpha-diol and R1881 increased protein levels of androgen receptor (AR) and glial fibrillary acidic protein (GFAP), however, only R1881 also increased the AR mRNA level and astrocyte proliferation. Both R1881 and 3alpha-diol rapidly activate the mitogen-activated protein kinase (MAPK) signaling pathway in ONH astrocytes, as confirmed by phosphorylation of extracellular signal-regulated kinase (ERK). 3Alpha-diol also activates the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. 3Alpha-diol regulates the increase of AR protein level and the phosphorylation through the PI3K/Akt pathway, whereas R1881 regulates them through the MAPK/ERK pathway. Our findings demonstrate that human ONH astrocytes are androgen target cells and respond to androgens by the rapid activation of cell signaling. The activation of the PI3K/Akt pathway by 3alpha-diol may regulate various properties of astrocytes, including cell motility and survival, and may play a role in the formation and maintenance of the reactive phenotype of ONH astrocytes in glaucoma.  相似文献   

3.
We investigated the expression of myocilin in the optic nerve head of porcine eyes by Western blotting and immunohistochemical staining. Myocilin was localized in the nucleus, centrosome, glial filament, mitochondria, and some parts of the cell membranes of the astrocytes. Myocilin was also detected at the edge-feet portion of the processes of astrocytes adjacent to the inner limiting membrane and blood vessel wall. The astrocytes are the major cell population in the optic nerve head, contributing to the architecture of the nerve axon and blood vessels. Therefore, myocilin gene mutation and change of myocilin protein are likely to affect the architecture of the optic nerve head and induce various forms of glaucomatous optic nerve damage.  相似文献   

4.

Background  

Epidemiological and genetic studies indicate that ethnic/genetic background plays an important role in susceptibility to primary open angle glaucoma (POAG). POAG is more prevalent among the African-descent population compared to the Caucasian population. Damage in POAG occurs at the level of the optic nerve head (ONH) and is mediated by astrocytes. Here we investigated differences in gene expression in primary cultures of ONH astrocytes obtained from age-matched normal and glaucomatous donors of Caucasian American (CA) and African American (AA) populations using oligonucleotide microarrays.  相似文献   

5.
Although glaucomatous optic nerve degeneration is a leading cause of worldwide blindness, neither the precise cellular mechanisms underlying neurodegeneration in glaucoma, nor effective strategies for neuroprotection are yet clear. This review focuses on diverse cellular events associated with glaucomatous neurodegeneration whose balance is critical for determination of ultimate cell fate. An improved understanding of the site of primary injury to optic nerve, the mediator pathways of apoptotic cell death and intrinsic protection mechanisms in retinal ganglion cells, the role of glial activation on the survival and death of retinal ganglion cell bodies and their axons, and the protective and destructive consequences of immune system involvement can facilitate development of effective neuroprotective strategies in glaucoma.  相似文献   

6.

Purpose

To assess the prevalence of glaucoma in patients with high myopia defined as myopic refractive error of >-8 diopters or axial length ≥26.5 mm.

Methods

The hospital-based observational study included 172 patients (336 eyes) with a mean age of 61.9±12.3 years and mean axial length of 30.1±2.3 mm (range: 24.7–39.1mm). Glaucomatous-type optic discs were defined by glaucomatous optic disc appearance. Glaucoma was defined by glaucomatous optic disc appearance and glaucomatous Goldmann visual field defects not corresponding with myopic macular changes.

Results

Larger disc area (mean: 3.18±1.94 mm2) was associated with longer axial length (P<0.001; standardized correlation coefficient: 0.45). Glaucoma was detected in 94 (28%; 95% Confidence intervals: 23%, 33%) eyes. In multivariate analysis, glaucoma prevalence was 3.2 times higher (P<0.001) in megalodiscs (>3.79 mm2) than in normal-sized discs or small discs (<1.51 mm2) after adjusting for older age. Axial length was not significantly (P = 0.38) associated with glaucoma prevalence in that model. Glaucoma prevalence increased by a factor of 1.39 for each increase in optic disc area by one mm2. Again, axial length was not significantly (P = 0.38) associated with glaucoma prevalence when added to this multivariate model.

Conclusion

Within highly myopic individuals, glaucoma prevalence increased with larger optic disc size beyond a disc area of 3.8 mm2. Highly myopic megalodiscs as compared to normal sized discs or small discs had a 3.2 times higher risk for glaucomatous optic nerve neuropathy. The increased glaucoma prevalence in axial high myopia was primarily associated with axial myopia associated disc enlargement and not with axial elongation itself.  相似文献   

7.
【目的】旨在采用iTRAQ标记结合二维液相色谱串联质谱技术对草菇不同生长发育阶段的差异蛋白质组进行研究。【方法】首先将提取的草菇不同生长阶段蛋白样品进行SDS-PAGE分析,其次将经二维液相色谱串联质谱技术获取的串联质谱数据通过MASCOT软件搜库,之后对鉴定蛋白质数据进行了主成分分析(Principal componentanalysis,PCA)、层次聚类(Hierarchy clustering)分析、K-均值(K-means)聚类和GeneOntology(GO)注释分析。【结果】试验结果显示,共计获得2 335个不同肽段,鉴定到1 039个蛋白质,其中1 030个蛋白质具有定量信息。在子实体阶段中显著上调蛋白质64个,下调蛋白质150个。生物信息学分析表明,iTRAQ标记技术结合二维液相色谱串联质谱可对不同生长发育时期的草菇蛋白样品进行有效地分离和鉴定。【结论】这一研究结果为深入研究草菇乃至其他大型担子菌子实体形成和发育的分子机制提供借鉴。  相似文献   

8.
9.
In this experimental study, differential labeling with isobaric tags for relative and absolute quantitation (iTRAQ) reagents followed by liquid chromatography (LC) and tandem mass spectrometry (MS/MS) proteomic approach was used to investigate differences in the proteome of rat spinal cord at 24 h following a moderate contusion injury. Spinal cord protein samples from the injury epicenter (or from sham controls) were trypsinized and differentially labeled with iTRAQ isotopic reagents. The differentially labeled samples were then combined into one sample mixture, separated by LC, and analyzed using MS/MS. Proteins were quantified by comparing the peak areas of iTRAQ reporter fragment ions in MS/MS spectra. The outcome of this analysis revealed that proteins involved in ubiquitination, endocytosis and exocytosis, energy metabolism, inflammatory response, oxidative stress, cytoskeletal disruption, and vascular damage were significantly altered at 24 h following spinal cord injury (SCI). This study demonstrates the utility of the iTRAQ method in proteomic studies and provides further insights into secondary events that occur during acute times following SCI.  相似文献   

10.
11.
The eye contains numerous water channel proteins and the roles of AQPs (aquaporins) in the retina are blurred, especially under disease conditions. The purpose of this study was to investigate the expression of AQP9 gene and proteins affected by elevated IOP (intraocular pressure) in a rat model of glaucoma induced by intravitreous injection of hypertonic saline into the episcleral veins. The gene and protein expressions of AQP9 were investigated by real-time PCR and Western blotting. The immunoreactive expression of AQP9, AQP4 and GFAP (glial fibrillary acidic protein) in the optic nerve of rats exposed to experimentally elevated IOP was detected by immunofluorescence microscopy. The mRNA and protein expression levels of AQP9 were up-regulated in the retina of an animal model of glaucoma. The immunoreactivities of the AQP9, AQP4 and GFAP were also detected and increased in the optic nerve region. The expression of AQP9 was up-regulated in this glaucoma model and the immunoreactivities of the AQP4 and GFAP were also detected as co-localizing with AQP9 in the optic nerve region, indicating retina ganglion cells were surrounded by activated astrocytes. This may indicate that the injured neurons may rely on the astrocytes. The alterations of AQP expression may compensate the glaucomatous damage.  相似文献   

12.

Purpose

To determine whether optic nerve head (ONH) astrocytes, a key cellular component of glaucomatous neuropathy, exhibit differential gene expression in primary cultures of astrocytes from normal African American (AA) donors compared to astrocytes from normal Caucasian American (CA) donors.

Methods

We used oligonucleotide Affymetrix microarray (HG U133A & HG U133A 2.0 chips) to compare gene expression levels in cultured ONH astrocytes from twelve CA and twelve AA normal age matched donor eyes. Chips were normalized with Robust Microarray Analysis (RMA) in R using Bioconductor. Significant differential gene expression levels were detected using mixed effects modeling and Statistical Analysis of Microarray (SAM). Functional analysis and Gene Ontology were used to classify differentially expressed genes. Differential gene expression was validated by quantitative real time RT-PCR. Protein levels were detected by Western blots and ELISA. Cell adhesion and migration assays tested physiological responses. Glutathione (GSH) assay detected levels of intracellular GSH.

Results

Multiple analyses selected 87 genes differentially expressed between normal AA and CA (P<0.01). The most relevant genes expressed in AA were categorized by function, including: signal transduction, response to stress, ECM genes, migration and cell adhesion.

Conclusions

These data show that normal astrocytes from AA and CA normal donors display distinct expression profiles that impact astrocyte functions in the ONH. Our data suggests that differences in gene expression in ONH astrocytes may be specific to the development and/or progression of glaucoma in AA.  相似文献   

13.
Animals that develop without extra-embryonic membranes (anamniotes--fish, amphibians) have impressive regenerative capacity, even to the extent of replacing entire limbs. In contrast, animals that develop within extra-embryonic membranes (amniotes--reptiles, birds, mammals) have limited capacity for regeneration as adults, particularly in the central nervous system (CNS). Much is known about the process of nerve development in fish and mammals and about regeneration after lesions in the CNS in fish and mammals. Because the retina of the eye and optic nerve are functionally part of the brain and are accessible in fish, frogs, and mice, optic nerve lesion and regeneration (ONR) has been extensively used as a model system for study of CNS nerve regeneration. When the optic nerve of a mouse is severed, the axons leading into the brain degenerate. Initially, the cut end of the axons on the proximal, eye-side of the injury sprout neurites which begin to grow into the lesion. Simultaneously, astrocytes of the optic nerve become activated to initiate wound repair as a first step in reestablishing the structural integrity of the optic nerve. This activation appears to initiate a cascade of molecular signals resulting in apoptotic cell death of the retinal ganglion cells axons of which make up the neural component of the optic nerve; regeneration fails and the injury is permanent. Evidence specifically implicating astrocytes comes from studies showing selective poisoning of astrocytes at the optic nerve lesion, along with activation of a gene whose product blocks apoptosis in retinal ganglion cells, creates conditions favorable to neurites sprouting from the cut proximal stump, growing through the lesion and into the distal portion of the injured nerve, eventually reaching appropriate targets in the brain. In anamniotes, astrocytes ostensibly present no such obstacle since optic nerve regeneration occurs without intervention; however, no systematic study of glial involvement has been done. In fish, vigorously growing neurites sprout from the cut axons and within a few days begin to re-enervate the brain. This review offers a new perspective on the role of glia, particularly astrocytes, as "gate-keepers;" i.e., as being permissive or inhibitory, by comparison between fish and mammals of glial function during ONR.  相似文献   

14.
Mitochondrial abnormality has been implicated in various models of retinal ganglion cell (RGC) degeneration. We investigated modulation of mitochondrial membrane permeability and apoptosis-inducing factor (AIF) translocation in a rat experimental glaucoma model. A decrease in MitoTracker-labeled mitochondria around the lamina area of the optic nerve was observed in the glaucomatous eye. Immunoblot analysis for axonal motor proteins showed that a significant decrease in kinesin 1 and myosin Va levels in the glaucomatous optic nerve. A significant decrease in mitochondrial thioredoxin 2 (Trx2) level was observed in the optic nerve after intraocular pressure (IOP) elevation. Translocation of AIF from the mitochondria to the axoplasm and nucleus was observed in the axon and cell body, respectively. Trx2 over-expression in the mitochondrial membrane of RGC-5 cells inhibited AIF translocation, resulting in cytoprotective effect against neurotoxicity induced by TNF-α/buthionine sulfoximine treatment. In vivo transfection was performed with EGFP-Trx2 plasmid and electroporation. Over-expression of Trx2 in the retina and optic nerve indicated the protective effect against high IOP induced axonal degeneration. Thus, the decreased mitochondrial membrane potential and subsequent AIF translocation were involved in the glaucomatous neurodegeneration. Furthermore, modulation of mitochondria through the inhibition of AIF translocation may become a new treatment strategy for neurodegenerative disease, such as glaucoma.  相似文献   

15.
Transforming growth factor-β2 (TGF-β2) is found in increasing amounts in aqueous humor and reactive optic nerve astrocytes of patients with primary open-angle glaucoma (POAG), a major cause of blindness worldwide. The available data strongly indicate that TGF-β2 is a key player contributing to the structural changes in the extracellular matrix (ECM) of the trabecular meshwork and optic nerve head as characteristically seen in POAG. The changes involve an induction in the expression of various ECM molecules and are remarkably similar in trabecular meshwork cells and optic nerve head astrocytes. The ECM changes in the trabecular meshwork most probably play a role in the increase of aqueous humor outflow resistance causing higher intraocular pressure (IOP). In the optic nerve head, TGF-β2-induced changes might contribute to deformation of the optic nerve axons causing impairment of axonal transport and neurotrophic supply and leading to their continuous degeneration. The increase in IOP further adds mechanical stress and strain to optic nerve axons and accelerates degenerative changes. In addition, high IOP might induce the expression of activated TGF-β1 in trabecular meshwork cells and optic nerve head astrocytes; this again might significantly lead to the progress of axonal degeneration. The action of TGF-β2 in POAG is largely mediated through the connective tissue growth factor, whereas the activities of TGF-β1 and -β2 are modulated by the blocking effects of bone morphogenetic protein-4 (BMP-4) and BMP-7, by gremlin that inhibits BMP signaling and by several species of microRNAs.  相似文献   

16.
In postnatal developing optic nerves, astrocytes organize their processes in a cribriform network to group axons into bundles. In neonatal rat optic nerves in vivo, the active form of EGFR tyrosine kinase is abundantly present when the organization of astrocytes and axons is most actively occurring. Blocking activity of EGFR tyrosine kinase during the development of rat optic nerves in vivo inhibits astrocytes from extending fine processes to surround axons. In vitro, postnatal optic nerve astrocytes, stimulated by EGF, organize into cribriform structures which look remarkably like the in vivo structure of astrocytes in the optic nerve. In addition, when astrocytes are co-cultured with neonatal rat retinal explants in the presence of EGF, astrocytes that are adjacent to the retinal explants, re-organize to an astrocyte-free zone into which neurites grow out from the retinal tissue. We hypothesize that in the developing optic nerve, EGFR activity directs the formation of a histo-architectural structure of astrocytes which surrounds axons and provides a permissive environment for axon development.  相似文献   

17.
The effect of hypoxia (24 h) on TNF-alpha-mediated release of endothelin-1 (ET-1) from human optic nerve head astrocytes (hONAs) and TNF-alpha- and ET-1-induced hONA proliferation was determined. ET-1 synthesis and release was quantitated using ELISA while TNF-alpha (10 nM)- and ET-1 (100 nM)-mediated hONA proliferation was assessed by CellTiter 96 aqueous one-solution cell proliferation assay, respectively. hONAs appeared to be more rounded with fewer processes following 24 h hypoxia compared to thodr seen in normoxia. Hypoxia enhanced TNF-alpha-mediated ET-1 synthesis and release (by 5-fold) and also significantly increased TNF-alpha- and ET-1-mediated hONA proliferation. PD142893 (1 microM), an ET(A/B) receptor antagonist, blocked ET-1-mediated hONA proliferation both under normoxia and hypoxia, while doing so only under normoxia following TNF-alpha treatment. Also, U0126 (10 microM; an upstream ERK1/2 inhibitor) completely blocked agonist-induced hONA proliferation in normoxia and partially blocked the same in hypoxia. These results demonstrate for the first time that hONAs secrete ET-1 and that TNF-alpha and hypoxia can regulate its levels. Moreover, hypoxia augments the proliferative responses of hONAs to TNF-alpha and ET-1. These agonist-mediated effects following hypoxia could contribute to astroglial activation as seen in glaucomatous optic nerve heads.  相似文献   

18.
草菇子实体不同成熟阶段的比较蛋白质组学分析   总被引:1,自引:0,他引:1  
采用iTRAQ标记结合二维液相色谱串联质谱技术对草菇不同成熟阶段的差异蛋白质组进行研究。首先将提取的草菇不同成熟阶段蛋白样品进行SDS-PAGE分析,其次将经二维液相色谱串联质谱技术获取的串联质谱数据通过MASCOT软件搜库,之后对鉴定蛋白质数据进行了KEGG代谢通路分析。试验共计获得2 335个不同肽段, 鉴定到1 039个蛋白质,其中1 030个蛋白质具有定量信息。与蛋形期相比,在伸长期和成熟期阶段显著上调蛋白质85个,下调蛋白质103个。KEGG代谢通路分析结果显示,草菇不同成熟阶段中的68个差异蛋白质可定位于4种伞菌目模式真菌(灰盖鬼伞、双色蜡蘑、可可丛枝病菌和裂褶菌)的45个不同生物代谢途径,全景展示出草菇成熟阶段差异表达蛋白质定位的代谢网络。结果表明,iTRAQ标记技术结合二维液相色谱串联质谱可对不同生长发育时期的草菇蛋白样品进行有效地分离和鉴定。  相似文献   

19.

Purpose

To examine the retinal nerve fiber layer (RNFL) ophthalmoscopically, to search for localized RNFL defects, and to assess factors associated with RNFL visibility in a population-based setting.

Methods

The population-based cross-sectional Beijing Eye Study 2006 included 3251 subjects. Using color fundus photographs, RNFL visibility was assessed in grades from 0 to 8 in 8 fundus sectors. Localized RNFL defects were defined as wedge-shaped defects running towards the optic disc.

Results

After exclusion of subjects with optic media opacities, 2602 subjects (mean age:58.1±9.0 years) were included. RNFL visibility score was highest (P<0.001) in the temporal inferior region, followed by the temporal superior region, nasal superior region, and nasal inferior region. In multivariate analysis, higher RNFL visibility score was associated with younger age (P<0.001;standardized coefficient beta:−0.44;regression coefficient B: −0.22; 95%CI: −0.24, −0.20), female gender (P<0.001;beta:0.11;B:1.00;95%CI:0.67,1.32), higher blood concentration of low-density lipoproteins (P = 0.002;beta:0.07;B:0.34;95%CI:0.13,0.56), absence of dyslipidemia (P = 0.001;beta: −0.07;B: −0.58;95%CI: −0.93, −0.24), lower blood glucose concentration (P = 0.006;beta: −0.05;B: −0.14;95%CI: −0.24, −0.04), hyperopic refractive error (P<0.001;beta:0.15;B:0.45;95%CI:0.34,0.56), smaller optic disc size (P<0.001;beta: −0.08; B:−0.72;95% CI:−1.04, −0.40), absence of glaucomatous optic neuropathy (P<0.001;beta: −0.06;B: −2.69;95%CI:–4.18, −1.21) and absence of non-glaucomatous optic nerve damage (P = 0.001;beta: −0.06;B: −4.80;95%CI:0. −7.64, −1.96). Localized RNFL defects were detected in 96 subjects (prevalence:3.7±0.45% (95% confidence interval(CI):3.0,4.4). In multivariate analysis, prevalence of localized RNFL defects was associated with higher blood pressure (P<0.001; odds ratio (OR):1.07;95%CI:1.03,1.10), higher concentration of low-density lipoproteins (P = 0.01;OR:1.42;95%CI:1.08,1.85), higher prevalence of glaucomatous optic neuropathy (P<0.001;OR:46.8;95%CI:19.4,113) and diabetic retinopathy (P = 0.002;OR:3.20;95%CI:1.53,6.67), and lower total RNFL visibility (P<0.001;OR:0.92;95%CI:0.88,0.96).

Conclusions

In Chinese aged 45+ years, a decreased RNFL visibility was associated with older age, male gender, dyslipidemia, hyperglycemia, myopia, larger optic disc, and glaucomatous or non-glaucomatous optic neuropathy. Localized RNFL defects (prevalence:3.7±0.45%) were correlated mainly with higher blood pressure, higher concentration of low-density lipoproteins, glaucomatous optic neuropathy and diabetic retinopathy. These data are helpful for the routine ophthalmoscopic examination of the RNFL.  相似文献   

20.

Background

Glaucoma is a progressive optic nerve degenerative disease that often leads to blindness. Local inflammatory responses are implicated in the pathology of glaucoma. Although inflammatory episodes outside the CNS, such as those due to acute systemic infections, have been linked to central neurodegeneration, they do not appear to be relevant to glaucoma. Based on clinical observations, we hypothesized that chronic subclinical peripheral inflammation contributes to neurodegeneration in glaucoma.

Methods

Mouthwash specimens from patients with glaucoma and control subjects were analyzed for the amount of bacteria. To determine a possible pathogenic mechanism, low-dose subcutaneous lipopolysaccharide (LPS) was administered in two separate animal models of glaucoma. Glaucomatous neurodegeneration was assessed in the retina and optic nerve two months later. Changes in gene expression of toll-like receptor 4 (TLR4) signaling pathway and complement as well as changes in microglial numbers and morphology were analyzed in the retina and optic nerve. The effect of pharmacologic blockade of TLR4 with naloxone was determined.

Findings

Patients with glaucoma had higher bacterial oral counts compared to control subjects (p<0.017). Low-dose LPS administration in glaucoma animal models resulted in enhancement of axonal degeneration and neuronal loss. Microglial activation in the optic nerve and retina as well as upregulation of TLR4 signaling and complement system were observed. Pharmacologic blockade of TLR4 partially ameliorated the enhanced damage.

Conclusions

The above findings suggest that the oral microbiome contributes to glaucoma pathophysiology. A plausible mechanism by which increased bacterial loads can lead to neurodegeneration is provided by experiments in animal models of the disease and involves activation of microglia in the retina and optic nerve, mediated through TLR4 signaling and complement upregulation. The finding that commensal bacteria may play a role in the development and/or progression of glaucomatous pathology may also be relevant to other chronic neurodegenerative disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号