首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inositol plays a significant role in cellular function and signaling. Studies in yeast have demonstrated an “inositol-less death” phenotype, suggesting that inositol is an essential metabolite. In yeast, inositol synthesis is highly regulated, and inositol levels have been shown to be a major metabolic regulator, with its abundance affecting the expression of hundreds of genes. Abnormalities in inositol metabolism have been associated with several human disorders. Despite its importance, very little is known about the regulation of inositol synthesis and the pathways regulated by inositol in human cells. The current study aimed to address this knowledge gap. Knockout of ISYNA1 (encoding myo-inositol-3-P synthase 1) in HEK293T cells generated a human cell line that is deficient in de novo inositol synthesis. ISYNA1-KO cells exhibited inositol-less death when deprived of inositol. Lipidomic analysis identified inositol deprivation as a global regulator of phospholipid levels in human cells, including downregulation of phosphatidylinositol (PI) and upregulation of the phosphatidylglycerol (PG)/cardiolipin (CL) branch of phospholipid metabolism. RNA-Seq analysis revealed that inositol deprivation induced substantial changes in the expression of genes involved in cell signaling, including extracellular signal-regulated kinase (ERK), and genes controlling amino acid transport and protein processing in the endoplasmic reticulum (ER). This study provides the first in-depth characterization of the effects of inositol deprivation on phospholipid metabolism and gene expression in human cells, establishing an essential role for inositol in maintaining cell viability and regulating cell signaling and metabolism.  相似文献   

2.
Fas-associated death domain (FADD) is a common adaptor molecule which plays an important role in transduction of death receptor mediated apoptosis. The FADD provides DED motif for binding to both procaspase-8 and cFLIP molecules which executes death receptor mediated apoptosis. Dysregulated expression of FADD and cFLIP may contribute to inhibition of apoptosis and promote cell survival in cancer. Moreover elevated intracellular level of cFLIP competitively excludes the binding of procaspase-8 to the death effector domain (DED) of FADD at the DISC to block the activation of death receptor signaling required for apoptosis. Increasing evidence shows that defects in FADD protein expression are associated with progression of malignancies and resistance to apoptosis. Therefore, improved expression and function of FADD may provide new paradigms for regulation of cell proliferation and survival in cancer. In the present study, we have examined the potential of FADD in induction of apoptosis by overexpression of FADD in HEK 293T cells and validated further its consequences on the expression of pro and anti-apoptotic proteins besides initiation of death receptor mediated signaling. We have found deficient expression of FADD and elevated expression of cFLIP(L) in HEK 293T cells. Our results demonstrate that over expression of FADD attenuates the expression of anti-apoptotic protein cFLIP and activates the cascade of extrinsic caspases to execution of apoptosis in HEK 293T cells.  相似文献   

3.
4.
The remarkable hearing sensitivity and frequency selectivity in mammals is attributed to cochlear amplifier in the outer hair cells (OHCs). Prestin, a membrane protein in the lateral wall of OHC plasma membrane, is required for OHC electromotility and cochlear amplifier. In addition, GLUT5, a fructose transporter, is reported to be abundant in the plasma membrane of the OHC lateral wall and has been originally proposed as the OHC motor protein. Here we provide evidence of interactions between prestin/prestin and prestin/GLUT5 in transiently transfected HEK293T cells. We used a combination of techniques: (1) membrane colocalization by confocal microscopy, (2) fluorescence resonance energy transfer (FRET) by fluorescence activated cell sorting (FACS), (3) FRET by acceptor photobleaching, (4) FRET by fluorescence lifetime imaging (FRET-FLIM), and (5) coimmunoprecipitation. Our results suggest that homomeric and heteromeric prestin interactions occur in native OHCs to facilitate its electromotile function and that GLUT5 interacts with prestin for its elusive function.  相似文献   

5.
Apoptosis and necrosis are two forms of cell death that can occur in response to various agents and oxidative damage. In addition to necrosis, apoptosis contributes to muscle fiber loss in various muscular dystrophies as well participates in the exudative diathesis in chicken, pathology caused by dietary deficiency of vitamin E and selenium, which affects muscle tissue. We have used chicken skeletal muscle cells and bovine fibroblasts to study molecular events involved in the cell death induced by oxidative stress and apoptotic agents. The effect of vitamin E on cell death induced by oxidants was also investigated. Treatment of cells with anti-Fas antibody (50 to 400 ng/mL), staurosporine (0.1 to 100 microM) and TNF-alpha (10 and 50 ng/mL) resulted in a little loss of Trypan blue exclusion ability. Those stimuli conducted cells to apoptosis detected by an enhancement in caspase activity upon fluorogenic substrates but this activity was not fully blocked by the caspase inhibitor Z-VAD-fmk. Oxidative stress induced by menadione (10, 100 and 250 muM) promoted a significant reduction in cell viability (10%, 20% and 35% for fibroblasts; 20%, 30% and 75% for muscle cells, respectively) and caused an increase in caspase activity and DNA fragmentation. H2O2 also promoted apoptosis verified by caspase activation and DNA fragmentation, but in higher doses induced necrosis. Vitamin E protected cells from death induced by low doses of oxidants. Although it was ineffective in reducing caspase activity in fibroblasts, this vitamin diminished the enzyme activity in muscle cells. These data suggested that oxidative stress could activate apoptotic mechanisms; however the mode of cell death will depend on the intensity and duration of the stimulus, and on the antioxidant status of the cells.  相似文献   

6.
目的:探讨缺氧对稳定表达人淀粉样前体蛋白的HEK293细胞(HEK293-APP695)存活及相关蛋白表达的影响,为深入研究缺氧对阿尔茨海默病的调节作用提供稳定的细胞模型。方法:利用缺氧手套箱(0.3% O2)处理HEK293-APP695细胞,CCK-8法检测细胞的存活情况;Western blot检测缺氧条件下阿尔茨海默病(AD)相关蛋白APP、APP-CTFs和BACE1的表达变化。结果:缺氧处理后,HEK293-APP695细胞的存活率明显下降,APP表达降低,其剪切体APP-CTFs表达升高。结论:缺氧导致APP剪切的增多,抑制细胞的存活,提示缺氧可能通过影响BACE1的活性在AD的发病进程中起重要的调节作用。  相似文献   

7.
8.
Calbindin-D28k (CaBP) is a calcium-binding protein found in specific neuronal populations in the mammalian brain that, as a result of its proposed calcium-buffering action, may protect neurons against potentially harmful increases in intracellular calcium. We have stably transfected HEK 293 cells with recombinant human CaBP in order to determine the influence of this protein upon transient increases in intracellular ionic calcium concentration ([Ca(2+)](i)) induced either by transient transfection of the NR1 and NR2A subunits of the N-methyl-D-aspartate (NMDA) receptor and brief exposure to glutamate, photolysis of the caged calcium compound NP-EGTA, or exposure to the Ca(2+)]-ionophore 4-Br-A23187. The presence of CaBP did not significantly reduce the peak [Ca(2+)](i)stimulated by glutamate activation of NMDA receptors but significantly prolonged the recovery to baseline values. Flash photolysis of NP-EGTA in control cells resulted in an almost instantaneous increase in [Ca(2+)](i)followed by a bi-exponential recovery to baseline values. In cells stably expressing CaBP, the peak [Ca(2+)](i)levels were not statistically different from the controls, however, there was a significant prolongation of the initial portion of the slow recovery phase. In cells exposed to 4-Br-A23187, the presence of CaBP significantly reduced the rate of rise of [Ca(2+)](i), reduced the peak response, slowed the rate of recovery, and reduced the depolarization of mitochondria. In studies of delayed, Ca(2+)]-dependent cell death, CaBP transfected cells exhibited enhanced survival 24h after a 1-h exposure to 200 microM NMDA. However, necrotic cell death observed after the first 6h was not prevented by the presence of CaBP. These results provide direct evidence for a Ca(2+)-buffering effect of CaBP which serves to limit Ca(2+)entry and the depolarization of mitochondria, thereby protecting cells from death mediated most likely by apoptosis.  相似文献   

9.
10.
Using GFP as a reporter gene, splicing of scorpion toxin gene BmKK2 was investigated in cultured HEK 293T cells. The results of RT-PCR and western blotting showed that BmKK2's intron could be recognized and spliced in cultured HEK 293T cells. At the same time, a cryptic splicing site of BmKK2 gene was found at the 91st nucleotide site of the second exon, which is a typical form of alternative splicing. For the first time, alternative splicing would partially explain the diversity of scorpion toxins at the gene level. Moreover, replacing BmKK2's intron with BmP03's intron (an artificial BmKK2-BmP03 mosaic gene) did not affect the intron's recognition and splicing, but increased the expression of the toxin-GFP fusion protein by fluorescence imaging, which indicated that both introns may regulate the expression of toxin-GFP fusion protein. The artificial BmKK2-BmP03 mosaic gene was also spliced into two kinds of mRNA molecules, which showed that sequence of intron was not absolutely conserved. The results suggested that introns of scorpion toxin genes BmKK2 and BmP03 increase the diversity of scorpion toxins and regulate the expression of their genes.  相似文献   

11.
The ability of poliovirus to propagate in neuronal cells can be reduced by introducing appropriate nucleotide substitutions into the viral genome. Specific mutations scattered throughout the poliovirus genome yielded the live attenuated vaccine strains of poliovirus. Neuron-specific propagation deficits of the Sabin strains are partially encrypted within a confined region of the internal ribosomal entry site (IRES), which carries attenuating point mutations in all three serotypes. Recently, high levels of neurovirulence attenuation were achieved with genetically engineered polioviruses containing heterologous IRES elements. This is exemplified with poliovirus recombinants replicating under control of a human rhinovirus type 2 (HRV2) IRES element. We have carried out experiments delineating the genetic basis for neuronal IRES function. Neuronal dysfunction of the HRV2 IRES is determined mainly by IRES stem-loop domain V, the locus for attenuating point mutations within the Sabin strains. Neuronal incompetence associated with HRV2 IRES domain V is substantially more pronounced than that observed with the attenuating IRES point mutation of the Sabin serotype 1 vaccine strain. Mix-and-match recombination of polio and HRV2 IRES domain V suggests that the attenuation phenotype correlates with overall structural features rather than primary sequence. Our experiments have identified HEK 293 cells as a novel system for the study of neuron-specific replication phenotypes of poliovirus. This cell line, originally derived from embryonic human kidney, has recently been described to display neuronal characteristics. We report propagation properties in HEK 293 cells for poliovirus recombinants with attenuated neurovirulence in experimental animals that corroborate this observation.  相似文献   

12.
13.
CHP2 (calcineurin B homologous protein 2) was initially identified as a tumor-associated antigen highly expressed in hepatocellular carcinoma. Its biological function remains largely unknown except for a potential role in transmembrane Na(+)/H(+) exchange. In the present study, we observed that ectopic expression of CHP2 promoted the proliferation of HEK293 cells, whereas knockdown of endogenous CHP2 expression in HepG2 inhibited cell proliferation. When inoculated into nude mice, CHP2 transfected HEK293 cells displayed markedly increased oncogenic potential. In analysis of the underlying molecular mechanisms, we found that like calcineurin B, CHP2 was able to bind to and stimulate the phosphatase activity of calcineurin A. In accord with this, CHP2-transfected cells showed increased nuclear presence of NFATc3 (nuclear factor of activated T cells) and enhanced NFAT activity. Finally, both accelerated cell proliferation and NFAT activation following CHP2 transfection could be suppressed by the calcineurin inhibitor cyclosporine A, suggesting an intrinsic connection between these events. Taken together, our results highlighted a potential role of CHP2 in tumorigenesis and revealed a novel function of CHP2 as an activator of the calcineurin/NFAT signaling pathway.  相似文献   

14.
Amyloid precursor protein (APP) is a transmembrane glycoprotein widely expressed in mammalian tissues and plays a central role in Alzheimer’s disease. However, its physiological function remains elusive. Cu2+ binding and reduction activities have been described in the extracellular APP135-156 region, which might be relevant for cellular copper uptake and homeostasis. Here, we assessed Cu2+ reduction and 64Cu uptake in two human HEK293 cell lines overexpressing APP. Our results indicate that Cu2+ reduction increased and cells accumulated larger levels of copper, maintaining cell viability at supra-physiological levels of Cu2+ ions. Moreover, wild-type cells exposed to both Cu2+ ions and APP135-155 synthetic peptides increased copper reduction and uptake. Complementation of function studies in human APP751 transformed Fre1 defective Saccharomyces cerevisiae cells rescued low Cu2+ reductase activity and increased 64Cu uptake. We conclude that Cu2+ reduction activity of APP facilitates copper uptake and may represent an early step in cellular copper homeostasis.  相似文献   

15.
Effects of Wnt proteins on cell proliferation and apoptosis in HEK293 cells   总被引:1,自引:0,他引:1  
Wnt proteins and Wnt signalings have been implicated in a variety of development and cell processes, while aberrant activation of Wnt signaling is linked to a range of cancers in many tissues. In this study, we used the HEK293 cell line to investigate the effects of Wnt3a and Wnt5a on proliferation and apoptosis in a serum starvation culture. After Wnt3a and Wnt5a proteins were expressed, they both promoted the proliferation of HEK293 cells under serum starvation. After 48h of serum starvation, both Wnt3a and Wnt5a inhibited serum starvation-induced apoptosis of HEK293 cells and continued up to 96h. We demonstrated that Wnt3a and Wnt5a can promote proliferation of HEK293 cells and inhibit serum starvation-induced apoptosis, which implies that Wnt3a and Wnt5a can maintain the survival of HEK293 cells under stress, and also provide a novel insight into the role of Wnt3a and Wnt5a and their related signalings in carcinogenesis.  相似文献   

16.
Oxidative stress has been implicated in acrolein cytotoxicity in various cell types, including mammalian spinal cord tissue. In this study we report that acrolein also decreases PC12 cell viability in a reactive oxygen species (ROS)-dependent manner. Specifically, acrolein-induced cell death, mainly necrosis, is accompanied by the accumulation of cellular ROS. Elevating ROS scavengers can alleviate acrolein-induced cell death. Furthermore, we show that exposure to acrolein leads to mitochondrial dysfunction, denoted by the loss of mitochondrial transmembrane potential, reduction of cellular oxygen consumption, and decrease of ATP level. This raises the possibility that the cellular accumulation of ROS could result from the increased production of ROS in the mitochondria of PC12 cells as a result of exposure to acrolein. The acrolein-induced significant decrease of ATP production in mitochondria may also explain why necrosis, not apoptosis, is the dominant type of cell death. In conclusion, our data suggest that one possible mechanism of acrolein-induced cell death could be through mitochondria as its initial target. The subsequent increase of ROS then inflicts cell death and further worsens mitochondria function. Such mechanism may play an important role in CNS trauma and neurodegenerative diseases.  相似文献   

17.
Upon the addition of different growth factors and cytokines, the Gab1 docking protein is tyrosine phosphorylated and in turn activates different signaling pathways. On the basis of the large body of evidence concerning cross talk between the signaling pathways activated by growth factors and oxidative stress, we decided to investigate the role of Gab1 in oxidative injury. We stimulated wild-type mouse embryo fibroblasts (MEF) or MEF with a homozygous deletion of the Gab1 gene (-/- MEF) with H(2)O(2). Our results show that Gab1 is phosphorylated in a dose- and time-dependent manner after H(2)O(2) triggering. Gab1 then recruits molecules such as SHP2, phosphatidylinositol 3-kinase (PI3K), and Shc. Gab1 phosphorylation is sensitive to the Src family kinase inhibitor PP2. Furthermore, we demonstrate that Gab1 is required for H(2)O(2)-induced c-Jun N-terminal kinase (JNK) activation but not for ERK2 or p38 activation. Reconstitution of Gab1 in -/- MEF rescues JNK activation, and we find that this is dependent on the SHP2 binding site in Gab1. Cell viability assays reveal that Gab1 has a dual role in cell survival: a positive one through its interaction with PI3K and a negative one through its interaction with SHP2. This is the first report identifying Gab1 as a component in oxidative stress signaling and one that is required for JNK activation.  相似文献   

18.
Autophagy and signaling: their role in cell survival and cell death   总被引:1,自引:0,他引:1  
Macroautophagy is a vacuolar, self-digesting mechanism responsible for the removal of long-lived proteins and damaged organelles by the lysosome. The discovery of the ATG genes has provided key information about the formation of the autophagosome, and about the role of macroautophagy in allowing cells to survive during nutrient depletion and/or in the absence of growth factors. Two connected signaling pathways encompassing class-I phosphatidylinositol 3-kinase and (mammalian) target of rapamycin play a central role in controlling macroautophagy in response to starvation. However, a considerable body of literature reports that macroautophagy is also a cell death mechanism that can occur either in the absence of detectable signs of apoptosis (via autophagic cell death) or concomitantly with apoptosis. Macroautophagy is activated by signaling pathways that also control apoptosis. The aim of this review is to discuss the signaling pathways that control macroautophagy during cell survival and cell death.  相似文献   

19.
Heat shock protein 90 (Hsp90) is a molecular chaperone required for the conformational maturation and function of certain signaling proteins. Hsp90 inhibitors cause the inactivation, destabilization and eventual degradation of Hsp90 client proteins through occupying the ATP/ADP binding pocket of Hsp90. In the present study, we found that Hsp90 interacted with MEKK3 in HEK293 cells. Hsp90 inhibitors reduced the level of endogenous MEKK3 in time- and dose-dependent manners, and this decrease was reversed by Hsp90 overexpression. In addition, Hsp90 RNAi destabilized MEKK3. A selective inhibitor of Hsp90, geldanamycin (GA), shortened MEKK3 half-life, and induced ubiquitination and proteasomal degradation of MEKK3. These results strongly suggested that Hsp90 could work as the molecular chaperone of MEKK3.  相似文献   

20.
Oxidative stress generated by dopamine (DA) oxidation could be one of the factors underlying the selective vulnerability of nigral dopaminergic neurons in Parkinson's diseases. Here we show that DA induces apoptosis in SH-SY5Y neuroblastoma cells demonstrated by activation of caspase-9 and caspase-3, cleavage of poly(ADP-ribose) polymerase as well as nuclear condensation. We also show that p38 mitogen-activated protein kinase is activated within 10 min of DA treatment, which precedes the onset of apoptosis because the potent p38 kinase inhibitor SB203580 protects against DA-induced cell death as well as against caspase-9 and caspase-3 activation. In addition, the antioxidant N-acetyl-L-cysteine (NAC) effectively blocks DA-induced p38 kinase activation, caspase-9 and caspase-3 cleavage and subsequent apoptosis, indicating that DA triggers apoptosis via a signaling pathway that is initiated by the generation of reactive oxygen species (ROS). Dopamine exerts its toxicity principally intracellularly as the DA uptake inhibitor, nomifensine significantly reduces DA-induced cell death as well as activation of p38 kinase and caspase-3. Furthermore, DA induces mitochondrial cytochrome c release, which is dependent on p38 kinase activation and precedes the cleavage of caspases. These observations indicate that DA induces apoptosis primarily by generating ROS, p38 kinase activation, cytochrome c release followed by caspase-9 and caspase-3 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号