首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study reports the experimental findings and plasma delivery approach developed at the Plasma Bioscience Research Center, Korea for the assessment of antitumor activity of dielectric barrier discharge (DBD) for cancer treatment. Detailed investigation of biological effects occurring after atmospheric pressure non-thermal (APNT) plasma application during in vitro experiments revealed the role of reactive oxygen species (ROS) in modulation of the antioxidant defense system, cellular metabolic activity, and apoptosis induction in cancer cells. To understand basic cellular mechanisms, we investigated the effects of APNT DBD plasma on antioxidant defense against oxidative stress in various malignant cells as well as normal cells. T98G glioblastoma, SNU80 thyroid carcinoma, KB oral carcinoma and a non-malignant HEK293 embryonic human cell lines were treated with APNT DBD plasma and cellular effects due to reactive oxygen species were observed. Plasma significantly decreased the metabolic viability and clonogenicity of T98G, SNU80, KB and HEK293 cell lines. Enhanced ROS in the cells led to death via alteration of total antioxidant activity, and NADP+/NADPH and GSH/GSSG ratios 24 hours (h) post plasma treatment. This effect was confirmed by annexin V-FITC and propidium iodide staining. These consequences suggested that the failure of antioxidant defense machinery, with compromised redox status, might have led to sensitization of the malignant cells. These findings suggest a promising approach for solid tumor therapy by delivering a lethal dose of APNT plasma to tumor cells while sparing normal healthy tissues.  相似文献   

2.
Oxidative stress, caused by excess reactive oxygen species (ROS), has been hypothesized to cause or exacerbate skeletal muscle wasting in a number of diseases and chronic conditions. ROS, such as hydrogen peroxide, have the potential to affect signal transduction pathways such as the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3 K)/Akt pathway that regulates protein synthesis. Previous studies have found contradictory outcomes for the effect of ROS on the PI3K/Akt signaling pathway, where oxidative stress can either enhance or inhibit Akt phosphorylation. The apparent contradictions could reflect differences in experimental cell types or types of ROS treatments. We replicate both effects in myotubes of cultured skeletal muscle C2C12 cells, and show that increased oxidative stress can either inhibit or enhance Akt phosphorylation. This differential response could be explained: thiol oxidation of Akt, but not the phosphatases PTEN or PP2A, caused a decline in Akt phosphorylation; whereas the thiol oxidation of Akt, PTEN and PP2A increased Akt phosphorylation. These observations indicate that a more complete understanding of the effects of oxidative stress on a signal transduction pathway comes not only from identifying the proteins susceptible to thiol oxidation, but also their relative sensitivity to ROS.  相似文献   

3.
谷氧还蛋白1(glutaredoxin1,Grx1)是细胞内一种重要的巯基 二硫键氧化还原酶,在细胞内氧化还原状态的调控及抵抗氧化应激损伤过程中发挥重要作用.为进一步探讨Grx1的抗氧化机制,本实验将重组质粒pcDNA3.1(+)-hGrx1瞬时转染HEK293T细胞,经RT-PCR和Western印迹验证,细胞转染后实现了Grx1的过表达;以不同浓度H2O2为损伤因素,建立细胞氧化应激模型,检测过表达Grx1后细胞存活率,丙二醛(MDA)含量,超氧化物歧化酶(SOD)活力和乳酸脱氢酶(LDH)漏出率的变化,观察过表达Grx1后细胞的抗氧化能力;用终浓度100 μmol/LH2O2作用于细胞,利用Western 印迹检测120 min内HEK293T细胞中p38MAPK磷酸化水平.实验结果表明,HEK293T细胞过表达Grx1后,缓解了细胞的氧化应激损伤;转染空载体组细胞p38MAPK磷酸化水平在H2O2刺激后5 min开始升高,15 min达到最高值,并可维持至120 min左右;而过表达Grx1组细胞p38MAPK磷酸化水平在H2O2刺激后各时间段没有明显改变,提示Grx1通过抑制H2O2诱导的p38MAPK信号通路激活发挥其抗氧化作用.  相似文献   

4.
Unopposed PI3-kinase activity and 3'-phosphoinositide production in Jurkat T cells, due to a mutation in the PTEN tumour suppressor protein, results in deregulation of PH domain-containing proteins including the serine/threonine kinase PKB/Akt. In Jurkat cells, PKB/Akt is constitutively active and phosphorylated at the activation-loop residue (Thr308). 3'-phosphoinositide-dependent protein kinase-1 (PDK-1), an enzyme that also contains a PH domain, is thought to catalyse Thr308 phosphorylation of PKB/Akt in addition to other kinase families such as PKC isoforms. It is unknown however if the loss of PTEN in Jurkat cells also results in unregulated PDK-1 activity and whether such loss impacts on activation-loop phosphorylation of other putative PDK-1 substrates such as PKC. In this study we have addressed if loss of PTEN in Jurkat T cells affects PDK-1 catalytic activity and intracellular localisation. We demonstrate that reducing the level of 3'-phosphoinositides in Jurkat cells with pharmacological inhibitors of PI3-kinase or expression of PTEN does not affect PDK-1 activity, Ser241 phosphorylation or intracellular localisation. In support of this finding, we show that the levels of PKC activation-loop phosphorylation are unaffected by reductions in the levels of 3'-phosphoinositides. Instead, the dephosphorylation that occurs on PKB/Akt at Thr308 following reductions in 3'-phosphoinositides is dependent on PP2A-like phosphatase activity. Our finding that PDK-1 functions independently of 3'-phosphoinositides in T cells is also confirmed by studies in HuT-78 T cells, a PTEN-expressing cell line with undetectable levels of 3'-phosphoinositides. We conclude therefore that loss of PTEN expression in Jurkat T cells does not impact on the PDK-1/PKC pathway and that only a subset of kinases, such as PKB/Akt, are perturbed as a consequence PTEN loss.  相似文献   

5.
Baicalin is a flavonoid known to modify various redox-related biological activities. Included is its ability to suppress reactive species (RS) producing activity and modulate nuclear factor-κB through cellular redox regulation with enhanced thiol ability. FoxO regulates various genes that are known to be involved in cellular metabolism related to cell death and the oxidative stress response. One such case is the prevention of FoxO1 expression by activated insulin-induced phosphatidylinositol 3-kinase (PI3K)/Akt, which leads to increased oxidative stress and aging processes. In the present study, we attempted to elucidate the molecular modulation of antioxidant baicalin on the insulin-induced FoxO1 inactivation. We used HEK293T cultured cells and kidney tissue isolated from 24-month-old rats treated with baicalin at a dose of 10 or 20 mg/kg/day for 10 days. We found that baicalin enhanced catalase and suppressed RS production in cell system and in isolated kidney tissue in contrast to the nontreated aged rats. Results also showed activation of insulin signaling (PI3K/Akt), FoxO1 phosphorylation/acetylation and the down-regulation of catalase and manganese superoxide dismutase, both of which are FoxO1-targeting genes. Furthermore, baicalin-treated rats showed a decreased FoxO1 phosphorylation via PI3K/Akt cascade and FoxO1 acetylation by the cAMP-response element-binding protein binding protein (CBP). These results strongly suggest that treatment with baicalin influenced phosphorylation/acetylation of FoxO1 by up-regulating PI3K/Akt signaling through insulin in aged rats. Our results further reveal that baicalin regulated FoxO1 phosphorylation via PI3K/Akt by insulin and FoxO1 acetylation by the interaction of CBP and SIRT1, leading to changes in catalase gene expression during aging.  相似文献   

6.
7.
Heat shock may increase oxidative stress due to increased production of reactive oxygen species and/or the promotion of cellular oxidation events. Mitochondrial NADP+-dependent isocitrate dehydrogenase (IDPm) produces NADPH, an essential reducing equivalent for the antioxidant system. The protective role of IDPm against heat shock in HEK293 cells, an embryonic kidney cell line, was investigated in control and cells transfected with the cDNA for IDPm, where IDPm activity was 6–7 fold higher than that in the control cells carrying the vector alone. Upon exposure to heat shock, the viability was lower and the protein oxidation, lipid peroxidation and oxidative DNA damage were higher in control cells as compared to HEK293 cells in which IDPm was over-expressed. We also observed the significant difference in the cellular redox status reflected by the endogenous production of reactive oxygen species, NADPH pool and GSH recycling between two cells. The results suggest that IDPm plays an important role as an antioxidant defense enzyme in cellular defense against heat shock through the removal of reactive oxygen species.  相似文献   

8.
Heat shock may increase oxidative stress due to increased production of reactive oxygen species and/or the promotion of cellular oxidation events. Mitochondrial NADP+ -dependent isocitrate dehydrogenase (IDPm) produces NADPH, an essential reducing equivalent for the antioxidant system. The protective role of IDPm against heat shock in HEK293 cells, an embryonic kidney cell line, was investigated in control and cells transfected with the cDNA for IDPm, where IDPm activity was 6-7 fold higher than that in the control cells carrying the vector alone. Upon exposure to heat shock, the viability was lower and the protein oxidation, lipid peroxidation and oxidative DNA damage were higher in control cells as compared to HEK293 cells in which IDPm was over-expressed. We also observed the significant difference in the cellular redox status reflected by the endogenous production of reactive oxygen species, NADPH pool and GSH recycling between two cells. The results suggest that IDPm plays an important role as an antioxidant defense enzyme in cellular defense against heat shock through the removal of reactive oxygen species.  相似文献   

9.
Phosphatidylinositol (PI) 3-kinase/Akt signaling activates NF-kappa B through pleiotropic, cell type-specific mechanisms. This study investigated the significance of PI 3-kinase/Akt signaling to tumor necrosis factor (TNF)-induced NF-kappa B activation in transformed, immortalized, and primary cells. Pharmacological inhibition of PI 3-kinase blocked TNF-induced NF-kappa B DNA binding in the 293 line of embryonic kidney cells, partially affected binding in MCF-7 breast cancer cells, HeLa and ME-180 cervical carcinoma cells, and NIH 3T3 cells but was without significant effect in H1299 and human umbilical vein endothelial cells, cell types in which TNF activated Akt. NF-kappa B is retained in the cytoplasm by inhibitory proteins, I kappa Bs, which are phosphorylated and targeted for degradation by I kappa B kinases (IKK alpha and IKK beta). Expression and the ratios of IKK alpha and IKK beta, which homo- and heterodimerize, varied among cell types. Cells with a high proportion of IKK alpha (the IKK kinase activated by Akt) to IKK beta were most sensitive to PI 3-kinase inhibitors. Consequently, transient expression of IKK beta diminished the capacity of the inhibitors to block NF-kappa B DNA binding in 293 cells. Also, inhibitors of PI 3-kinase blocked NF-kappa B DNA binding in Ikk beta-/- but not Ikk alpha-/- or wild-type cells in which the ratio of IKK alpha to IKK beta is low. Thus, noncoordinate expression of I kappa B kinases plays a role in determining the cell type-specific role of Akt in NF-kappa B activation.  相似文献   

10.
A high concentration of glucose has been implicated as a causal factor in initiation and progression of diabetic kidney complications, and there is evidence to suggest that hyperglycemia increases the production of free radicals and oxidant stress. Recently, we demonstrated that the control of mitochondrial redox balance and the cellular defense against oxidative damage is one of the primary functions of mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDPm) to supply NADPH for antioxidant systems. In this report, we demonstrate that modulation of IDPm activity in HEK293 cells, an embryonic kidney cell line, regulates high glucose-induced apoptosis. When we examined the protective role of IDPm against high glucose-induced apoptosis with HEK293 cells transfected with the cDNA for mouse IDPm in sense and antisense orientations, a clear inverse relationship was observed between the amount of IDPm expressed in target cells and their susceptibility to apoptosis. The results suggest that IDPm plays an important protective role in apoptosis of HEK293 cells induced by a high concentration of glucose and may contribute to various pathologies associated with the long-term complications of diabetes.  相似文献   

11.
NOK与Akt相互作用并增强Akt的活化   总被引:1,自引:0,他引:1  
NOK是一个新近鉴定的受体型蛋白酪氨酸激酶分子,它能够促进肿瘤的形成和转移.前期的研究表明,NOK在小鼠前B细胞(BaF3)中能够激活磷脂酰肌醇3-激酶(PI3K)信号通路.但是,人们并不清楚NOK在细胞内是如何激活PI3K信号通路的.研究发现,NOK与PI3K下游的效应分子蛋白激酶B(Akt)具有直接的相互作用.并且,在人胚肾细胞(HEK293T)中,NOK能明显增强Akt的活性.通过NOK缺失突变体的免疫共沉淀实验,确定了Akt能直接结合NOK的激酶结构域.同时,Akt的激酶活性缺失体并不影响其与NOK的结合,但也观察到,持续活化的Akt跟NOK具有更强的相互作用.最后,发现NOK对胰岛素介导的Akt激活并没有产生叠加效应.实验结果显示,NOK可以与Akt直接相互作用并增强PI3K/Akt信号通路的活化.  相似文献   

12.
Mammalian Notch-1 is part of an evolutionarily conserved family of transmembrane receptorsbest known for involvement in cell fate decisions. Mutations that result in Notch-1 activation result inT-lineage oncogenesis. In other cell lineages, however, studies have indicated that cooperation withcellular signaling pathways, such as Ras, is necessary for Notch-mediated oncogenesis and in somesettings, Notch-1 has been reported to function as a tumor suppressor. In order to test the hypothesisthat the Notch-1 pathway exhibits cross-talk with Ras/Raf/MEK/ERK, the constitutively activecytoplasmic portion of Notch-1 was introduced into 293 HEK fibroblasts via retroviral transduction.ERK-1,-2 activation was markedly increased in cells expressing constitutively active Notch-1. Thesecells exhibited a more rounded morphology as compared to 293 cells transduced with an empty vectoror parental 293 cells. These observations correlated with decreased total and phosphorylated focaladhesion kinase protein (FAK). Subsequent examination of phosphatase and tensin homolog deletedon chromosome 10 (PTEN) revealed that total and phosphorylated PTEN protein was elevated in cellsexpressing constitutively active Notch-1. Loss of Akt phosphorylation was also observed in cellsbearing activated Notch-1. Two potential binding sites for the Notch effector CBF-1 were identified inthe human PTEN promoter sequence. A PTEN promoter luciferase reporter exhibited increasedactivity in the presence of Notch-1 signaling. These data indicate that Notch-1 can participate incross-talk with other signaling pathways such as Ras/Raf/MEK/ERK through the regulation of thePTEN tumor suppressor.  相似文献   

13.
Selenocysteine is inserted into selenoproteins via the translational recoding of a UGA codon, normally used as a stop signal. This process depends on the nature of the selenocysteine insertion sequence element located in the 3′ UTR of selenoprotein mRNAs, selenium bioavailability, and, possibly, exogenous stimuli. To further understand the function and regulation of selenoproteins in antioxidant defense and redox homeostasis, we investigated how oxidative stress influences selenoprotein expression as a function of different selenium concentrations. We found that selenium supplementation of the culture media, which resulted in a hierarchical up-regulation of selenoproteins, protected HEK293 cells from reactive oxygen species formation. Furthermore, in response to oxidative stress, we identified a selective up-regulation of several selenoproteins involved in antioxidant defense (Gpx1, Gpx4, TR1, SelS, SelK, and Sps2). Interestingly, the response was more efficient when selenium was limiting. Although a modest change in mRNA levels was noted, we identified a novel translational control mechanism stimulated by oxidative stress that is characterized by up-regulation of UGA-selenocysteine recoding efficiency and relocalization of SBP2, selenocysteine-specific elongation factor, and L30 recoding factors from the cytoplasm to the nucleus.  相似文献   

14.
The molecular inflammation hypothesis of aging proposes that redox dysregulation causes an age-related activation of NF-κB and its signaling to upregulate various proinflammatory genes. In the present study, we focused on the inactive form of the protein phosphastase 2 A (PP2A). More specifically, we aimed to define the correlation between PP2A inactivation and NF-κB activation by age-related oxidative stress. Experimentations were designed to determine the effect of oxidative stress-induced PP2A inactivation on NF-κB activity, utilizing prooxidants t-BHP and AAPH, the PTP inhibitor Na3VO4, and the PP2A inhibitor Calyculin A and PP2A siRNA, in HEK293T cells. We also assessed the phosphorylation of PP2A catalytic subunit (PP2Ac) and the activities of PP2A and NF-κB in aged rat kidney, utilizing aging-retarding 40% calorie restriction (CR) −60% of food intake and inflammation-triggering LPS paradigms. Results revealed that an oxidative stress-induced PTK/PTP imbalance led to phosphorylation of PP2Ac, following exposures to t-BHP, AAPH, and Na3VO4 in HEK293T cells. Subsequently, we found that Calyculin A and PP2A siRNA activates NIK/IKK and MAPKs, leading to upregulation of NF-κB and its dependent oxidative stress. Also, the contrasting relation between PP2A inactivation and NF-κB activation was confirmed by AAPH-induced oxidative status in mice, and non-induced normal status or LPS-induced inflammatory status in aged rats while the antioxidative, anti-inflammatory, anti-aging effects of CR significantly blunted these actions. Thus, we present evidence that PP2A inactivation via PTK/PTP imbalance provoked by oxidative stress causes NF-κB activation, which contributes to the accumulation of oxidative stress in aged rat kidney.  相似文献   

15.
The damage of vascular endothelial cells induced by oxidative stress plays an important role in the pathogenesis of atherosclerosis. Dihydromyricetin (DMY) is considered as a natural antioxidant. However, the mechanism of DMY on endothelial cell injury induced by oxidative stress remains unclear. In this study, we found that DMY could reduce the oxidative damage of HUVECs induced by sodium nitroprusside (SNP), HUVECs pre‐treated with DMY suppressed SNP‐induced apoptosis by reduced ROS overproduction of intracellular, decreased MDA level and elevated the superoxide dismutase activity. Meanwhile, we found that DMY could promote the expression of phosphorylated FoxO3a and Akt, and affect the nuclear localization of FoxO3a, when treated with the PI3K inhibitor LY294002, the effect of DMY was blocked. These data suggest that DMY protects HUVECs from oxidative stress by activating PI3K/Akt/FoxO3a signalling pathway. Therefore, DMY may have great therapeutic potential as a new drug for atherosclerosis.  相似文献   

16.
Selection of a dominant follicle that will ovulate likely occurs by activation of cell survival pathways and suppression of death-promoting pathways in a mechanism involving FSH and its cognate receptor (FSHR). A yeast two-hybrid screen of an ovarian cDNA library was employed to identify potential interacting partners with human FSHR intracellular loops 1 and 2. Among eight cDNA clones identified in the screen, APPL1 (adaptor protein containing PH domain, PTB domain, and leucine zipper motif; also known as APPL or DIP13alpha) was chosen for further analysis. APPL1 appears to coimmunoprecipitate with FSHR in HEK 293 cells stably expressing FSHR (293/FSHR cells), confirming APPL1 as a potential FSHR-interacting partner. The phosphorylation status of members of the phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway was also examined because of the proposed role of APPL1 in the antiapoptotic PI3K/Akt pathway. FOXO1a, also referred to as forkhead homologue in rhabdomyosarcoma, is a downstream effector in the pathway and tightly linked to expression of proapoptotic genes. FOXO1a, but not the upstream kinase Akt, is rapidly phosphorylated, and FOXO1a is thereby inactivated when 293/FSHR cells are treated with FSH. In addition, FSHR coimmunoprecipitates with Akt. The identification of APPL1 as a potential interactor with FSHR and the finding that FOXO1a is phosphorylated in response to FSH provide a possible link between FSH and PI3K/Akt signaling, which may help to delineate a survival mechanism whereby FSH selects the dominant follicle to survive.  相似文献   

17.
We previously reported that protein kinase D2 (PKD2) in T cells is promptly activated after T-cell receptor (TCR) stimulation and involved in the activation of interleukin-2 promoter and T cell death, and that one of its candidate substrate is SET protein, a natural inhibitor for protein phosphatase 2A (PP2A). In this study, we investigated the target amino acid residues of SET phosphorylated by PKD2 and the effects of phosphorylation of SET on PP2A phosphatase activity. In vitro kinase assay using various recombinant SET mutants having Ser/Thr to Ala substitutions revealed that Ser171 of SET is one of the sites phosphorylated by PKD2. Recombinant SET with phosphorylation-mimic Ser171 to Glu substitution reduced its inhibitory effects on PP2A phosphatase activity compared with Ser171 to Ala substituted or wild-type SET. In addition, knockdown of PKD2 in Jurkat cells by RNAi or treatment of human CD4+ T cell clone with the PKD2 inhibitor Gö6976 resulted in reduced PP2A activity after TCR-stimulation judged from phosphorylation status of Tyr307 of the catalytic subunit of PP2A. These results suggest that PKD2 is involved in the regulation of PP2A activity in activated T cells through phosphorylation of Ser171 of SET.  相似文献   

18.
Activation of Akt, or protein kinase B, is frequently observed in human cancers. Here we report that Akt activation via overexpression of a constitutively active form or via the loss of PTEN can overcome a G(2)/M cell cycle checkpoint that is induced by DNA damage. Activated Akt also alleviates the reduction in CDC2 activity and mitotic index upon exposure to DNA damage. In addition, we found that PTEN null embryonic stem (ES) cells transit faster from the G(2)/M to the G(1) phase of the cell cycle when compared to wild-type ES cells and that inhibition of phosphoinositol-3-kinase (PI3K) in HEK293 cells elicits G(2) arrest that is alleviated by activated Akt. Furthermore, the transition from the G(2)/M to the G(1) phase of the cell cycle in Akt1 null mouse embryo fibroblasts (MEFs) is attenuated when compared to that of wild-type MEFs. These results indicate that the PI3K/PTEN/Akt pathway plays a role in the regulation of G(2)/M transition. Thus, cells expressing activated Akt continue to divide, without being eliminated by apoptosis, in the presence of continuous exposure to mutagen and accumulate mutations, as measured by inactivation of an exogenously expressed herpes simplex virus thymidine kinase (HSV-tk) gene. This phenotype is independent of p53 status and cannot be reproduced by overexpression of Bcl-2 or Myc and Bcl-2 but seems to counteract a cell cycle checkpoint mediated by DNA mismatch repair (MMR). Accordingly, restoration of the G(2)/M cell cycle checkpoint and apoptosis in MMR-deficient cells, through reintroduction of the missing component of MMR, is alleviated by activated Akt. We suggest that this new activity of Akt in conjunction with its antiapoptotic activity may contribute to genetic instability and could explain its frequent activation in human cancers.  相似文献   

19.
We have developed an immunocytochemistry method for the semiquantitative detection of phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) at the cell plasma membrane. This protocol combines the use of a glutathione S-transferase-tagged pleckstrin homology (PH) domain of the general phosphoinositides-1 receptor (GST-GRP1PH) with fluorescence confocal microscopy and image segmentation using cell mask software analysis. This methodology allows the analysis of PI(3,4,5)P3 subcellular distribution in resting and epidermal growth factor (EGF)-stimulated HEK293T cells and in LIM1215 (wild-type phosphoinositide 3-kinase (PI3K)) and LIM2550 (H1047R mutation in PI3K catalytic domain) colonic carcinoma cells. Formation of PI(3,4,5)P3 was observed 5 min following EGF stimulation and resulted in an increase of the membrane/cytoplasm fluorescence ratio from 1.03 to 1.53 for HEK293T cells and from 2.2 to 3.3 for LIM1215 cells. Resting LIM2550 cells stained with GST-GRP1PH had an elevated membrane/cytoplasm fluorescence ratio of 9.8, suggesting constitutive PI3K activation. The increase in the membrane/cytoplasm fluorescent ratio was inhibited in a concentration-dependent manner by the PI3K inhibitor LY294002. This cellular confocal imaging assay can be used to directly assess the effects of PI3K mutations in cancer cell lines and to determine the potential specificity and effectiveness of PI3K inhibitors in cancer cells.  相似文献   

20.
衰老和凋亡是细胞的两个重要生理过程,一直以来都是细胞生物学领域研究的热点。Peroxiredoxin 2(Prdx2)蛋白是过氧化物酶的其中一个亚型,分布于细胞质中。为了研究它在高氧条件诱导的细胞衰老及凋亡中的保护作用,我们分别将大鼠来源的Prdx2基因转染进人间充质干细胞(Human mesenchymal stem cells,hMSCs)和HEK293T细胞中,并建立了稳定表达Prdx2蛋白的HEK293T细胞系,利用SA-β-gal染色(Senescence-Associated β-Galactosidase Assay)、TUNEL染色及磷酸化p53蛋白的免疫印迹来检测高氧处理后细胞的衰老和凋亡情况。实验结果表明,高氧处理细胞后,转染了Prdx2的hMSCs和HEK293T细胞其衰老和凋亡率与对照组相比都有较为明显的减少,暗示Prdx2蛋白在细胞抵抗氧化损伤中发挥了重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号