首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative stress and miRNAs have been confirmed to play an important role in neurological diseases. The study aimed to explore the underlying effect and mechanisms of miR-146a in H2O2-induced injury of PC12 cells. Here, PC12 cells were stimulated with 200 μM of H2O2 to construct oxidative injury model. Cell injury was evaluated on the basis of the changes in cell viability, migration, invasion, apoptosis, and DNA damage. Results revealed that miR-146a expression was up-regulated in H2O2-induced PC12 cells. Functional analysis showed that down-regulation of miR-146a alleviated H2O2-induced cytotoxicity in PC12 cells. Dual-luciferase reporter and western blot assay verified that MCL1 was a direct target gene of miR-146a. Moreover, anti-miR-146a-mediated suppression on cell cytotoxicity was abated following MCL1 knockdown in H2O2-induced PC12 cells. Furthermore, MCL1 activated JAK/STAT signaling pathway and MCL1 overexpression attenuated H2O2-induced cytotoxicity in PC12 cells by JAK/STAT signaling pathway. In conclusion, this study suggested that suppression of miR-146a abated H2O2-induced cytotoxicity in PC12 cells via regulating MCL1/JAK/STAT pathway.  相似文献   

2.
Chloride channel activity is one of the critical factors responsible for cell apoptotic volume decrease (AVD). However, the roles of chloride channels in apoptosis have not been fully understood. In the current study, we assessed the role of chloride channels in hydrogen peroxide (H2O2)-induced apoptosis of pheochromocytoma cells (PC12). Extracellular application of H2O2 activated a chloride current and induced cell volume decrease in a few minutes. Incubation of cells with H2O2 elevated significantly the membrane permeability to the DNA dye Hoechst 33258 in 1 h and induced apoptosis of most PC12 cells tested in 24 h. The chloride channel blocker NPPB (5-nitro-2-(3-phenylpropylamino)-benzoate) prevented appearance of H2O2-induced high membrane permeability and cell shrinkage, suppressed H2O2-activated chloride currents and protected PC12 cells from apoptosis induced by H2O2. The results suggest that chloride channels may contribute to H2O2-induced apoptosis by ways of elevation of membrane permeability and AVD in PC12 cells.  相似文献   

3.
We have previously shown that the cognition enhancer (1R)-1-benzo[b]thiophen-5-yl-2-[2-(diethylamino)ethoxy]ethan-1-ol hydrochloride (T-588) protects astrocytes against hydrogen peroxide (H2O2) injury via activation of extracellular signal-regulated kinase (ERK) pathway. The present study examines whether the effect of T-588 on astrocytes contributes to neuroprotection in neuronal injury models. Astrocyte-conditioned medium (ACM) protected against neuronal injury induced by amyloid- protein (A) in cultured cortical neurons. The effect of ACM on A-induced injury was blocked by the ERK kinase inhibitor 2-amino-3-methoxyflavone. ACM stimulated ERK phosphorylation in cultured neurons. ACM derived from astrocytes exposed to H2O2 lost the activities to stimulate ERK phosphorylation and protect against neuronal injury. T-588 blocked the H2O2-induced loss of the activities of ACM. These results suggest that ACM protects against neuronal injury by an ERK-dependent mechanism, and the effect of T-588 on astrocytic injury results in neuroprotection.  相似文献   

4.
Metformin, a first line anti type 2 diabetes drug, has recently been shown to extend lifespan in various species, and therefore, became the first antiaging drug in clinical trial. Oxidative stress due to excess reactive oxygen species (ROS) is considered to be an important factor in aging and related disease, such as Alzheimer's disease (AD). However, the antioxidative effects of metformin and its underlying mechanisms in neuronal cells is not known. In the present study, we showed that metformin, in clinically relevant concentrations, protected neuronal PC12 cells from H2O2-induced cell death. Metformin significantly ameliorated cell death due to H2O2 insult by restoring abnormal changes in nuclear morphology, intracellular ROS, lactate dehydrogenase, and mitochondrial membrane potential induced by H2O2. Hoechst staining assay and flow cytometry analysis revealed that metformin significantly reduced the apoptosis in PC12 cells exposed to H2O2. Western blot analysis further demonstrated that metformin stimulated the phosphorylation and activation of AMP-activated protein kinase (AMPK) in PC12 cells, while application of AMPK inhibitor compound C, or knockdown of the expression of AMPK by specific small interfering RNA or short hairpin RNA blocked the protective effect of metformin. Similar results were obtained in primary cultured hippocampal neurons. Taken together, these results indicated that metformin is able to protect neuronal cells from oxidative injury, at least in part, via the activation of AMPK. As metformin is comparatively cheaper with much less side effects in clinic, our findings support its potential to be a drug for prevention and treatment of aging and aging-related diseases.  相似文献   

5.
Oxidative stress is a major cause of cellular injury in a variety of human diseases including neurodegenerative disorders. Thus, removal of excessive reactive oxygen species (ROS) or suppression of ROS generation may be effective in preventing oxidative stress‐induced cell death. This study was designed to investigate the effect of icariside II (ICS II), a novel phosphodiesterase 5 inhibitor, on hydrogen peroxide (H2O2)‐induced death of highly differentiated rat neuronal PC12 cells, and to further examine the underlying mechanisms. We found that ICS II pre‐treatment significantly abrogated H2O2‐induced PC12 cell death as demonstrated by the increase of the number of metabolically active cells and decrease of intracellular lactate dehydrogenase (LDH) release. Furthermore, ICS II inhibited H2O2‐induced cell death through attenuating intracellular ROS production, mitochondrial impairment, and activating glycogen synthase kinase‐3β (GSK‐3β) as demonstrated by reduced intracellular and mitochondrial ROS levels, restored mitochondrial membrane potential (MMP), decreased p‐tyr216‐GSK‐3β level and increased p‐ser9‐GSK‐3β level respectively. The GSK‐3β inhibitor SB216763 abrogated H2O2‐induced cell death. Moreover, ICS II significantly inhibited H2O2‐induced autophagy by the reducing autophagosomes number and the LC3‐II/LC3‐I ratio, down‐regulating Beclin‐1 expression, and up‐regulating p62/SQSTM1 and HSP60 expression. The autophagy inhibitor 3‐methyl adenine (3‐MA) blocked H2O2‐induced cell death. Altogether, this study demonstrated that ICS II may alleviate oxidative stress‐induced autophagy in PC12 cells, and the underlying mechanisms are related to its antioxidant activity functioning via ROS/GSK‐3β/mitochondrial signalling pathways.  相似文献   

6.
Astroglial cells are important actors in the defense of brain against oxidative stress injuries. Glial cells synthesize and release the octadecaneuropeptide ODN, a diazepam-binding inhibitor (DBI)-related peptide, which acts through its metabotropic receptor to protect neurons and astrocytes from oxidative stress-induced apoptosis. The purpose of the present study is to examine the contribution of the endogenous ODN in the protection of astrocytes and neurons from moderate oxidative stress. The administration of H2O2 (50 μM, 6 h) induced a moderate oxidative stress in cultured astrocytes, i.e., an increase in reactive oxygen species, malondialdehyde, and carbonyl group levels, but it had no effect on astrocyte death. Mass spectrometry and QPCR analysis revealed that 50 μM H2O2 increased ODN release and DBI mRNA levels. The inhibition of ODN release or pharmacological blockage of the effects of ODN revealed that in these conditions, 50 μM H2O2 induced the death of astrocytes. The transfection of astrocytes with DBI siRNA increased the vulnerability of cells to moderate stress. Finally, the addition of 1 nM ODN to culture media reversed cell death observed in DBI-deficient astrocytes. The treatment of neurons with media from 50 μM H2O2-stressed astrocytes significantly reduced the neuronal death induced by H2O2; this effect is greatly attenuated by the administration of an ODN metabotropic receptor antagonist. Overall, these results indicate that astrocytes produce authentic ODN, notably in a moderate oxidative stress situation, and this glio- and neuro-protective agent may form part of the brain defense mechanisms against oxidative stress injury.  相似文献   

7.
Oxidative stress is implicated in a variety of disorders including neurodegenerative diseases, and H2O2 is important in the generation of reactive oxygen and oxidative stress. In this study, we have examined the rate of extracellular H2O2 elimination and relevant enzyme activities in cultured astrocytes and C6 glioma cells and have analyzed the results based on a mathematical model. As compared with other types of cultured cells, astrocytes showed higher activity of glutathione peroxidase (GPx) but lower activities for GSH recycling. C6 cells showed relatively low GPx activity, and treatment of C6 cells with dibutyryl-cAMP, which induces astrocytic differentiation, increased catalase activity and H2O2 permeation rate but exerted little effect on other enzyme activities. A mathematical model [N. Makino, K. Sasaki, N. Hashida, Y. Sakakura, A metabolic model describing the H2O2 elimination by mammalian cells including H2O2 permeation through cytoplasmic and peroxisomal membranes: comparison with experimental data, Biochim. Biophys. Acta 1673 (2004) 149–159.], which includes relevant enzymes and H2O2 permeation through membranes, was found to be fitted well to the H2O2 concentration dependences of removal reaction with the permeation rate constants as variable parameters. As compared with PC12 cells as a culture model for neuron, H2O2 removal activity of astrocytes was considerably higher at physiological H2O2 concentrations. The details of the mathematical model are presented in Appendix.  相似文献   

8.
The neurotoxin 6-hydroxydopamine (6-OHDA) has been widely used to generate an experimental model of Parkinson’s disease. This model is crucial in the search for compounds that diminish 6-OHDA-induced nerve growth factor (NGF)-differentiated PC12 cell death. Nephrocizin (luteolin-7-O-β-d-glucopyranoside), a flavone glycoside, was isolated from widely distributed plants. The protective effects of pre-treatment with nephrocizin on the induced neurotoxicity in PC12 cells by 6-OHDA and its oxidative products, H2O2 and p-quinone, were evaluated herein. Nephrocizin promoted cell viability, scavenged ROS-related products, increased cellular glutathione (GSH) levels, and reduced caspase-3 and -8 activities in 6-OHDA-, H2O2-, or p-quinone-treated PC12 cells. Furthermore, nephrocizin-conjugated metabolites in PC12 cells were identified with the boronate-affinity method and LC-MS technology, and preferential regioselectivity at the C2′ and C5′ positions by the nephrocizin-GSH (or NAC) adduct method was observed. These lines of evidence established that nephrocizin could form a dimer to diminish the intracellular ROS. These results demonstrate the first neuroprotective mechanism of nephrocizin against 6-OHDA-, H2O2- or p-quinone-induced cytotoxicity in PC12 cells via chemical and biological studies. These dietary antioxidants are potential candidates for use in intervention in neurodegenerative diseases.  相似文献   

9.
AimsRecent interest has focused on plant antioxidants as potentially useful neuroprotective agents. In most studies only the genuine forms of flavonoids were used, although they are rapidly metabolized. Therefore, we have compared protective activities of two flavonoids (luteolin, quercetin) and two of their bioavailable metabolites (3,4-DHPAA and 3,4-DHT) against oxidative stress, induced by peroxides (t-BHP, H2O2) and iron (FeSO4), in neuronal PC12 cells.Main methodsWe have measured their effect on the prevention of cell death (MTT assay), glutathione depletion (GSH assay), lipid peroxidation (MDA assay) and production of ROS (DCF assay). Differentiated PC12 cells were used as a model system of neuronal cells. The compounds (concentration range 6–25 µmol/L) were tested in preincubation and coincubation experiments.Key findingsIn MTT and DCF assays all tested compounds showed excellent protection. When cells were exposed to peroxides, both metabolites increased GSH levels less efficiently than their parent flavonoids in both types of incubations. Following exposure to iron, only coincubation significantly prevented GSH depletion and the metabolites surprisingly mimicked the suppressive effect of flavonoids. MDA levels induced by all stressors were reduced more potently during coincubation than during preincubation with polyphenols. While the lipophilic metabolite 3,4-DHT exerted excellent antilipoperoxidant activity, the hydrophilic metabolite 3,4-DHPAA was less effective.SignificanceThese results demonstrate that most of the protective effects of flavonoids against oxidative stress in PC12 cells are continued despite biodegradation of the parent flavonoids. In general, the lipophilic metabolite 3,4-DHT was more active than the hydrophilic 3,4-DHPAA.  相似文献   

10.
This study was designed to isolate new genes related to apoptosis in rat pheochromocytoma (PC12) cells treated with hydrogen peroxide (H2O2), and to characterize the roles of the genes using both in vitro and in vivo models of oxidative injury. cDNA libraries were prepared from H2O2-treated and -untreated PC12 cells, and a ribosomal protein S9 (RPS9) clone was isolated by a differential screening method. Increase of RPS9 expression in both H2O2-treated PC12 and neuroblastoma (Neuro-2A) cells was shown by Northern blot analysis. Viability of the antisense-transfected Neuro-2A (RPS9-AS) cells following H2O2 treatment was significantly reduced in a dose-dependent manner. In an in vivo model of transient forebrain ischemia, an increase in RPS9 expression was prominent by 1 day postischemia in the granule cell layer neurons of the dentate gyrus. Both activation of caspase-3 and significant recovery of viability following pretreatment with cycloheximide were shown in RPS9-AS cells treated with H2O2. These data suggest that RPS9 plays a protective role in oxidative injury of neuronal cells.  相似文献   

11.
The present study is designed to investigate the effect of pre-conditioning with 35% O2 on PC12 cell death induced by hypoxia. This study investigated whether 35% O2 pre-conditioning for 3 h, followed by 12 h recovery, can protect PC12 cells against death induced by subsequent exposure to hypoxia for 72 h. The result showed that pre-conditioning with 35% O2 partly blocked the decrease in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction induced by hypoxia in PC12 cells. PC12 cells pre-conditioned with 35% O2 could generate a small quantity of reactive oxygen species (ROS), which activated the extracellular signal-regulated kinase (ERK) signalling pathway, then the over-expression of the B-cell lymphoma/leukaemia-2 (Bcl-2) was induced, which subsequently protected PC12 cell against death resulting from hypoxia exposure. In conclusion, 35% O2 pre-conditioning could protect PC12 cells against hypoxic insult.  相似文献   

12.
The role of novel triazine derivatives against oxidative stress exerted by hydrogen peroxide on differentiated rat pheochromocytoma (PC12) cell line was examined and a consistent protection from H2O2-induced cell death, associated with a marked reduction in caspase-3 activation, was observed. Moreover, activation of NF-κB, a known regulator of a host of genes that involves in specific stress and inflammatory responses by H2O2, was greatly impaired by triazine pretreatment in differentiated PC12 cells. Neuroprotective effect of such compounds may represent a promising approach for treatment of neurodegenerative diseases.  相似文献   

13.
Propofol (2,6-diisopropylphenol) is a widely used general anesthetic with anti-oxidant activities. This study aims to investigate protective capacity of propofol against hydrogen peroxide (H2O2)-induced oxidative injury in neural cells and whether the anti-oxidative effects of propofol occur through a mechanism involving the modulation of NADPH oxidase (NOX) in a manner of calcium-dependent. The rat differentiated PC12 cell was subjected to H2O2 exposure for 24 h to mimic a neuronal in vitro model of oxidative injury. Our data demonstrated that pretreatment of PC12 cells with propofol significantly reversed the H2O2-induced decrease in cell viability, prevented H2O2-induced morphological changes, and reduced the ratio of apoptotic cells. We further found that propofol attenuated the accumulation of malondialdehyde (biomarker of oxidative stress), counteracted the overexpression of NOX core subunit gp91phox (NOX2) as well as the NOX activity following H2O2 exposure in PC12 cells. In addition, blocking of L-type Ca2+ channels with nimodipine reduced H2O2-induced overexpression of NOX2 and caspase-3 activation in PC12 cells. Moreover, NOX inhibitor apocynin alone or plus propofol neither induces a significant downregulation of NOX activity nor increases cell viability compared with propofol alone in the PC12 cells exposed to H2O2. These results demonstrate that the protective effects of propofol against oxidative injury in PC12 cells are mediated, at least in part, through inhibition of Ca2+-dependent NADPH oxidase.  相似文献   

14.
《Free radical research》2013,47(3):347-356
Abstract

Oxidative stress is induced by excess accumulation of reactive oxygen and nitrogen species (RONS). Astrocytes are metabolically active cells in the brain and understanding astrocytic responses to oxidative stress is essential to understand brain pathologies. In addition to direct oxidative stress, exogenous hydrogen peroxide (H2O2) can penetrate biological membranes and enhance formation of other RONS. The present study was carried out to examine the role of insulin in H2O2-induced oxidative stress in rat astrocytic cells. To measure changes in the viability of astrocytes at different concentrations of H2O2 for 3 h, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT)-based assay was used and 500 μM H2O2 was selected to establish a model of H2O2-induced oxidative stress. Further assays showed that 3 h of 500 μM H2O2-induced significant changes in the levels of lactate dehydrogenase (LDH), reactive oxygen species (ROS) and calcium ion (Ca2+) in C6 cells, with insulin able to effectively diminish H2O2-induced oxidative damage to C6 cells. Western blotting studies showed that insulin treatment of astrocytes increased the levels of phosphorylated Akt and magnified the decrease in total Bcl-2 protein. The protective effect of insulin treatment on H2O2-induced oxidative stress in astrocytes by reducing apoptosis may relate to the PI3K/Akt pathway.  相似文献   

15.
Oxidative stress has an important role in neurodegenerative diseases and cerebral ischemic injury. It is reported that d-β-hydroxybutyrate (DβHB), the major component of ketone bodies, is neuroprotective in recent studies. Therefore, in the present work the neuroprotective effects of DβHB on H2O2-induced apoptosis mediated by oxidative stress was investigated. PC12 cells were exposed to H2O2 with different concentrations of H2O2 for different times after DβHB pretreatment. MTT assay, apoptotic rates, intracellular reactive oxygen species (ROS) level, GSH content, mitochondrial membrane potential (MMP) and caspase-3 activity were determined. The results showed that DβHB inhibited the decrease of cell viability induced by H2O2 in PC12 cells. DβHB decreased the apoptotic rates induced by H2O2. The changes of intracellular ROS, GSH, MMP and caspase-3 activity due to H2O2 exposure were partially reversed in PC12 cells. So DβHB inhibited the apoptosis of PC12 cells induced by H2O2 via inhibiting oxidative stress.  相似文献   

16.
Sesaminol is one component of sesame oil and has been widely used as the stabilizer to extend the storage period of food oil in China. In this study, we tried to investigate the antioxidant activity of sesaminol on rat pheochromocytoma (PC12) cells oxidative damaged by H2O2. Cell viability, LDH level and apoptosis of the PC12 cells were assayed after treatment with sesaminol for 3 h and exposure to H2O2. Furthermore, superoxide (SOD), catalase (CAT), glutathione peroxidase (GSH‐Px) and intracellular ROS were assayed after exposure of the PC12 cells to H2O2. The results showed that pre‐treatment with sesaminol prior to H2O2 exposure significantly elevated cell survival rate and SOD, CAT and GSH‐Px activity. Meanwhile, sesaminol declined the secreted LDH level, apoptosis rate and ROS level of H2O2 exposed cells. Thus, sesaminol may protect PC12 against oxidative injury. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
GM1 ganglioside was found to increase the survival of PC12 cells exposed to H2O2, its action was blocked by Trk tyrosine kinase inhibitor K-252a. Thus, the inhibition of H2O2 cytotoxic action by GM1 constituted 52.8 ± 4.3%, but in the presence of 1.0 μM K-252a it was only 11.7 ± 10.8%, i.e. the effect of GM1 became insignificant. Exposure to GM1 markedly reduced the increased accumulation of reactive oxygen species (ROS) and diminished the inactivation of Na+,K+-ATPase induced in PC12 cells by H2O2, but in the presence of K-252a GM1 did not change these metabolic parameters. The inhibitors of extracellular signal-regulated protein kinase, phosphatidyl inositol 3-kinase and protein kinase C decreased the effects of GM1. A combination of these protein kinase inhibitors reduced inhibition of H2O2 cytotoxic action by GM1 to the larger extent than each of the inhibitors and practically abolished the ability of GM1 to decrease H2O2-induced ROS accumulation. The protective and antioxidative effects of GM1 in PC12 cells exposed to H2O2 appear to be mediated by activation of Trk receptor tyrosine kinase and the protein kinases downstream from this enzyme.  相似文献   

18.
19.
The proliferation and/or survival of a variety of cells is dependent on cellular hydrogen peroxide (H2O2) production. We tested whether this was true of leukemic cells, using cell lines from leukemic patients (CEM, 697, Mn-60, and Tanoue). We found that addition of catalase inhibited proliferation of all cell lines and induced death in two. However, this turned out to be due to arginase contamination of the catalase. Pure arginase inhibited cell proliferation and survival, which was reversible by adding l-arginine, demonstrating the l-arginine dependency of these cells. The glutathione peroxidase mimetic ebselen killed the cells by a novel, rapid form of death, preceded by cell blebbing and prevented by N-acetylcysteine, suggesting toxicity is not due to ebselen's antioxidant activity. Addition of N-acetylcysteine to remove endogenous H2O2 stimulated survival and proliferation, suggesting that basal levels of H2O2 promoted cell death. Consistent with this, leukemic cell death was induced by adding as little as 5 μM H2O2. Ascorbic acid, even at 100 μM, induced death through H2O2 production. Thus H2O2 does not promote proliferation and survival, rather the opposite, and previous literature may have misinterpreted the effects of antioxidants. Arginase, H2O2, ascorbic acid, and ebselen might be useful in the treatment of leukemia.  相似文献   

20.
Neuroprotective potential of epigallo catechin-3-gallate in PC-12 cells   总被引:1,自引:0,他引:1  
Oxidative stress is a major player in aging and neurodegenerative disorders. Macromolecular damage occurs as a result of oxidative stress that affects the mitochondria. Mitochondrial damage leads to cell death by apoptosis or necrosis. EGCG is a tea polyphenol that protects the cells against oxidative stress. Neuroprotective potential of EGCG was tested against H2O2 induced oxidative stress in PC-12 cells. PC-12 cells were grown in tissue culture flasks. Oxidative stress was induced by adding H2O2 to the cells. EGCG was also added and the cell death was assessed using MTT assay. Oxidative stress was assessed by protein carbonyl and thiol status. Mitochondrial membrane potential was studied using JC-1 staining. TNF-α levels were assessed using ELISA. H2O2 increased the protein carbonyl content and reduced the thiol status in the PC-12 cells. Cell death was increased in H2O2 treated cells as shown by MTT assay. Mitochondrial membrane potential was also decreased along with increase in TNF-α level in H2O2 treated cells. EGCG brought about an increase in the cellular thiol status and decreased the protein carbonyl content in the PC-12 cells. Cell death was attenuated by EGCG treatment along with an increase in mitochondrial membrane potential and decrease in TNF-α level. EGCG conferred its antioxidant potential to PC-12 cells as evident by decreased protein damage. Mitochondrial membrane potential was improved along with a decrement in the cell death in PC-12 cells. EGCG acts as a good neutraceutical antioxidant to render neuroprotectivity to PC-12 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号