首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we describe novel fluorescent substrates for the human ADAM family members ADAM17, ADAM10, ADAM8, and ADAM12 that have good specificity constants and are useful for high-throughput screening of inhibitors. The fluorescence resonance energy transfer substrates contain a 4-(4-dimethylaminophenylazo)benzoyl and 5-carboxyfluorescein (Dabcyl/Fam) pair and are based on known cleavage sequences in precursor tumor necrosis factor-alpha (TNF-alpha) and CD23. The precursor TNF-alpha-based substrate, Dabcyl-Leu-Ala-Gln-Ala-Homophe-Arg-Ser-Lys(Fam)-NH2, is a good substrate for all the ADAMs tested, including ADAM12 for which there is no reported fluorescent substrate. The CD23-based substrate, Dabcyl-His-Gly-Asp-Gln-Met-Ala-Gln-Lys-Ser-Lys(Fam)-NH2, is more selective, being hydrolyzed efficiently only by ADAM8 and ADAM10. The substrates were used to obtain inhibition constants for four inhibitors that are commonly used in shedding assays: TMI-1, GM6001, GW9471, and TAPI-2. The Wyeth Aerst compound, TMI-1, is a potent inhibitor against all of the ADAMs tested and is slow binding against ADAM17.  相似文献   

2.
Besides its involvement in blood and bone physiology, the kidney's main function is to filter substances and thereby regulate the electrolyte composition of body fluids, acid-base balance and toxin removal. Depending on underlying conditions, the nephron must undergo remodeling and cellular adaptations. The proteolytic removal of cell surface proteins via ectodomain shedding by A Disintegrin and Metalloproteases (ADAMs) is of importance for the regulation of cell-cell and cell-matrix adhesion of renal cells. ADAM10 controls glomerular and tubule development in a Notch1 signaling-dependent manner and regulates brush border composition. ADAM17 regulates the renin angiotensin system and is together with ADAM10 involved in calcium phosphate homeostasis. In kidney disease ADAMs, especially ADAM17 contribute to inflammation through their involvement in IL-6 trans-signaling, Notch-, epithelial growth factor receptor-, and tumor necrosis factor α signaling. ADAMs are interesting drug targets to reduce the inflammatory burden, defective cell adhesion and impaired signaling pathways in kidney diseases.  相似文献   

3.
4.
Proteolytic ectodomain release, a process known as "shedding", has been recognised as a key mechanism for regulating the function of a diversity of cell surface proteins. A Disintegrin And Metalloproteinases (ADAMs) have emerged as the major proteinase family that mediates ectodomain shedding. Dysregulation of ectodomain shedding is associated with autoimmune and cardiovascular diseases, neurodegeneration, infection, inflammation and cancer. Therefore, ADAMs are increasingly regarded as attractive targets for novel therapies. ADAM10 and its close relative ADAM17 (TNF-alpha converting enzyme (TACE)) have been studied in particular in the context of ectodomain shedding and have been demonstrated as key molecules in most of the shedding events characterised to date. Whereas the level of expression of ADAM10 may be of importance in cancer and neurodegenerative disorders, ADAM17 mainly coordinates pro- and anti-inflammatory activities during immune response. Despite the high therapeutical potential of ADAM inhibition, all clinical trials using broad-spectrum metalloprotease inhibitors have failed so far. This review will cover the emerging roles of both ADAM10 and ADAM17 in the regulation of major physiological and developmental pathways and will discuss the suitability of specifically modulating the activities of both proteases as a feasible way to inhibit inflammatory states, cancer and neurodegeneration.  相似文献   

5.
The release of tumor necrosis factor-alpha (TNF-alpha) from cellular membranes has been shown by different laboratories to be controlled by a disintegrin and metalloprotease, ADAM10 or ADAM17. In contrast, only ADAM17 has shown to be involved in L-selectin shedding. To determine the specific roles of ADAM10 and ADAM17 in the processing of TNF-alpha and L-selectin shedding, antisense oligonucleotides (ASO) targeting both ADAM10 and ADAM17 were identified. We show that ISIS 16337 reduces ADAM17 mRNA and ISIS 100750 reduces ADAM10 mRNA in a sequence-specific and dose-dependent manner in both Jurkat and THP-1 cells. The ADAM17 ASO (ISIS 16337) inhibited both TNF-alpha secretion in THP-1 cells and L-selectin shedding in Jurkat cells, whereas the ADAM10 ASO (ISIS 100750) did not significantly inhibit release of either protein. These results suggest that ADAM17 is one of the major metalloproteases involved in L-selectin shedding as well as TNF-alpha processing. The biologic substrates for ADAM10 in Jurkat and THP-1 cells remain to be elucidated.  相似文献   

6.
The ADAM (a disintegrin and metalloprotease) protein family uniquely exhibits both catalytic and adhesive properties. In the well-defined process of ectodomain shedding, ADAMs transform latent, cell-bound substrates into soluble, biologically active derivatives to regulate a spectrum of normal and pathological processes. In contrast, the integrin ligand properties of ADAMs are not fully understood. Emerging models posit that ADAM–integrin interactions regulate shedding activity by localizing or sequestering the ADAM sheddase. Interestingly, 8 of the 21 human ADAMs are predicted to be catalytically inactive. Unlike their catalytically active counterparts, integrin recognition of these “dead” enzymes has not been largely reported. The present study delineates the integrin ligand properties of a group of non-catalytic ADAMs. Here we report that human ADAM11, ADAM23, and ADAM29 selectively support integrin α4-dependent cell adhesion. This is the first demonstration that the disintegrin-like domains of multiple catalytically inactive ADAMs are ligands for a select subset of integrin receptors that also recognize catalytically active ADAMs.  相似文献   

7.
The disintegrin-metalloproteinases ADAM10 and ADAM17 mediate the release of several cell signaling molecules and cell adhesion molecules such as vascular endothelial cadherin or L-selectin affecting endothelial permeability and leukocyte transmigration. Dysregulation of ADAM activity may contribute to the pathogenesis of vascular diseases, but the mechanisms underlying the control of ADAM functions are still incompletely understood. Atherosclerosis is characterized by lipid plaque formation and local accumulation of unsaturated free fatty acids (FFA). Here, we show that unsaturated FFA increase ADAM-mediated substrate cleavage. We demonstrate that these alterations are not due to genuine changes in enzyme activity, but correlate with changes in membrane fluidity as revealed by measurement of 1,6-diphenyl-1,3,5-hexatriene fluorescence anisotropy and fluorescence recovery after photobleaching analyses. ELISA and immunoblot experiments conducted with granulocytes, endothelial cells, and keratinocytes revealed rapid increase of ectodomain shedding of ADAM10 and ADAM17 substrates upon membrane fluidization. Large amounts of unsaturated FFA may be liberated from cholesteryl esters in LDL that is entrapped in atherosclerotic lesions. Incubation of cells with thus modified LDL resulted in rapid cleavage of ADAM substrates with corresponding functional consequences on cell proliferation, cell migration, and endothelial permeability, events of high significance in atherogenesis. We propose that FFA represent critical regulators of ADAM function that may assume relevance in many biological settings through their influence on mobility of enzyme and substrate in lipid bilayers.  相似文献   

8.
Chemokines are the inflammatory mediators that modulate liver fibrosis, a common feature of chronic inflammatory liver diseases. CX3CL1/fractalkine is a membrane-associated chemokine that requires step processing for chemotactic activity and has been recently implicated in liver disease. Here, we investigated the potential shedding activities involved in the release of the soluble chemotactic peptides from CX3CL1 in the injured liver. We showed an increased expression of the sheddases ADAM10 and ADAM17 in patients with chronic liver diseases that was associated with the severity of liver fibrosis. We demonstrated that hepatic stellate cells (HSC) were an important source of ADAM10 and ADAM17 and that treatment with the inflammatory cytokine inter-feron-γ induced the expression of CX3CL1 and release of soluble peptides. This release was inhibited by the metalloproteinase inhibitor batimastat; however, ADAM10/ADAM17 inhibitor GW280264X only partially affected shedding activity. By using selective tissue metalloprotease inhibitors and overexpression analyses, we showed that CX3CL1 was mainly processed by matrix metalloproteinase (MMP)-2, a metalloprotease highly expressed by HSC. We further demonstrated that the CX3CL1 soluble peptides released from stimulated HSC induced the activation of the CX3CR1-dependent signalling pathway and promoted chemoattraction of monocytes in vitro . We conclude that ADAM10, ADAM17 and MMP-2 synthesized by activated HSC mediate CX3CL1 shedding and release of chemotactic peptides, thereby facilitating recruitment of inflammatory cells and paracrine stimulation of HSC in chronic liver diseases.  相似文献   

9.
The novel CXC-chemokine ligand 16 (CXCL16) functions as transmembrane adhesion molecule on the surface of APCs and as a soluble chemoattractant for activated T cells. In this study, we elucidate the mechanism responsible for the conversion of the transmembrane molecule into a soluble chemokine and provide evidence for the expression and shedding of CXCL16 by fibroblasts and vascular cells. By transfection of human and murine CXCL16 in different cell lines, we show that soluble CXCL16 is constitutively generated by proteolytic cleavage of transmembrane CXCL16 resulting in reduced surface expression of the transmembrane molecule. Inhibition experiments with selective hydroxamate inhibitors against the disintegrin-like metalloproteinases a disintegrin and metalloproteinase domain (ADAM)10 and ADAM17 suggest that ADAM10, but not ADAM17, is involved in constitutive CXCL16 cleavage. In addition, the constitutive cleavage of transfected human CXCL16 was markedly reduced in embryonic fibroblasts generated from ADAM10-deficient mice. By induction of murine CXCL16 in ADAM10-deficient fibroblasts with IFN-gamma and TNF-alpha, we show that endogenous ADAM10 is indeed involved in the release of endogenous CXCL16. Finally, the shedding of endogenous CXCL16 could be reconstituted by retransfection of ADAM10-deficient cells with ADAM10. Analyzing the expression and release of CXCXL16 by cultured vascular cells, we found that IFN-gamma and TNF-alpha synergize to induce CXCL16 mRNA. The constitutive shedding of CXCL16 from the endothelial cell surface is blocked by inhibitors of ADAM10 and is independent of additional inhibition of ADAM17. Hence, during inflammation in the vasculature, ADAM10 may act as a CXCL16 sheddase and thereby finely control the expression and function of CXCL16 in the inflamed tissue.  相似文献   

10.
CX3CL1 (fractalkine) and CXCL16 are unique members of the chemokine family because they occur not only as soluble, but also as membrane-bound molecules. Expressed as type I transmembrane proteins, the ectodomain of both chemokines can be proteolytically cleaved from the cell surface, a process known as shedding. Our previous studies showed that the disintegrin and metalloproteinase 10 (ADAM10) mediates the largest proportion of constitutive CX3CL1 and CXCL16 shedding, but is not involved in the phorbolester-induced release of the soluble chemokines (inducible shedding). In this study, we introduce the calcium-ionophore ionomycin as a novel, very rapid, and efficient inducer of CX3CL1 and CXCL16 shedding. By transfection in COS-7 cells and ADAM10-deficient murine embryonic fibroblasts combined with the use of selective metalloproteinase inhibitors, we demonstrate that the inducible generation of soluble forms of these chemokines is dependent on ADAM10 activity. Analysis of the C-terminal cleavage fragments remaining in the cell membrane reveals multiple cleavage sites used by ADAM10, one of which is preferentially used upon stimulation with ionomycin. In adhesion studies with CX3CL1-expressing ECV-304 cells and cytokine-stimulated endothelial cells, we demonstrate that induced CX3CL1 shedding leads to the release of bound monocytic cell lines and PBMC from their cellular substrate. These data provide evidence for an inducible release mechanism via ADAM10 potentially important for leukocyte diapedesis.  相似文献   

11.
A disintegrin and metalloproteases (ADAMs) have been implicated in many processes controlling organismic development and integrity. Important substrates of ADAM proteases include growth factors, cytokines and their receptors and adhesion proteins. The inducible but irreversible cleavage of their substrates alters cell-cell communication and signaling. The crucial role of ADAM proteases (e.g. ADAM10 and 17) for mammalian development became evident from respective knockout mice, that displayed pre- or perinatal lethality with severe defects in many organs and tissues. Although many substrates for these two ADAM proteases were identified over the last decade, the regulation of their surface appearance, their enzymatic activity and their substrate specificity are still not well understood. We therefore analyzed the constitutive and inducible surface expression of ADAM10 and ADAM17 on a variety of human T cell and tumor cell lines. We demonstrate that ADAM10 is constitutively present at comparably high levels on the majority of the tested cell types. Stimulation with phorbol ester and calcium ionophore does not significantly alter the amount of surface ADAM10, except for a slight down-regulation from T cell blasts. Using FasL shedding as a readout for ADAM10 activity, we show that PKC activation and calcium mobilization are both prerequisite for activation of ADAM10 resulting in a production of soluble FasL. In contrast to ADAM10, the close relative ADAM17 is detected at only low levels on unstimulated cells. ADAM17 surface expression on T cell blasts is rapidly induced by stimulation. Since this inducible mobilization of ADAM17 is sensitive to inhibitors of actin filament formation, we propose that ADAM17 but not ADAM10 is prestored in a subcellular compartment that is transported to the cell surface in an activation- and actin-dependent manner.  相似文献   

12.
A disintegrin and metalloproteinase (ADAM) is a family of enzymes involved in ectodomain shedding of various membrane proteins. However, the molecular mechanism underlying substrate recognition by ADAMs remains unknown. In this study, we successfully captured and analyzed cell surface transient assemblies between the transmembrane amphiregulin precursor (proAREG) and ADAM17 during an early shedding phase, which enabled the identification of cell surface annexins as components of their shedding complex. Annexin family members annexin A2 (ANXA2), A8, and A9 interacted with proAREG and ADAM17 on the cell surface. Shedding of proAREG was increased when ANXA2 was knocked down but decreased with ANXA8 and A9 knockdown, because of enhanced and impaired association with ADAM17, respectively. Knockdown of ANXA2 and A8 in primary keratinocytes altered wound-induced cell migration and ultraviolet B-induced phosphorylation of epidermal growth factor receptor (EGFR), suggesting that annexins play an essential role in the ADAM-mediated ectodomain shedding of EGFR ligands. On the basis of these data, we propose that annexins on the cell surface function as "shedding platform" proteins to determine the substrate selectivity of ADAM17, with possible therapeutic potential in ADAM-related diseases.  相似文献   

13.
The ADAMs are transmembrane proteins implicated in proteolysis and cell adhesion. Forty gene members of the family have been identified, of which 21 are believed to be functional in humans. As proteases, their main substrates are the ectodomains of other transmembrane proteins. These substrates include precursor forms of growth factors, cytokines, growth factor receptors, cytokine receptors and several different types of adhesion molecules. Although altered expression of specific ADAMs has been implicated in different diseases, their best-documented role is in cancer formation and progression. ADAMs shown to play a role in cancer include ADAM9, ADAM10, ADAM12, ADAM15 and ADAM17. Two of the ADAMs, i.e., ADAM10 and 17 appear to promote cancer progression by releasing HER/EGFR ligands. The released ligands activate HER/EGFR signalling that culminates in increased cell proliferation, migration and survival. Consistent with a causative role in cancer, several ADAMs are emerging as potential cancer biomarkers for aiding cancer diagnosis and predicting patient outcome. Furthermore, a number of selective ADAM inhibitors, especially against ADAM10 and ADAM17, have been shown to have anti-cancer effects. At least one of these inhibitors is now undergoing clinical trials in patients with breast cancer.  相似文献   

14.
Tumor necrosis factor-alpha (TNFalpha), a potent pro-inflammatory cytokine, is released from cells by proteolytic cleavage of a membrane-anchored precursor. The TNF-alpha converting enzyme (TACE; a disintegrin and metalloprotease17; ADAM17) is known to have a key role in the ectodomain shedding of TNFalpha in several cell types. However, because purified ADAMs 9, 10, and 19 can also cleave a peptide corresponding to the TNFalpha cleavage site in vitro, these enzymes are considered to be candidate TNFalpha sheddases as well. In this study we used cells lacking ADAMs 9, 10, 17 (TACE), or 19 to address the relative contribution of these ADAMs to TNFalpha shedding in cell-based assays. Our results corroborate that ADAM17, but not ADAM9, -10, or -19, is critical for phorbol ester- and pervanadate-stimulated release of TNFalpha in mouse embryonic fibroblasts. However, overexpression of ADAM19 increased the constitutive release of TNFalpha, whereas overexpression of ADAM9 or ADAM10 did not. This suggests that ADAM19 may contribute to TNFalpha shedding, especially in cells or tissues where it is highly expressed. Furthermore, we used mutagenesis of TNFalpha to explore which domains are important for its stimulated processing by ADAM17. We found that the cleavage site of TNFalpha is necessary and sufficient for cleavage by ADAM17. In addition, the ectodomain of TNFalpha makes an unexpected contribution to the selective cleavage of TNFalpha by ADAM17: it prevents one or more other enzymes from cleaving TNFalpha following PMA stimulation. Thus, selective stimulated processing of TNFalpha by ADAM17 in cells depends on the presence of an appropriate cleavage site as well as the inhibitory role of the TNF ectodomain toward other enzymes that can process this site.  相似文献   

15.
16.
17.
Signaling via the epidermal growth factor receptor (EGFR), which has critical roles in development and diseases such as cancer, is regulated by proteolytic shedding of its membrane-tethered ligands. Sheddases for EGFR-ligands are therefore key signaling switches in the EGFR pathway. Here, we determined which ADAMs (a disintegrin and metalloprotease) can shed various EGFR-ligands, and we analyzed the regulation of EGFR-ligand shedding by two commonly used stimuli, phorbol esters and calcium influx. Phorbol esters predominantly activate ADAM17, thereby triggering a burst of shedding of EGFR-ligands from a late secretory pathway compartment. Calcium influx stimulates ADAM10, requiring its cytoplasmic domain. However, calcium influx-stimulated shedding of transforming growth factor alpha and amphiregulin does not require ADAM17, even though ADAM17 is essential for phorbol ester-stimulated shedding of these EGFR-ligands. This study provides new insight into the machinery responsible for EGFR-ligand release and thus EGFR signaling and demonstrates that dysregulated EGFR-ligand shedding may be caused by increased expression of constitutively active sheddases or activation of different sheddases by distinct stimuli.  相似文献   

18.
The ADAM family of disintegrin metalloproteases plays important roles in "ectodomain shedding," the process by which biologically active, soluble forms of cytokines, growth factors, and their receptors are released from membrane-bound precursors. Whereas ADAM8, ADAM15, and MDC-L (ADAM28) are expressed in specific cell types and tissues, their in vivo functions and substrates are not known. By screening a library of synthetic peptides as potential substrates, we show that soluble recombinant forms of these enzymes have similar proteolytic substrate specificity, clearly distinct from that of ADAM17 (TNFalpha-converting enzyme). A number of tumor necrosis factor (TNF) family proteins and CD23 were screened as potential substrates for ectodomain cleavage. We found that ADAM8, ADAM15, and MDC-L, but not ADAM17, catalyzed ectodomain shedding of CD23, the low affinity IgE receptor. ADAM8-dependent, soluble CD23 release required proteolytically active ADAM8, and a physical association of ADAM8 was observed with the membrane-bound form of CD23. The ADAM8-dependent release of sCD23 and the endogenous release from B cell lines could be similarly inhibited by a hydroxamic acid, metalloprotease inhibitor compound. We conclude that ADAM8 could contribute to ectodomain shedding of CD23 and may thus be a potential target for therapeutic intervention in allergy and inflammation.  相似文献   

19.
Amyloid-beta (Abeta) peptide, the principal component of senile plaques in the brains of patients with Alzheimer's disease, is derived from proteolytic cleavage of amyloid precursor protein (APP) by beta- and gamma-secretases. Alternative cleavage of APP by alpha-secretase occurs within the Abeta domain and precludes generation of Abeta peptide. Three members of the ADAM (a disintegrin and metalloprotease) family of proteases, ADAM9, 10 and 17, are the main candidates for alpha-secretases. However, the mechanism that regulates alpha-secretase activity remains unclear. We have recently demonstrated that nardilysin (EC 3.4.24.61, N-arginine dibasic convertase; NRDc) enhances ectodomain shedding of heparin-binding epidermal growth factor-like growth factor through activation of ADAM17. In this study, we show that NRDc enhances the alpha-secretase activity of ADAMs, which results in a decrease in the amount of Abeta generated. When expressed with ADAMs in cells, NRDc dramatically increased the secretion of alpha-secretase-cleaved soluble APP and reduced the amount of Abeta peptide generated. A peptide cleavage assay in vitro also showed that recombinant NRDc enhances ADAM17-induced cleavage of the peptide substrate corresponding to the alpha-secretase cleavage site of APP. A reduction of endogenous NRDc by RNA interference was accompanied by a decrease in the cleavage by alpha-secretase of APP and increase in the amount of Abeta generated. Notably, NRDc is clearly expressed in cortical neurons in human brain. Our results indicate that NRDc is involved in the metabolism of APP through regulation of the alpha-secretase activity of ADAMs, which may be a novel target for the treatment of Alzheimer's disease.  相似文献   

20.
Defects in heart development are the most common congenital abnormalities in humans, providing a strong incentive to learn more about the underlying causes. Previous studies have implicated the metalloprotease-disintegrins ADAMs (a disintegrin and metalloprotease) 17 and 19 as well as heparin binding EGF-like growth factor (HB-EGF) and neuregulins in heart development in mice. Here, we show that mice lacking both ADAMs 17 and 19 have exacerbated defects in heart development compared to mice lacking either ADAM, providing the first evidence for redundant or compensatory functions of ADAMs in development. Moreover, we identified additional compensatory or redundant roles of ADAMs 9 and 19 in morphogenesis of the mitral valve and cardiac outflow tract. Cell biological studies designed to address the functions of these ADAMs in shedding of HB-EGF uncovered a contribution of ADAM19 to this process, but this was only evident in the absence of the major HB-EGF sheddase, ADAM17. In addition, ADAM17 emerged as the major sheddase for neuregulins beta1 and beta2 in mouse embryonic fibroblasts. These results raise the possibility that ADAMs 9, 17, and 19 contribute to heart development in humans and have implications for understanding the mechanisms underlying congenital heart disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号