首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The sphingolipid metabolite, sphingosine-1-phosphate (S1P), has emerged as a critical player in a number of fundamental biological processes and is important in cancer, angiogenesis, wound healing, cardiovascular function, atherosclerosis, immunity and asthma, among others. Activation of sphingosine kinases, enzymes that catalyze the phosphorylation of sphingosine to S1P, by a variety of agonists, including growth factors, cytokines, hormones, and antigen, increases intracellular S1P. Many of the biological effects of S1P are mediated by its binding to five specific G protein-coupled receptors located on the cell surface in an autocrine and/or paracrine manner. Therefore, understanding the mechanism by which intracellularly generated S1P is released out of cells is both interesting and important. In this review, we will discuss how S1P is formed and released. We will focus particularly on the current knowledge of how the S1P gradient between tissues and blood is maintained, and the role of ABC transporters in S1P release.  相似文献   

2.
鞘氨醇-1-磷酸(sphingosine-1 phosphate,S1P)是来源于鞘脂代谢途径的多效性信号分子,其代谢受到多种因素调控。S1P由细胞内的鞘氨醇激酶(sphingosine kinases,SphKs)催化鞘氨醇的磷酸化而合成,可通过转运蛋白释放至细胞外。S1P可通过在胞外结合其特异性G蛋白偶联受体及胞内作用而调节多种重要生物学效应。作为细胞外介质和细胞内信使,S1P在免疫系统中也发挥重要的调节作用。S1P参与免疫细胞的迁移、增殖、分化及死亡细胞清除等过程。本文对S1P的代谢以及其对于免疫细胞的调节作用进行综述。  相似文献   

3.
Nearly two decades ago, the sphingolipid metabolite sphingosine 1-phosphate was discovered to function as a lipid mediator and regulator of cell proliferation. Since that time, sphingosine 1-phosphate has been shown to mediate a diverse array of fundamental biological processes including cell proliferation, migration, invasion, angiogenesis, vascular maturation and lymphocyte trafficking. Sphingosine 1-phosphate acts primarily via signaling through five ubiquitously expressed G protein-coupled receptors. Intracellular sphingosine 1-phosphate molecules are transported extracellularly and gain access to cognate receptors for autocrine and paracrine signaling and for signaling at distant sites reached through blood and lymphatic circulation systems. Intracellular pools of sphingosine 1-phosphate available for signaling are tightly regulated primarily by three enzymes: sphinosine kinase, S1P lyase and S1P phosphatase. Alterations in sphingosine 1-phosphate as well as the enzymes involved in its synthesis and catabolism have been observed in many types of malignancy. These enzymes are being evaluated for their role in mediating cancer formation and progression, as well as their potential to serve as targets of anti-cancer therapeutics. In this review, the impact of sphingosine 1-phosphate, its cognate receptors, and the enzymes of sphingosine 1-phosphate metabolism on cell survival, apoptosis, autophagy, cellular transformation, invasion, angiogenesis and hypoxia in relation to cancer biology and treatment are discussed.  相似文献   

4.
There is an increasing body of evidence demonstrating a critical role for the bioactive lipid S1P (sphingosine 1-phosphate) in cancer. S1P is synthesized and metabolized by a number of enzymes, including sphingosine kinase, S1P lyase and S1P phosphatases. S1P binds to cell-surface G-protein-coupled receptors (S1P1-S1P5) to elicit cell responses and can also regulate, by direct binding, a number of intracellular targets such as HDAC (histone deacetylase) 1/2 to induce epigenetic regulation. S1P is involved in cancer progression including cell transformation/oncogenesis, cell survival/apoptosis, cell migration/metastasis and tumour microenvironment neovascularization. In the present paper, we describe our research findings regarding the correlation of sphingosine kinase 1 and S1P receptor expression in tumours with clinical outcome and we define some of the molecular mechanisms underlying the involvement of sphingosine kinase 1 and S1P receptors in the formation of a cancer cell migratory phenotype. The role of sphingosine kinase 1 in the acquisition of chemotherapeutic resistance and the interaction of S1P receptors with oncogenes such as HER2 is also reviewed. We also discuss novel aspects of the use of small-molecule inhibitors of sphingosine kinase 1 in terms of allosterism, ubiquitin-proteasomal degradation of sphingosine kinase 1 and anticancer activity. Finally, we describe how S1P receptor-modulating agents abrogate S1P receptor-receptor tyrosine kinase interactions, with potential to inhibit growth-factor-dependent cancer progression.  相似文献   

5.
Recent studies reveal that metabolites of sphingomyelin are critically important for initiation and maintenance of diverse aspects of immune cell activation and function. The conversion of sphingomyelin to ceramide, sphingosine, or sphingosine-1-phosphate (S1P) provides interconvertible metabolites with distinct biological activities. Whereas ceramide and sphingosine function to induce apoptosis and to dampen mast cell responsiveness, S1P functions as a chemoattractant and can up-regulate some effector responses. Many of the S1P effects are mediated through S1P receptor family members (S1P(1-5)). S1P(1), which is required for thymocyte emigration and lymphocyte recirculation, is also essential for Ag-induced mast cell chemotaxis, whereas S1P(2) is important for mast cell degranulation. S1P is released to the extracellular milieu by Ag-stimulated mast cells, enhancing inflammatory cell functions. Modulation of S1P receptor expression profiles, and of enzymes involved in sphingolipid metabolism, particularly sphingosine kinases, are key in balancing mast cell and immune cell responses. Current efforts are unraveling the complex underlying mechanisms regulating the sphingolipid pathway. Pharmacological intervention of these key processes may hold promise for controlling unwanted immune responses.  相似文献   

6.
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid with a variety of biological activities.It is generated from the conversion of ceramide to sphingosine by ceramidase and the subsequent conversion of sphingosine to S1P,which is catalyzed by sphingosine kinases.Through increasing its intracellular levels by sphingolipid metabolism and binding to its cell surface receptors,S1P regulates several physiological and pathological processes,including cell proliferation,migration,angiogenesis and autophagy.These processes are responsible for tumor growth,metastasis and invasion and promote tumor survival.Since ceramide and S1P have distinct functions in regulating in cell fate decision,the balance between the ceramide/sphingosine/S1P rheostat becomes a potent therapeutic target for cancer cells.Herein,we summarize our current understanding of S1P signaling on tumorigenesis and its potential as a target for cancer therapy.  相似文献   

7.
Sphingolipids are present in membranes of all eukaryotic cells. Bioactive sphingolipids also function as signaling molecules that regulate cellular processes such as proliferation, migration, and apoptosis. Human cytomegalovirus (HCMV) exploits a variety of cellular signaling pathways to promote its own replication. However, whether HCMV modulates lipid signaling pathways is an essentially unexplored area of research in virus-host cell interactions. In this study, we examined the accumulation of the bioactive sphingolipids and the enzymes responsible for the biosynthesis and degradation of these lipids. HCMV infection results in increased accumulation and activity of sphingosine kinase (SphK), the enzyme that generates sphingosine 1-phosphate (S1P) and dihydrosphingosine 1-phosphate (dhS1P). We also utilized a mass spectrometry approach to generate a sphingolipidomic profile of HCMV-infected cells. We show that HCMV infection results in increased levels of dhS1P and ceramide at 24 h, suggesting an enhancement of de novo sphingolipid synthesis. Subsequently dihydrosphingosine and dhS1P decrease at 48 h consistent with attenuation of de novo sphingolipid synthesis. Finally, we present evidence that de novo sphingolipid synthesis and sphingosine kinase activity directly impact virus gene expression and virus growth. Together, these findings demonstrate that host cell sphingolipids are dynamically regulated upon infection with a herpes virus in a manner that impacts virus replication.  相似文献   

8.
Sphingosine-1-phosphate (S1P) is a bioactive lysosphingophospholipid that has been implicated in the regulation of vital biological processes. Abundant evidence indicates that S1P acts as both an intracellular messenger and an extracellular ligand for a family of five specific G protein-coupled S1P receptors (S1PRs). Cellular levels of S1P are tightly regulated in a spatio-temporal manner through its synthesis catalyzed by sphingosine kinases (SphKs) and degradation by S1P lyase (SPL) and specific S1P phosphohydrolases. Over the past decade, the identification and cloning of genes encoding S1P metabolizing enzymes has increased rapidly. Overexpression and deletion of these enzymes has provided important insights into the intracellular and the "inside-out" functions of S1P. The purpose of this review is to summarize the current knowledge of S1P metabolizing enzymes, their enzymatic properties, and their roles in the control of cellular functions by S1P.  相似文献   

9.
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that acts as both an extracellular ligand for the endothelial differentiation gene-1 (EDG-1) G-protein coupled receptor (GPCR) family and as an intracellular messenger. Cellular levels of S1P are low and tightly regulated in a spatial-temporal manner not only by sphingosine kinase (SPHK) but also by degradation catalyzed by S1P lyase, specific S1P phosphohydrolases, and by general lipid phosphate phosphohydrolases (LPPs). LPPs are characterized as magnesium-independent, insensitive to inhibition by N-ethylmaleimide (NEM) and possessing broad substrate specificity with a variety of phosphorylated lipids, including S1P, phosphatidic acid (PA), and lysophosphatidic acid (LPA). LPPs contain three highly conserved domains that define a phosphohydrolase superfamily. Recently, several specific S1P phosphohydrolases have been identified in yeast and mammalian cells. Phylogenetic and biochemical analyses indicate that these enzymes constitute a new subset of the LPP family. As further evidence, S1P phosphohydrolases exhibit high specificity for phosphorylated sphingoid bases. Enforced expression of S1P phosphohydrolase alters the cellular levels of sphingolipid metabolites in yeast and mammalian cells, increasing sphingosine and ceramide, bioactive sphingolipids that often have opposing biological actions to S1P. By regulating the cellular ratio between ceramide/sphingosine and S1P, S1P phosphohydrolase is poised to be a critical factor in cell survival/cell death decisions. Indeed, expression of S1P phosphohydrolase in mammalian cells increases apoptosis, whereas deletion of S1P phosphohydrolases in yeast correlates with resistance to heat stress. In this review, we discuss the role of phosphohydrolases in the metabolism of S1P and how turnover of S1P can regulate sphingolipid metabolites signaling.  相似文献   

10.
The sphingosine kinases, SK1 and SK2, produce the potent signaling lipid sphingosine-1-phosphate (S1P). These enzymes have garnered increasing interest for their roles in tumorigenesis, inflammation, vascular diseases, and immunity, as well as other functions. The sphingosine kinases are considered signaling enzymes by producing S1P, and their activity is acutely regulated by a variety of agonists. However, these enzymes are also key players in the control of sphingolipid metabolism. A variety of sphingolipids, such as sphingosine and the ceramides, are potent signaling molecules in their own right. The role of sphingosine kinases in regulating sphingolipid metabolism is potentially a critical aspect of their signaling function. A central aspect of signaling lipids is that their hydrophobic nature constrains them to membranes. Most enzymes of sphingolipid metabolism, including the enzymes that degrade S1P, are membrane enzymes. Therefore the localization of the sphingosine kinases and S1P is likely to be important in S1P signaling. Sphingosine kinase localization affects sphingolipid signaling in several ways. Translocation of SK1 to the plasma membrane promotes extracellular secretion of S1P. SK1 and SK2 localization to specific sites appears to direct S1P to intracellular protein effectors. SK localization also determines the access of these enzymes to their substrates. This may be an important mechanism for the regulation of ceramide biosynthesis by diverting dihydrosphingosine, a precursor in the ceramide biosynthetic pathway, from the de novo production of ceramide.  相似文献   

11.
12.
The lipid mediator sphingosine 1-phosphate (S1P) may alter the proliferation of mesangial cells during pathophysiological processes. Here, S1P stimulated proliferation of rat mesangial cells and phosphorylation of MAPKs at subconfluent cell density. Both effects were inhibited by pertussis toxin treatment. Mesangial cells expressed several S1P receptors of the endothelial differentiation gene family: EDG-1, -3, -5, and -8. Conversely, S1P induced apoptosis at low cell density (2 x 10(4) cells/cm(2)), which was demonstrated by flow cytometry and Hoechst staining. Apoptosis was observed also in quiescent or growing cells and was not reverted by lysophosphatidic acid or platelet-derived growth factor. S1P enhanced phosphorylation of SAPKs. Incubation with [(33)P]S1P, [(3)H]S1P, and [(3)H]sphingosine demonstrated increased S1P hydrolysis, resulting in enhanced intracellular sphingosine levels and decreased S1P levels. A rise in total ceramide levels was also observed; however, ceramide did not originate from [(3)H]sphingosine, and S1P-induced apoptosis was not inhibited by fumonisin B, precluding involvement of de novo ceramide synthesis in apoptosis. Therefore, we suggest that sphingosine accumulation and decreased S1P are primarily responsible for S1P-induced apoptosis. In conclusion, incubation of low-density mesangial cells with S1P results in apoptosis, presumably due to increased S1P hydrolysis.  相似文献   

13.
Sphingosine 1-phosphate (S1P) has many important roles in mammalian cells, including contributing to the control of cell survival and proliferation. S1P is generated by sphingosine kinases (SKs), of which two mammalian isoforms have been identified (SK1 and SK2). To gain a better understanding of SK regulation, we have used a yeast two-hybrid screen to identify SK1-interacting proteins and established elongation factor 1A (eEF1A) as one such protein that associates with both SK1 and SK2. We show the direct interaction of eEF1A with the SKs in vitro, whereas the physiological relevance of this association was demonstrated by co-immunoprecipitation of the endogenous proteins from cell lysates. Although the canonical role of eEF1A resides in protein synthesis, it has also been implicated in other roles, including regulating the activity of some signaling enzymes. Thus, we examined the potential role of eEF1A in regulation of the SKs and show that eEF1A is able to directly increase the activity of SK1 and SK2 approximately 3-fold in vitro. Substrate kinetics demonstrated that eEF1A increased the catalytic rate of both SKs, while having no observable effect on substrate affinities of these enzymes for either ATP or sphingosine. Overexpression of eEF1A in quiescent Chinese hamster ovary cells increased cellular SK activity, whereas a small interfering RNA-mediated decrease in eEF1A levels in MCF7 cells substantially reduced cellular SK activity and S1P levels, supporting the in vivo physiological relevance of this interaction. Thus, this study has established a novel mechanism of regulation of both SK1 and SK2 that is mediated by their interaction with eEF1A.  相似文献   

14.
Sphingosine-1-phosphate (S1P) is generated through phosphorylation of sphingosine by two sphingosine kinases (SPHK-1 and -2). As extra- and intracellular messenger S1P fulfils multiple roles in inflammation such as mediating proinflammatory inputs or acting as chemoattractant. In addition, S1P induces cyclooxygenase-2 (COX-2) expression and the synthesis of proinflammatory prostanoids in several cell types. Here, we analysed in vivo the regulation of S1P level as well as potential interactions between S1P and COX-dependent prostaglandin synthesis during zymosan-induced inflammation. S1P and prostanoid levels were determined in the blood and at the site of inflammation under basal conditions and during zymosan-induced inflammation using wild type and SPHK-1 and -2 knockout mice. We found that alterations in S1P levels did not correlate with changes in plasma- or tissue-concentrations of the prostanoids as well as COX-2 expression. In the inflamed tissue S1P and prostanoid concentrations were reciprocally regulated. Prostaglandin levels increased over 6h, while S1P and sphingosine level decreased during the same time, which makes an induction of prostanoid synthesis by S1P in zymosan-induced inflammation unlikely. Additionally, despite altered S1P levels wild type and SPHK knockout mice showed similar behavioural nociceptive responses and oedema sizes suggesting minor functions of S1P in this inflammatory model.  相似文献   

15.
To maintain an intact barrier, epithelia eliminate dying cells by extrusion. During extrusion, a cell destined for apoptosis signals its neighboring cells to form and contract a ring of actin and myosin, which squeezes the dying cell out of the epithelium. Here, we demonstrate that the signal produced by dying cells to initiate this process is sphingosine-1-phosphate (S1P). Decreasing S1P synthesis by inhibiting sphingosine kinase activity or by blocking extracellular S1P access to its receptor prevented apoptotic cell extrusion. Extracellular S1P activates extrusion by binding the S1P(2) receptor in the cells neighboring a dying cell, as S1P(2) knockdown in these cells or its loss in a zebrafish mutant disrupted cell extrusion. Because live cells can also be extruded, we predict that this S1P pathway may also be important for driving delamination of stem cells during differentiation or invasion of cancer cells.  相似文献   

16.
Two lysophospholipids (LPs), lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), are known to affect various cellular events. Their actions are mediated by binding to at least ten bona fide high-affinity G protein-coupled receptors referred to as LPA(1-5) and S1P(1-5). These LPs are expressed throughout the body and are involved in a range of biological activities including normal development, as well as functioning in most organ systems. A growing number of biological functions have been uncovered in vivo using single- or multiple-null mice for each LP receptor. This review will focus on findings from in vivo as well as in vitro studies using genetic null mice for the LP receptors, LPA(1,2,3) and S1P(1,2,3,5), and for the LP producing enzymes, autotaxin and sphingosine kinase 1/2.  相似文献   

17.
Sphingosine-1-phosphate (S1P) is a biologically active sphingolipid metabolite that exerts important effects on numerous cellular events via cell surface receptors, S1P(1-5). S1P influences differentiation, proliferation, and migration during vascular development. However, the effects of S1P signaling on early cardiac development are not well understood. To address this issue, we examined the expression of S1P regulatory enzymes and S1P receptors during cardiac development. We observed that enzymes that regulate S1P levels, sphingosine kinase and sphingosine-1-phosphate phosphatase, are expressed in the developing heart. In addition, RT-PCR revealed that four of the five known S1P receptors (S1P(1-4)) are also expressed in the developing heart. Next, effects of altered S1P levels on whole embryo and atrioventricular (AV) canal cultures were investigated. We demonstrate that inactivation of the S1P producing enzyme, sphingosine kinase, leads to cell death in cardiac tissue which is rescued by exogenous S1P treatment. Other experiments reveal that increased S1P concentration prevents alterations in cell morphology that are required for cell migration. This effect results in reduced cell migration and inhibited mesenchymal cell formation in AV canal cushion tissue. These data indicate that S1P, locally maintained within a specific concentration range, is an important and necessary component of early heart development.  相似文献   

18.
Sphingosine-1-phosphate (S1P) regulates many cellular functions, such as migration, differentiation and growth. The effects of S1P are thought to be primarily mediated by G-protein coupled receptors, but an intracellular function as a calcium releasing second messenger has also been proposed. Here we show that in HEK-293 cells, exogenous S1P mobilises sequestered calcium by a mechanism primarily dependent on the phospholipase C (PLC)/inositol 1,4,5-trisphosphate (IP3) pathway, and secondarily on the subsequent synthesis of intracellular S1P. Stimulating HEK-293 cells exogenously with S1P increased the production of both inositol phosphates and intracellular S1P. The calcium response was inhibited in cells treated with 2-APB, caffeine or U73122, showing that the PLC/IP3 pathway for calcium release is activated in response to exogenous S1P. The calcium response was partially inhibited in cells treated with the sphingosine kinase inhibitor DMS and in cells expressing a catalytically inactive sphingosine kinase, showing that endogenously produced S1P is also involved. Importantly, 2-APB and U73122 inhibited the S1P-evoked production of intracellular S1P. S1P is therefore not likely a major calcium releasing second messenger in HEK-293 cells, but rather a secondary regulator of calcium mobilisation.  相似文献   

19.
Lipid phosphate esters including lysophosphatidate (LPA), phosphatidate (PA), sphingosine 1-phosphate (S1P) and ceramide 1-phosphate (C1P) are bioactive in mammalian cells and serve as mediators of signal transduction. LPA and S1P are present in biological fluids and activate cells through stimulation of their respective G-protein-coupled receptors, LPA(1-3) and S1P(1-5). LPA stimulates fibroblast division and is important in wound repair. It is also active in maintaining the growth of ovarian cancers. S1P stimulates chemotaxis, proliferation and differentiation of vascular endothelial and smooth muscle cells and is an important participant in the angiogenic response and neovessel maturation. PA and C1P are believed to act primarily inside the cell where they facilitate vesicle transport. The lipid phosphates are substrates for a family of lipid phosphate phosphatases (LPPs) that dramatically alter the signaling balance between the phosphate esters and their dephosphorylated products. In the case of PA, S1P and C1P, the products are diacylglycerol (DAG), sphingosine and ceramide, respectively. These latter lipids are also bioactive and, thus, the LPPs change signals that the cell receives. The LPPs are integral membrane proteins that act both inside and outside the cell. The "ecto-activity" of the LPPs regulates the circulating and locally effective concentrations of LPA and S1P. Conversely, the internal activity controls the relative accumulation of PA or C1P in response to stimulation by various agonists thereby affecting cell signaling downstream of EDG and other receptors. This article will review the various LPPs and discuss how these enzymes could regulate signal transduction by lipid mediators.  相似文献   

20.
Skeletal muscle (SkM) atrophy is caused by several and heterogeneous conditions, such as cancer, neuromuscular disorders and aging. In most types of SkM atrophy overall rates of protein synthesis are suppressed, protein degradation is consistently elevated and atrogenes, such as the ubiquitin ligase Atrogin-1/MAFbx, are up-regulated. The molecular regulators of SkM waste are multiple and only in part known.Sphingolipids represent a class of bioactive molecules capable of modulating the destiny of many cell types, including SkM cells. In particular, we and others have shown that sphingosine 1phosphate (S1P), formed by sphingosine kinase (SphK), is able to act as trophic and morphogenic factor in myoblasts.Here, we report the first evidence that the atrophic phenotype observed in both muscle obtained from mice bearing the C26 adenocarcinoma and C2C12 myotubes treated with dexamethasone was characterized by reduced levels of active phospho-SphK1. The importance of SphK1 activity is also confirmed by the specific pharmacological inhibition of SphK1 able to increase Atrogin-1/MAFbx expression and reduce myotube size and myonuclei number. Furthermore, we found that SkM atrophy was accomplished by significant increase of S1P transporter Spns2 and in changes in the pattern of S1P receptor (S1PRs) subtype expression paralleled by increased Atrogin-1/MAFbx expression, suggesting a role for the released S1P and of specific S1PR-mediated signaling pathways in the control of the ubiquitin ligase. Altogether, these findings provide the first evidence that SphK1/released S1P/S1PR axis acts as a molecular regulator of SkM atrophy, thereby representing a new possible target for therapy in many patho-physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号