首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copper toxicosis is an autosomal recessive disorder affecting Bedlington terriers, characterized by elevated liver copper levels and early death of affected dogs. Genetic linkage mapping studies initially identified linkage between the disease and the microsatellite marker C04107. Subsequently, the deletion of exon 2 of the copper metabolism domain containing 1 (COMMD1) gene (formerly MURR1) was shown to be the major cause of copper toxicosis, although the deletion breakpoints were not defined. In this investigation, polymerase chain reaction (PCR)-based techniques and sequencing were used to isolate the deletion breakpoints, utilizing the newly available dog genome sequence. The breakpoints were positioned at 65.3091 and 65.3489 Mb of dog chromosome 10, in intron 1 and intron 2 of COMMD1 respectively, a deletion of 39.7 kb. The two breakpoints share sequence homology suggesting that homologous recombination may have been responsible for the deletion. Using this information, a genomic diagnostic test for the COMMD1 deletion was developed and compared with microsatellite C04107 genotypes of 40 Bedlington terriers. Results from the 40 samples showed allele 2 of C04107 to be in linkage disequilibrium with the COMMD1 deletion.  相似文献   

2.
Wilson’s disease, caused by a mutation in the ATP-ase 7B gene, is the only genetically characterised human disease with inhibition of biliary copper excretion and toxic copper accumulation in liver and occasionally brain. A similar copper toxicosis occurs in Bedlington terriers (CT) with liver damage only. Although CT has been associated with a defect in the COMMD1 gene (COMMD1 del/del), Bedlington terriers with CT and lacking this mutation are also recognised (non-COMMD1 del/del).A study was designed to identify any other gene polymorphisms associated with copper toxicity in Bedlington terriers employing genome wide association studies (GWAS) followed by deep sequencing of the candidate region. Blood for DNA analysis and liver for confirmation of the diagnosis was obtained from 30 non-COMMD1 del/del Bedlington terriers comprising equal numbers of CT-affected dogs and controls. DNA was initially subjected to GWAS screening and then further sequencing to target the putative mutant gene.The study has identified a significant disease association with a region on chromosome 37 containing identified SNP’s which are highly significantly associated with non-COMMD1 del/del Bedlington terrier CT. This region contains the ABCA12 gene which bears a close functional relationship to ATP-ase 7B responsible for Wilson’s disease in man.  相似文献   

3.
Canine copper toxicosis is an important inherited disease in Bedlington terriers, because of its high prevalence rate and similarity to human copper storage disease. It can lead to chronic liver disease and occasional haemolytic anaemia due to impaired copper excretion. The responsible gene for copper toxicosis in Bedlington terriers has been recently identified and was found not to be related to human Wilson’s disease gene ATP7B. Although our understanding of copper metabolism in mammals has improved through genetic molecular technology, the diversity of gene mutation related to copper metabolism in animals will help identify the responsible genes for non-Wilsonian copper toxicoses in human. This review paper discusses our knowledge of normal copper metabolism and the pathogenesis, molecular genetics and current research into copper toxicosis in Bedlington terriers, other animals and humans.  相似文献   

4.
Canine copper toxicosis is an autosomal recessive disorder characterized by hepatic copper accumulation resulting in liver fibrosis and eventually cirrhosis. We have identified COMMD1 as the gene underlying copper toxicosis in Bedlington terriers. Although recent studies suggest that COMMD1 regulates hepatic copper export via an interaction with the Wilson disease protein ATP7B, its importance in hepatic copper homeostasis is ill-defined. In this study, we aimed to assess the effect of Commd1 deficiency on hepatic copper metabolism in mice. Liver-specific Commd1 knockout mice (Commd1(Δhep)) were generated and fed either a standard or a copper-enriched diet. Copper homeostasis and liver function were determined in Commd1(Δhep) mice by biochemical and histological analyses, and compared to wild-type littermates. Commd1(Δhep) mice were viable and did not develop an overt phenotype. At six weeks, the liver copper contents was increased up to a 3-fold upon Commd1 deficiency, but declined with age to concentrations similar to those seen in controls. Interestingly, Commd1(Δhep) mice fed a copper-enriched diet progressively accumulated copper in the liver up to a 20-fold increase compared to controls. These copper levels did not result in significant induction of the copper-responsive genes metallothionein I and II, neither was there evidence of biochemical liver injury nor overt liver pathology. The biosynthesis of ceruloplasmin was clearly augmented with age in Commd1(Δhep) mice. Although COMMD1 expression is associated with changes in ATP7B protein stability, no clear correlation between Atp7b levels and copper accumulation in Commd1(Δhep) mice could be detected. Despite the absence of hepatocellular toxicity in Commd1(Δhep) mice, the changes in liver copper displayed several parallels with copper toxicosis in Bedlington terriers. Thus, these results provide the first genetic evidence for COMMD1 to play an essential role in hepatic copper homeostasis and present a valuable mouse model for further understanding of the molecular mechanisms underlying hepatic copper homeostasis.  相似文献   

5.
COMMD1 (copper metabolism gene MURR1 (mouse U2af1-rs1 region1) domain) belongs to a family of multifunctional proteins that inhibit nuclear factor NF-kappaB. COMMD1 was implicated as a regulator of copper metabolism by the discovery that a deletion of exon 2 of COMMD1 causes copper toxicosis in Bedlington terriers. Here, we report the detailed characterization and specific copper binding properties of purified recombinant human COMMD1 as well as that of the exon 2 product, COMMD(61-154). By using various techniques including native-PAGE, EPR, UV-visible electronic absorption, intrinsic fluorescence spectroscopies as well as DEPC modification of histidines, we demonstrate that COMMD1 specifically binds copper as Cu(II) in 1:1 stoichiometry and does not bind other divalent metals. Moreover, the exon 2 product, COMMD(61-154), alone was able to bind Cu(II) as well as the wild type protein, with a stoichiometry of 1 mol of Cu(II) per protein monomer. The protection of DEPC modification of COMMD1 by Cu(II) implied that Cu(II) binding involves His residues. Further investigation by DEPC modification of COMMD(61-154) and subsequent MALDI MS mapping and MS/MS sequencing identified the protection of His101 and His134 residues in the presence of Cu(II). Fluorescence studies of single point mutants of the full-length protein revealed the involvement of M110 in addition to H134 in direct Cu(II) binding. Taken together, the data provide insight into the function of COMMD1 and especially COMMD(61-154), a product of exon 2 that is deleted in terriers affected by copper toxicosis, as a regulator of copper homeostasis.  相似文献   

6.
Linkage disequilibrium (LD) mapping is commonly used as a fine mapping tool in human genome mapping and has been used with some success for initial disease gene isolation in certain isolated inbred human populations. An understanding of the population history of domestic dog breeds suggests that LD mapping could be routinely utilized in this species for initial genome-wide scans. Such an approach offers significant advantages over traditional linkage analysis. Here, we demonstrate, using canine copper toxicosis in the Bedlington terrier as the model, that LD mapping could be reasonably expected to be a useful strategy in low-resolution, genome-wide scans in pure-bred dogs. Significant LD was demonstrated over distances up to 33.3 cM. It is very unlikely, for a number of reasons discussed, that this result could be extrapolated to the rest of the genome. It is, however, consistent with the expectation given the population structure of canine breeds and, in this breed at least, with the hypothesis that it may be possible to utilize LD in a genome-wide scan. In this study, LD mapping confirmed the location of the copper toxicosis in Bedlington terrier gene (CT-BT) and was able to do so in a population that was refractory to traditional linkage analysis.  相似文献   

7.
A deletion in the copper metabolism (Murr1) domain containing 1 (COMMD1) gene is associated with hepatic copper toxicosis in dogs, yet evidence of copper retention in COMMD1-depleted hepatic cells has not been shown. In a dog hepatic cell line, we analysed the copper metabolic functions after an 80% (mRNA and protein) COMMD1 reduction with COMMD1-targeting siRNAs. Exposure to 64Cu resulted in a significant increase in copper retention in COMMD1-depleted cells. COMMD1-depleted cells were almost three times more sensitive to high extracellular copper concentrations. Copper-mediated regulation of metallothionein gene expression was enhanced in COMMD1-depleted cells. Based on the increased copper accumulation and enhanced cellular copper responses upon COMMD1 reduction, we conclude that COMMD1 has a major regulatory function for intracellular copper levels in hepatic cells.  相似文献   

8.
Nanji MS  Cox DW 《Genomics》1999,62(1):108-112
Copper toxicosis, resulting in liver disease, commonly occurs in Bedlington terriers. This recessively inherited disorder, similar in many respects to Wilson disease, is of particular interest because the canine Atp7b gene, homologous to ATP7B defective in Wilson disease, is not responsible for canine copper toxicosis as has been expected. Atox1, a copper chaperone delivering copper to Atp7b, therefore became a potential candidate. We cloned canine Atox1, which shows conserved motifs of the copper-binding domain (MTCXXC) and of the lysine-rich region (KTGK), and showed 88, 80, and 41% amino acid sequence identity with the orthologous mouse, human, and yeast proteins. No gross deletions of Atox1 could be identified in the affected Bedlington terriers by Southern blot analysis of genomic DNA. The canine Atox1 gene spans about 4 kb, with a 204-bp open reading frame cDNA contained within two exons. Sequence analysis of the coding regions, including intron/exon boundaries, showed no mutations in Atox1 from genomic DNA of an affected dog. We have also identified an apparently nontranscribed canine Atox1 pseudogene, with 12 sequence changes and no intron. Mapping of Atox1 and a marker closely linked to the canine copper toxicosis locus indicated lack of synteny. Atox1 is therefore excluded as a candidate gene for canine copper toxicosis, indicating that some other unidentified gene must be responsible for this copper storage disease in dogs and also suggesting the possibility of a similar gene responsible for a copper storage disease in humans.  相似文献   

9.
Recently, linkage of a DNA microsatellite marker to inherited copper toxicosis has been reported in American Bedlington terrier families. Due to the fact that there is little exchange of breeding stock between the USA and Europe, it remains to be investigated whether in Europe the marker is informative and is linked with the disease. We have therefore examined the diagnostic value of the microsatellite marker in the European Bedlington. In 130 dogs at least one year of age (62 from The Netherlands, 35 from Belgium, and 33 from Germany) histo- or cytochemical staining of copper was done in liver biopsies. Based on liver histo- or cytochemistry, 51 dogs were obligate carriers, and 25 dogs had copper toxicosis. The inferred genotypes of these 76 dogs were compared with the marker genotypes. All dogs with the disease were homozygous for the 167 bp marker allele. All obligate carriers were heterozygotes with the 167 bp and a 163-bp alleles. All phenotypically healthy dogs were either homozygous for the 163 bp allele or heterozygous. Thus, the marker was in complete linkage disequilibrium with the putative copper toxicosis gene with the 167 bp allele in phase with the disease allele. The frequencies of the 167 bp and the 163 bp allele, respectively, were 0.33 and 0.67 in Dutch dogs, 0.31 and 0.69 in German dogs, and 0.57 and 0.43 in Belgian dogs. We have confirmed the utility of this marker for diagnosis of inherited copper toxicosis in European Bedlington terriers.  相似文献   

10.
Copper is an essential transition metal but is toxic in excess; therefore, its metabolism needs to be tightly regulated. Defects in the regulation of copper can lead to various disorders characterized by copper deficiency or copper excess. Recently, we characterized the COMMD1 (previously MURR1) gene as the defective gene in canine copper toxicosis. The molecular functions of COMMD1 remain unknown, but significant progress has been made in identifying the cellular processes in which COMMD1 participates, through the identification of proteins interacting with COMMD1. This review discusses how COMMD1 functions as a regulator of not only copper homeostasis but also sodium transport and the NF-kappaB signaling pathway. We outline the possible mechanisms through which COMMD1 exerts these newly identified functions.  相似文献   

11.
X-linked inhibitor of apoptosis (XIAP), known primarily for its caspase inhibitory properties, has recently been shown to interact with and regulate the levels of COMMD1, a protein associated with a form of canine copper toxicosis. Here, we describe a role for XIAP in copper metabolism. We find that XIAP levels are greatly reduced by intracellular copper accumulation in Wilson's disease and other copper toxicosis disorders and in cells cultured under high copper conditions. Elevated copper levels result in a profound, reversible conformational change in XIAP due to the direct binding of copper to XIAP, which accelerates its degradation and significantly decreases its ability to inhibit caspase-3. This results in a lowering of the apoptotic threshold, sensitizing the cell to apoptosis. These data provide an unsuspected link between copper homeostasis and the regulation of cell death through XIAP and may contribute to the pathophysiology of copper toxicosis disorders.  相似文献   

12.
Copper is a trace element indispensable for life, but at the same time it is implicated in reactive oxygen species formation. Several inherited copper storage diseases are described of which Wilson disease (copper overload, mutations in ATP7B gene) and Menkes disease (copper deficiency, mutations in ATP7A gene) are the most prominent ones. After the discovery in 2002 of a novel gene product (i.e. COMMD1) involved in hepatic copper handling in Bedlington terriers, studies on the mechanism of action of COMMD1 revealed numerous non-copper related functions. Effects on hepatic copper handling are likely mediated via interactions with ATP7B. In addition, COMMD1 has many more interacting partners which guide their routing to either the plasma membrane or, often in an ubiquitination-dependent fashion, trigger their proteolysis via the S26 proteasome. By stimulating NF-κB ubiquitination, COMMD1 dampens an inflammatory reaction. Finally, targeting COMMD1 function can be a novel approach in the treatment of tumors.  相似文献   

13.
Copper toxicosis in Bedlington terriers is an autosomal recessive disorder characterized by excessive hepatic copper accumulation in association with a marked decrease in biliary copper excretion. Recent genetic data have revealed that MURR1, a single copy gene on dog chromosome 10q26, is mutated in this disorder. This gene encodes a 190-amino acid open reading frame of unknown function that is highly conserved in vertebrate species. The Wilson disease protein is a copper transporting ATPase shown to play a critical role in biliary copper excretion. Here we demonstrate that the Wilson disease protein directly interacts with the human homologue of Murr1 in vitro and in vivo and that this interaction is mediated via the copper binding, amino terminus of this ATPase. Importantly, this interaction is specific for this copper transporter, a finding consistent with the observation that impaired copper homeostasis in affected terriers is confined to the liver. Our findings reveal involvement of Murr1 in the defined pathway of hepatic biliary copper excretion, suggest a potential mechanism for Murr1 function in this process, and provide biochemical evidence in support of the proposed role of the MURR1 gene in hepatic copper toxicosis.  相似文献   

14.
15.
The role of metallothionein (MT) was assessed in the copper-loading disease prevalent in Bedlington terriers. Fractionation of tissue supernatants over Sephadex G-75 showed that most of the additional cytosolic copper present in liver tissue of these dogs was bound to MT, and that substantially more MT-bound copper could be solubilized by detergent plus mercaptoethanol. Zinc contents were only slightly raised, although most of the extra zinc was associated with a 4000-Mr ligand. Ion-exchange chromatography revealed two isoproteins, MT1 and MT2, in all the dog liver samples examined. In Bedlington terrier liver, copper associated with both isoproteins was increased, although the increase for MT2 was greater than for MT1. The content of MT protein was also raised, although cell-free translations and RNA blots of total liver RNA showed that this increase was not associated with a rise in MT mRNA. The significance of these results to the mechanism of copper accumulation in the Bedlington terrier disorder is discussed.  相似文献   

16.
Positional cloning recently identified the mutation causing copper toxicosis (CT) in Bedlington terriers. Isolation of the MURR1 gene will be of great value in developing a reliable diagnostic test for the breeding of a copper toxicosis-free stock. It will replace the current diagnostic test using the CT-linked marker, C04107, which is located in intron 1 of the MURR1 gene with a distance of approximately 8 kb from the exon 2 deletion. Despite the short distance between C04107 and the CT mutation, possible recombinant dogs have been reported with C04107. Although these dogs have a normal phenotype, they carry the C04107 allele 2, which is associated with CT. To study the origin of this possible recombination event we collected a pedigree consisting of two unaffected American Bedlington terriers and their litter of four pups, which were all homozygous for the C04107 2,2 genotype. Mutation analysis showed that two dogs were heterozygous for the CT exon 2 deletion mutation, whereas four dogs were homozygous for the wild-type (WT) allele. Haplotype analysis was performed using two DNA markers in the MURR1 gene and four DNA markers flanking the gene and spanning a region of approximately 600 kb. Surprisingly, we identified a new haplotype (haplotype C) that contains allele 2 of marker C04107 in combination with the WT MURR1 allele. Analysis of the flanking markers suggests there are different genetic backgrounds in the Bedlington terrier population.  相似文献   

17.
X-linked inhibitor of apoptosis (XIAP), traditionally known as an anti-apoptotic protein, has recently been shown to be involved in copper homeostasis. XIAP promotes the ubiquitination and degradation of COMMD1, a protein that promotes the efflux of copper from the cell. Through its effects on COMMD1, XIAP can regulate copper export from the cell and potentially represents an additional intracellular sensor for copper levels. XIAP binds copper directly and undergoes a substantial conformational change in the copper-bound state. This in turn destabilizes XIAP, resulting in lowered steady-state levels of the protein. Furthermore, copper-bound XIAP is unable to inhibit caspases and cells that express this form of the protein exhibit increased rates of cell death in response to apoptotic stimuli. These events take place in the setting of excess intracellular copper accumulation as seen in copper toxicosis disorders such as Wilson's disease and establish a new relationship between copper levels and the regulation of cell death via XIAP. These findings raise important questions about the role of XIAP in the development of copper toxicosis disorders and may point to XIAP as a potential therapeutic target in these disease states.  相似文献   

18.
There are several known examples of mutations which influence copper homeostasis in humans and animals. Pleiotropic effects are observed when the mutant gene disturbs copper flux. In some cases, the mutation alters the level of a specific copper ligand (enzyme) and the clinical consequences are unique. The two most widely studied genetic maladies in humans are Menkes' and Wilson's diseases. Menkes' disease is an X-linked fatal disorder in which copper accumulates in some organs (intestine and kidney) and is low in others (liver and brain). Wilson's disease is an autosomal recessive disorder in which copper accumulates, if untreated, in liver and subsequently in brain and kidney. Pathophysiological consequences of copper deficiency and toxicity characterize these two disorders. Specific mutations of human cuproenzymes include overproduction of copper-zinc superoxide dismutase in Down's syndrome, absence of tyrosinase in albinism, hereditary mitochondrial myopathy due to reduction in cytochrome c oxidase, and altered lysyl oxidase in X-linked forms of cutis laxa and Ehlers-Danlos syndrome. Mutations altering copper metabolism are also known in animals. Several murine mutants have been studied. The most extensively investigated mutants are the mottled mice, in particular brindled mice, which have a mutation analogous to that of Menkes' disease. Another recently described murine mutation is toxic milk (tx) an autosomal recessive disorder that is characterized by copper accumulation in liver. Two other mutants, crinkled and quaking, were once thought to exhibit abnormal copper metabolism. Recent data has not confirmed this. A mutation in Bedlington terriers has been described which is very similar to Wilson's disease.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Copper toxicosis (CT), resulting in liver disease, occurs commonly in Bedlington terriers. Canine CT is of particular interest because identification of the causative gene may lead to the discovery of another important gene in the copper transport pathway possibly related to human copper diseases not yet identified. Homologs of the copper transporting ATPase ATP7B, defective in Wilson disease, and the copper chaperone ATOX1 were potential candidates, but both have been excluded. The CT locus in Bedlington terriers has been mapped to canine chromosome region CFA10q26, which has a syntenic human chromosome region, HAS2p13-21. The gene ATP6H, for human vacuolar proton-ATPase subunit M9.2, is associated with copper and iron transport in yeast and has been mapped to HAS2p21 and suggested as a candidate gene for CT. We cloned canine ATP6H, which encodes a predicted protein with 99% amino acid sequence identity to the orthologous human protein. Canine ATP6H shows a conserved potential metal binding site, CSVCC, and a glycosylation site, NET. The canine ATP6H is organized into four exons, with a 246-bp open reading frame. Sequence analysis of the coding regions showed no mutations in ATP6H from genomic DNA of an affected dog. We have also identified two, apparently non-transcribed canine ATP6H pseudogenes. Mapping of the true ATP6H gene and a marker closely linked to the CT locus on a canine radiation hybrid panel indicted lack of close physical association. We have therefore excluded canine ATP6H as a candidate gene for canine copper toxicosis, indicating that some other unidentified gene is responsible for this copper storage disease. Received: 8 February 2001 / Accepted: 12 April 2001  相似文献   

20.
Copper toxicosis of Bedlington Terriers (Chronic progressive hepatitis) is a genetically transmitted disease. The typical feature of this disease is accumulation of copper in the liver tissue. The changes vary from mild hepatitis to chronic progressive hepatitis and cirrhosis. The material of this study consists of 2 cases of copper toxicosis examined at the Department of Pathology in Helsinki in the years 1980–82. Moreover a re-examination of tissue samples was made of all Bedlington Terriers examined during the years 1969–1982 at the same department. Six of the 14 examined dogs showed a positive reaction for copper in their liver tissues. The possible relationship of the examined dogs is not yet known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号