首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The evolution of threespine sticklebacks in freshwater lakes constitutes a well‐studied example of a phenotypic radiation that has produced numerous instances of parallel evolution, but the exact selective agents that drive these changes are not yet fully understood. We present a comparative study across 74 freshwater populations of threespine stickleback in Norway to test whether evolutionary changes in stickleback morphology are consistent with adaptations to physical parameters such as lake depth, lake area, lake perimeter and shoreline complexity, variables thought to reflect different habitats and feeding niches. Only weak indications of adaptation were found. Instead, populations seem to have diversified in phenotypic directions consistent with allometric scaling relationships. This indicates that evolutionary constraints may have played a role in structuring phenotypic variation across freshwater populations of stickleback. We also tested whether the number of lateral plates evolved in response to lake calcium levels, but found no evidence for this hypothesis.  相似文献   

2.
We tested the hypothesis that increased telencephalon size has evolved in threespine stickleback fish (Gasterosteus aculeatus) from structurally complex habitats using field‐caught samples from one sea‐run (ancestral) and 18 ecologically diverse freshwater (descendant) populations. Freshwater habitats ranged from shallow, structurally complex lakes with benthic‐foraging stickleback (benthics), to deeper, structurally simple lakes in which stickleback depend more heavily on plankton for prey (generalists). Contrary to our expectations, benthics had smaller telencephala than generalists, but the shape of the telencephalon of the sea‐run and benthic populations were more convex laterally. Convex telencephalon shape may indicate enlargement of the dorsolateral region, which is homologous with the tetrapod hippocampus. Telencephalon morphology is also sexually dimorphic, with larger, less convex telencephala in males. Freshwater stickleback from structurally complex habitats have retained the ancestral telencephalon morphology, but populations that feed more in open habitats on plankton have evolved larger, laterally concave telencephala.  相似文献   

3.
To what extent are patterns of biological diversification determined by natural selection? We addressed this question by exploring divergence in foraging morphology of threespine stickleback fish inhabiting lake and stream habitats within eight independent watersheds. We found that lake fish generally displayed more developed gill structures and had more streamlined bodies than did stream fish. Diet analysis revealed that these morphological differences were associated with limnetic vs. benthic foraging modes, and that the extent of morphological divergence within watersheds reflected differences in prey resources utilized by lake and stream fish. We also found that patterns of divergence were unrelated to patterns of phenotypic trait (co)variance within populations (i.e. the ‘line of least resistance’). Instead, phenotypic (co)variances were more likely to have been shaped by adaptation to lake vs. stream habitats. Our study thus implicates natural selection as a strong deterministic force driving morphological diversification in lake–stream stickleback. The strength of this inference was obtained by complementing a standard analysis of parallel divergence in means between discrete habitat categories (lake vs. stream) with quantitative estimates of selective forces and information on trait (co)variances.  相似文献   

4.
The role of environment as a selective agent is well-established. Environment might also influence evolution by altering the expression of genetic variation associated with phenotypes under selection. Far less is known about this phenomenon, particularly its contribution to evolution in novel environments. We investigated how environment affected the evolvability of body size in the threespine stickleback (Gasterosteus aculeatus). Gasterosteus aculeatus is well suited to addressing this question due to the rapid evolution of smaller size in the numerous freshwater populations established following the colonization of new freshwater habitats by an oceanic ancestor. The repeated, rapid evolution of size following colonization contrasts with the general observation of low phenotypic variation in oceanic stickleback. We reared an oceanic population of stickleback under high and low salinity conditions, mimicking a key component of the ancestral environment, and freshwater colonization, respectively. There was low genetic variation for body size under high salinity, but this variance increased significantly when fish were reared under low salinity. We therefore conclude that oceanic populations harbor the standing genetic variation necessary for the evolution of body size, but that this variation only becomes available to selection upon colonization of a new habitat.  相似文献   

5.
Freshwater colonization by threespine stickleback has led to divergence in morphology between ancestral marine and derived freshwater populations, making them ideal for studying natural selection on phenotypes. In an open brackish–freshwater system, we previously discovered two genetically distinct stickleback populations that also differ in geometric shape: one mainly found in the brackish water lagoon and one throughout the freshwater system. As shape and size are not perfectly correlated, the aim of this study was to identify the morphological trait(s) that separated the populations in geometric shape. We measured 23 phenotypes likely to be important for foraging, swimming capacity, and defense against predation. The lateral plate morphs in freshwater displayed few significant changes in trait sizes, but the low plated expressed feeding traits more associated with benthic habitats. When comparing the completely plated genetically assigned populations, the freshwater, the hybrids, the migrants and the lagoon fish, many of the linear traits had different slopes and intercepts in trait‐size regressions, precluding our ability to directly compare all traits simultaneously, which most likely results from low variation in body length for the lagoon and migrant population. We found the lagoon stickleback population to be more specialized toward the littoral zone, displaying benthic traits such as large, deep bodies with smaller eyes compared to the freshwater completely plated morph. Further, the lagoon and migrant fish had an overall higher body coverage of lateral plates compared to freshwater fish, and the dorsal and pelvic spines were longer. Evolutionary constraints due to allometric scaling relationships could explain the observed, overall restricted, differences in morphology between the sticklebacks in this study, as most traits have diversified in common allometric trajectories. The observed differences in foraging and antipredation traits between the fish with a lagoon and freshwater genetic signature are likely a result of genetic or plastic adaptations toward brackish and freshwater environments.  相似文献   

6.
Convergent evolution, in which populations produce similar phenotypes in response to similar selection pressure, is strong evidence for the role of natural selection in shaping biological diversity. In some cases, closely related populations can produce functionally similar but phenotypically divergence forms in response to selection. Functional convergence with morphological divergence has been observed in laboratory selection experiments and computer simulations, but while potentially common, is rarely recognized in nature. Here, we present data from the North Pacific threespine stickleback radiation showing that ecologically and functionally similar, but morphologically divergent phenotypes rapidly evolved when an ancestral population colonized freshwater benthic habitats in parallel. In addition, we show that in this system, functional convergence substantially increases morphospace occupation relative to ancestral phenotypes, which suggests that convergent evolution may, paradoxically, be an important and previously underappreciated source of morphological diversity.  相似文献   

7.
Chromosomal fusions are hypothesized to facilitate adaptation to divergent environments, both by bringing together previously unlinked adaptive alleles and by creating regions of low recombination that facilitate the linkage of adaptive alleles; but, there is little empirical evidence to support this hypothesis. Here, we address this knowledge gap by studying threespine stickleback (Gasterosteus aculeatus), in which ancestral marine fish have repeatedly adapted to freshwater across the northern hemisphere. By comparing the threespine and ninespine stickleback (Pungitius pungitius) genomes to a de novo assembly of the fourspine stickleback (Apeltes quadracus) and an outgroup species, we find two chromosomal fusion events involving the same chromosomes have occurred independently in the threespine and ninespine stickleback lineages. On the fused chromosomes in threespine stickleback, we find an enrichment of quantitative trait loci underlying traits that contribute to marine versus freshwater adaptation. By comparing whole-genome sequences of freshwater and marine threespine stickleback populations, we also find an enrichment of regions under divergent selection on these two fused chromosomes. There is elevated genetic diversity within regions under selection in the freshwater population, consistent with a simulation study showing that gene flow can increase diversity in genomic regions associated with local adaptation and our demographic models showing gene flow between the marine and freshwater populations. Integrating our results with previous studies, we propose that these fusions created regions of low recombination that enabled the formation of adaptative clusters, thereby facilitating freshwater adaptation in the face of recurrent gene flow between marine and freshwater threespine sticklebacks.  相似文献   

8.
Predator-driven divergent selection may cause differentiation in defensive armor in threespine stickleback: (1) predatory fish and birds favor robust armor, whereas (2) predaceous aquatic insects favor armor reduction. Although (1) is well established, no direct experimental evidence exists for (2). I examined the phenotypic and genetic consequences of insect predation using F2 families from crosses between freshwater and marine stickleback populations. I measured selection on body size, and size-adjusted spine (dorsal and pelvic) and pelvic girdle length, by splitting juvenile F2 families between control and insect predation treatments, set in pond enclosures. I also examined the effect of insect predation on Ectodysplasin ( Eda ), a gene physically linked to quantitative trait loci for lateral plate number, spine length, and body shape. Insect predation resulted in: (1) significant selection for larger juvenile size, and shorter dorsal spine and pelvic girdle length, (2) higher mortality of individuals missing the pelvic girdle, and (3) selection in favor of the low armor Eda allele. Predatory insects favor less stickleback armor, likely contributing to the widespread reduction of armor in freshwater populations. Because size strongly influences mate choice, predator-driven divergent selection on size may play a substantial role in byproduct reproductive isolation and speciation in threespine stickleback.  相似文献   

9.
Life history divergence between populations inhabiting ecologically distinct habitats might be a potent source of reproductive isolation, but has received little attention in the context of speciation. We here test for life history divergence between threespine stickleback inhabiting Lake Constance (Central Europe) and multiple tributary streams. Otolith analysis shows that lake fish generally reproduce at two years of age, while their conspecifics in all streams have shifted to a primarily annual life cycle. This divergence is paralleled by a striking and consistent reduction in body size and fecundity in stream fish relative to lake fish. Stomach content analysis suggests that life history divergence might reflect a genetic or plastic response to pelagic versus benthic foraging modes in the lake and the streams. Microsatellite and mitochondrial markers further reveal that life history shifts in the different streams have occurred independently following the colonization by Lake Constance stickleback, and indicate the presence of strong barriers to gene flow across at least some of the lake-stream habitat transitions. Given that body size is known to strongly influence stickleback mating behavior, these barriers might well be related to life history divergence.  相似文献   

10.
近期引入到新环境中的种群给我们提供了一个推论种群过去微进化变化的难得的机会,而这些变化曾导致了种群在历史上对新栖息地拓殖的适应。自从1967年三刺鱼(GasterosteusaculeatusL.)被有意引入到不列颠哥伦比亚的Heisholt湖后,就隔离的淡水对其完全骨板化(CP)变体的相对适合度的影响已经做过多种多样的测定。CP变体的个体在早期的样本中比较常见(占20.3%-31.7%),而在现代的样本中比较稀少(占0%-5.0%)。后者样本中骨板弱化的变体占优势,这是绝大多数淡水种群的典型情形。我估测Heisholt湖的一个流域中三刺鱼体侧骨板数目从1974年到1997年的进化速率是-0.029海尔登,这比大多数对近期引入的或隔离的三刺鱼种群的现时进化的估测要低。最后,来自于Heisholt湖的CP个体比那些作为引入源溪流中的个体明显要小。总之,对应于已建群的自然淡水种群的文献资料,在引入种群中所观察到的个体大小和体侧骨板数目的变化,意味着三刺鱼对与淡水环境中生活相关的多种挑战的适应可以快速发生。  相似文献   

11.
Examples of parallel evolution of phenotypic traits have been repeatedly demonstrated in threespine sticklebacks (Gasterosteus aculeatus) across their global distribution. Using these as a model, we performed a targeted genome scan--focusing on physiologically important genes potentially related to freshwater adaptation--to identify genetic signatures of parallel physiological evolution on a global scale. To this end, 50 microsatellite loci, including 26 loci within or close to (<6 kb) physiologically important genes, were screened in paired marine and freshwater populations from six locations across the Northern Hemisphere. Signatures of directional selection were detected in 24 loci, including 17 physiologically important genes, in at least one location. Although no loci showed consistent signatures of selection in all divergent population pairs, several outliers were common in multiple locations. In particular, seven physiologically important genes, as well as reference ectodysplasin gene (EDA), showed signatures of selection in three or more locations. Hence, although these results give some evidence for consistent parallel molecular evolution in response to freshwater colonization, they suggest that different evolutionary pathways may underlie physiological adaptation to freshwater habitats within the global distribution of the threespine stickleback.  相似文献   

12.
Synopsis Within freshwater fishes, a common pattern of diversification of body form and trophic structure has recently been recognized. Two different suites of co-occurring characters appear to allow fish to efficiently forage on either benthic invertebrates or plankton. For threespine stickleback,Gasterosteus aculeatus, these suites of characters have been labeled benthic and limnetic. The forms differ in several morpholoical traits, with the limnetic having a more fusiform shape, larger eyes, longer and more numerous gill rakers, and a smaller more tubular mouth. Benthic and limnetic threespine stickleback are usually found in allopatry or parapatry, and less frequently in sympatry. Within the range of the threespine stickleback, which comprises perhaps tens of thousands of lacustrine populations, the sympatric occurrence of the benthic and limnetic forms has only been established for six lakes within a small region of the Strait of Georgia, British Columbia. We present the first evidence for the presence of sympatric morphotypes of threespine stickleback outside of British Columbia. We examine the nature and extent of this diversification, and present possible explanations for the sympatric occurrence of these morphotypes. We also explore possible reasons for the small number of documented sympatric benthic and limnetic forms of threespine stickleback despite the existence of thousands of apparently suitable lakes.  相似文献   

13.
Ingram T  Stutz WE  Bolnick DI 《PloS one》2011,6(6):e20782
It has long been known that intraspecific variation impacts evolutionary processes, but only recently have its potential ecological effects received much attention. Theoretical models predict that genetic or phenotypic variance within species can alter interspecific interactions, and experiments have shown that genotypic diversity in clonal species can impact a wide range of ecological processes. To extend these studies to quantitative trait variation within populations, we experimentally manipulated the variance in body size of threespine stickleback in enclosures in a natural lake environment. We found that body size of stickleback in the lake is correlated with prey size and (to a lesser extent) composition, and that stickleback can exert top-down control on their benthic prey in enclosures. However, a six-fold contrast in body size variance had no effect on the degree of diet variation among individuals, or on the abundance or composition of benthic or pelagic prey. Interestingly, post-hoc analyses revealed suggestive correlations between the degree of diet variation and the strength of top-down control by stickleback. Our negative results indicate that, unless the correlation between morphology and diet is very strong, ecological variation among individuals may be largely decoupled from morphological variance. Consequently we should be cautious in our interpretation both of theoretical models that assume perfect correlations between morphology and diet, and of empirical studies that use morphological variation as a proxy for resource use diversity.  相似文献   

14.
Little is known about the genetic and molecular mechanisms that underlie adaptive phenotypic variation in natural populations or whether similar genetic and molecular mechanisms are utilized when similar adaptive phenotypes arise in independent populations. The threespine stickleback (Gasterosteus aculeatus) is a good model system to investigate these questions because these fish display a large amount of adaptive phenotypic variation, and similar adaptive phenotypes have arisen in multiple, independent stickleback populations. A particularly striking pattern of parallel evolution in sticklebacks is reduction of skeletal armor, which has occurred in numerous freshwater locations around the world. New genetic and genomic tools for the threespine stickleback have made it possible to identify genes that underlie loss of different elements of the skeletal armor. Previous work has shown that regulatory mutations at the Pitx1 locus are likely responsible for loss of the pelvic structures in independent stickleback populations from North America and Iceland. Here we show that the Pitx1 locus is also likely to underlie pelvic reduction in a Scottish population of threespine stickleback, which has apparently evolved pelvic reduction under a different selection regime than the North American populations.  相似文献   

15.
Population genomic studies are beginning to provide a more comprehensive view of dynamic genome-scale processes in evolution. Patterns of genomic architecture, such as genomic islands of increased divergence, may be important for adaptive population differentiation and speciation. We used next-generation sequencing data to examine the patterns of local and long-distance linkage disequilibrium (LD) across oceanic and freshwater populations of threespine stickleback, a useful model for studies of evolution and speciation. We looked for associations between LD and signatures of divergent selection, and assessed the role of recombination rate variation in generating LD patterns. As predicted under the traditional biogeographic model of unidirectional gene flow from ancestral oceanic to derived freshwater stickleback populations, we found extensive local and long-distance LD in fresh water. Surprisingly, oceanic populations showed similar patterns of elevated LD, notably between large genomic regions previously implicated in adaptation to fresh water. These results support an alternative biogeographic model for the stickleback radiation, one of a metapopulation with appreciable bi-directional gene flow combined with strong divergent selection between oceanic and freshwater populations. As predicted by theory, these processes can maintain LD within and among genomic islands of divergence. These findings suggest that the genomic architecture in oceanic stickleback populations may provide a mechanism for the rapid re-assembly and evolution of multi-locus genotypes in newly colonized freshwater habitats, and may help explain genetic mapping of parallel phenotypic variation to similar loci across independent freshwater populations.  相似文献   

16.
Intraguild predation--competition and predation by the same antagonist--is widespread, but its evolutionary consequences are unknown. Intraguild prey may evolve antipredator defenses, superior competitive ability on shared resources, or the ability to use an alternative resource, any of which may alter the structure of the food web. We tested for evolutionary responses by threespine stickleback to a benthic intraguild predator, prickly sculpin. We used a comparative morphometric analysis to show that stickleback sympatric with sculpin are more armored and have more limnetic-like body shapes than allopatric stickleback. To test the ecological implications of this shift, we conducted a mesocosm experiment that varied sculpin presence and stickleback population of origin (from one sympatric and one allopatric lake). Predation by sculpin greatly increased the mortality of allopatric stickleback. In contrast, sculpin presence did not affect the mortality of sympatric stickleback, although they did have lower growth rates suggesting increased nonpredatory effects of sculpin. Consistent with their morphology, sympatric stickleback included more pelagic prey in their diets, leading to depletion of zooplankton in the mesocosms. These findings suggest that intraguild prey evolution has altered food web structure by reducing both predation by the intraguild predator and diet overlap between species.  相似文献   

17.
Hybridization following secondary contact of genetically divergent populations can influence the range expansion of invasive species, though specific outcomes depend on the environmental dependence of hybrid fitness. Here, using two genetically and ecologically divergent threespine stickleback lineages that differ in their history of freshwater colonization, we estimate fitness variation of parental lineages and hybrids in semi-natural freshwater ponds with contrasting histories of nutrient loading. In our experiment, we found that fish from the older freshwater lineage (Lake Geneva) and hybrids outperformed fish from the younger freshwater lineage (Lake Constance) in terms of both growth and survival, regardless of the environmental context of our ponds. Across all ponds, hybrids exhibited the highest survival. Although wild-caught adult populations differed in their functional and defence morphology, it is unclear which of these traits underlie the fitness differences observed among juveniles in our experiment. Overall, our work suggests that when hybrid fitness is insensitive to environmental conditions, as observed here, introgression may promote population expansion into unoccupied habitats and accelerate invasion success.  相似文献   

18.
Parasites can strongly affect the evolution of their hosts, but their effects on host diversification are less clear. In theory, contrasting parasite communities in different foraging habitats could generate divergent selection on hosts and promote ecological speciation. Immune systems are costly to maintain, adaptable, and an important component of individual fitness. As a result, immune system genes, such as those of the Major Histocompatability Complex (MHC), can change rapidly in response to parasite-mediated selection. In threespine stickleback (Gasterosteus aculeatus), as well as in other vertebrates, MHC genes have been linked with female mating preference, suggesting that divergent selection acting on MHC genes might influence speciation. Here, we examined genetic variation at MHC Class II loci of sticklebacks from two lakes with a limnetic and benthic species pair, and two lakes with a single species. In both lakes with species pairs, limnetics and benthics differed in their composition of MHC alleles, and limnetics had fewer MHC alleles per individual than benthics. Similar to the limnetics, the allopatric population with a pelagic phenotype had few MHC alleles per individual, suggesting a correlation between MHC genotype and foraging habitat. Using a simulation model we show that the diversity and composition of MHC alleles in a sympatric species pair depends on the amount of assortative mating and on the strength of parasite-mediated selection in adjacent foraging habitats. Our results indicate parallel divergence in the number of MHC alleles between sympatric stickleback species, possibly resulting from the contrasting parasite communities in littoral and pelagic habitats of lakes.  相似文献   

19.
Phylogenetic hierarchies are often composed of younger diverging lineages nested within older diverging lineages. Comparing phenotypic variation among several hierarchical levels can be used to test hypotheses about selection, phenotypic evolution and speciation. Such hierarchical comparisons have only been performed in threespine stickleback, and so here we use a hierarchical pattern of divergences between near-shore littoral and off-shore pelagic habitats to test for selection on the evolution of body form in Lepomis sunfish in lakes. We compare variation in external body form between fish from littoral and pelagic habitats at three levels: among ecomorphs within individual lake populations (intrapopulation), among populations of the same species in different lakes (interpopulation), and between bluegill and pumpkinseed sunfish species (interspecifically). Using geometric morphometric methods, we first demonstrate that interpopulation variation in mean body form of pumpkinseed sunfish varies with the presence of pelagic habitat. We then incorporate these results with existing data in order to test the similarity of phenotypic divergence between littoral and pelagic habitats at different hierarchical levels. Parallel relationships between certain body form traits (head length, caudal length and pectoral length) and habitat occur at all three levels suggesting that selection persistently acts at all levels to diversify these traits and so may contribute to species formation. For other traits (caudal depth and pectoral altitude), divergence between habitats is inconsistent at different hierarchical levels. Thus, nested biological variation in Lepomid body form reflects a history of deterministic selection and historical contingency, and also identifies traits that likely have likely influenced fitness and so serve important functions.  相似文献   

20.
Subtle differences in the pattern of arrangement of types of vertebrae and associated median skeletal structures between a benthic and limnetic species pair of threespine stickleback from Paxton Lake, British Columbia, are typical of those found throughout the range of the Gasterosteus aculeatus species complex. We established laboratory colonies from just three individuals of each species, and studied the effect of three generations of inbreeding on axial morphology. There was sufficient divergence in the location of individual elements between families to regenerate close to the entire range of axial diversity seen in threespine sticklebacks worldwide. Analysis of the patterns of variance and covariance between the axial locations of elements provides evidence for the action of both meristic and homeotic processes in the generation of morphological divergence within each species. Hybrid sticklebacks produced by the cross of limnetic and benthic parents tend to have intermediate morphologies, with dominance of either parental type evident for some elements. Effects of temperature and salinity were found to be small in direct comparison with between-family effects, and varied according to genetic background. These results demonstrate that considerable genetic variation for axial morphology is maintained in natural populations of threespine stickleback, and that differences between populations may be brought about rapidly by changes in frequency of alleles that have coordinated effects along the body axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号