首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Adenine methylation in zein genes   总被引:1,自引:0,他引:1  
This paper reports the novel finding of adenine methylation in higher plants. Comparison of restriction patterns of genomic maize DNA digested with enzymes MboI and Sau3A enabled us to detect the existence of adenine methylation in zein genes. Adenine methylation within or around zein genes turned out to be similar in endosperm (where zeins are actively synthesized) and in seedling tissue (where zein genes are not expressed). Furthermore, adenine methylation patterns were found to be similar both in wild-type and opaque-2 mutant plants. These lines of evidence suggest that adenine methylation is unrelated to the regulation of gene expression.  相似文献   

4.
We report that the maternal folate status can influence folate-mediated one-carbon metabolism and DNA methylation in the placenta. Thirty-six female Sprague-Dawley rats were divided into the following three dietary groups: folate-supplemented (FS; 8 mg/kg folic acid, n=12), homocystine- and folate-supplemented (HFS; 0.3% homocystine and 8 mg/kg folic acid, n=12) and homocystine-supplemented and folate-deficient (HFD; 0.3% homocystine and no folic acid, n=12). The animals were fed their experimental diets from 4 weeks prior to mating until Day 20 of pregnancy (n=7-9 per group). The HFS diet increased the plasma homocysteine and placental DNA methylation but did not affect plasma folate, vitamin B-12, S-adenosyl methionine (SAM) or S-adenosyl homocysteine (SAH) levels, or the SAM/SAH ratio in the liver and placenta compared with the FS diet. The HFD diet induced severely low plasma folate concentrations, with plasma homocysteine levels increasing up to 100 micromol/L, and increased hepatic SAH and decreased placental SAM levels and SAM/SAH ratio in both tissues, with a concomitant decrease in placental DNA methylation. Placental DNA methylation was significantly correlated with placental (gamma=0.819), hepatic (gamma=0.7) and plasma (gamma=0.752) folate levels; plasma homocysteine level (gamma=-0.688); hepatic SAH level (gamma=-0.662) and hepatic SAM/SAH ratio (gamma=0.494). These results suggest that the maternal folate status in hyperhomocysteinemic rats influences the homeostasis of folate-mediated one-carbon metabolism and the methyl pool, which would, in turn, affect placental DNA methylation by altering the methylation potential of the liver.  相似文献   

5.
Two distinct genotypes that result in the amino acid substitutions R218P and R218H in subdomain 2A of human serum albumin (HSA) have been identified as the cause of familial dysalbuminemic hyperthyroxinemia (FDH). These substitutions increase the affinity of subdomain 2A for thyroxine by approximately 10-fold elevating plasma thyroxine levels in affected individuals. While many studies have examined the binding of thyroxine to FDH HSA, the binding of FDH HSA to drugs has not been widely investigated. The widely administered drug warfarin was selected as a model compound to study FDH HSA/drug interactions since it binds to subdomain 2A and its pharmacokinetics are dramatically influenced by HSA binding. Using two independent methods, fluorescence spectroscopy and equilibrium dialysis with radioactive warfarin, the binding of recombinant R218P, R218H, R218M and wild type HSA to warfarin was measured. Both methods showed an approximately 5-fold decrease in the affinity of R218P, R218H and R218M HSA for warfarin relative to wild type HSA. The Kd values determined by fluorescence spectroscopy for wild type, R218H, R218P and R218M HSA binding to warfarin were 1.35, 5.38, 5.61, and 8.34 microM, respectively. The values determined by equilibrium dialysis were 5.36, 29.5, 14.5, and 23.4 microM, respectively. Based on the above findings one would expect the free serum warfarin concentration in homozygous R218P and R218H FDH patients to be elevated about 5-fold, resulting in about a 5-fold reduction in the serum half-life of the drug.  相似文献   

6.
Hamid A  Wani NA  Rana S  Vaiphei K  Mahmood A  Kaur J 《The FEBS journal》2007,274(24):6317-6328
Folate plays a critical role in maintaining normal metabolic, energy, differentiation and growth status of all mammalian cells. The intestinal folate uptake is tightly and diversely regulated, and disturbances in folate homeostasis are observed in alcoholism, attributable, in part, to intestinal malabsorption of folate. The aim of this study was to delineate the regulatory mechanisms of folate transport in intestinal absorptive epithelia in order to obtain insights into folate malabsorption in a rat model of alcoholism. The rats were fed 1 g.kg(-1) body weight of ethanol daily for 3 months. A reduced uptake of [(3)H]folic acid in intestinal brush border membrane was observed over the course of ethanol administration for 3 months. Folate transport exhibited saturable kinetics and the decreased intestinal brush border membrane folate transport in chronic alcoholism was associated with an increased K(m) value and a low V(max) value. Importantly, the lower intestinal [(3)H]folic acid uptake in ethanol-fed rats was observed in all cell fractions corresponding to villus tip, mid-villus and crypt base. RT-PCR analysis for reduced folate carrier, the major folate transporter, revealed that reduced folate carrier mRNA levels were decreased in jejunal tissue derived from ethanol-fed rats. Parallel changes were observed in reduced folate carrier protein levels in brush border membrane along the entire crypt-villus axis. In addition, immunohistochemical staining for reduced folate carrier protein showed that, in alcoholic conditions, deranged reduced folate carrier localization was observed along the entire crypt-villus axis, with a more prominent effect in differentiating crypt base stem cells. These changes in functional activity of the membrane transport system were not caused by a general loss of intestinal architecture, and hence can be attributed to the specific effect of ethanol ingestion on the folate transport system. The low folate uptake activity observed in ethanol-fed rats was found to be associated with decreased serum and red blood cell folate levels, which might explain the observed jejunal genomic hypomethylation. These findings offer possible mechanistic insights into folate malabsorption during alcoholism.  相似文献   

7.
8.
Osteosarcomas are common primary malignant bone tumors that do not respond to conventional low-dose treatments of methotrexate (Mtx), suggesting an intrinsic resistance to this drug. Previous work has shown that cDNAs generated from osteosarcoma mRNA from a fraction of patients contain sequence changes in the reduced folate carrier (RFC), the membrane protein transporter for Mtx. In this study, the functionality of the altered RFC proteins was assessed by fusing the green fluorescent protein (GFP) to the C-terminal, and examining the ability of the transfected constructs to complement a hamster cell line null for the carrier. Confocal microscopy and cell surface biotinylation indicated that all altered proteins were properly localized at the cell membrane. Only one of those examined, Leu291Pro, was unable to complement the null carrier line, but did bind Mtx at the cell surface. Thus, this alteration confers drug resistance since the carrier is unable to translocate the substrate across the cell membrane. Three alterations, Ser46Asn, Ser4Pro and Gly259Trp, while able to complement the carrier null line, conferred some degree of resistance to Mtx via a decreased rate of transport (Vmax). Another set of alterations, Glu21Lys, Ala7Val, and the combined changes Thr222Ile, Met254Thr, complemented the carrier null line and did not confer resistance to Mtx. Thus, some, but not all of these identified alterations in the RFC may contribute to the lack of responsiveness of osteosarcomas to Mtx treatment.  相似文献   

9.
The eucaryotic protein carboxyl methyltransferase specifically modifies atypical D-aspartyl and L-isoaspartyl residues which are generated spontaneously as proteins age. The selectivity of the enzyme for altered proteins in intact cells was explored by co-injecting Xenopus laevis oocytes with S-adenosyl-L-[methyl-3H]methionine and structurally altered calmodulins generated during a 14-day preincubation in vitro. Control experiments indicated that the oocyte protein carboxyl methyltransferase was not saturated with endogenous substrates, since protein carboxyl methylation rates could be stimulated up to 8-fold by increasing concentrations of injected calmodulin. The oocyte protein carboxyl methyltransferase showed strong selectivities for bovine brain and bacterially synthesized calmodulins which had been preincubated in the presence of 1 mM EDTA relative to calmodulins which had been preincubated with 1 mM CaCl2. Radioactive methyl groups were incorporated into base-stable linkages with recombinant calmodulin as well as into carboxyl methyl esters following its microinjection into oocytes. This base-stable radioactivity most likely represents the trimethylation of lysine 115, a highly conserved post-translational modification which is present in bovine and Xenopus but not in bacterially synthesized calmodulin. Endogenous oocyte calmodulin incorporates radioactivity into both carboxyl methyl esters and into base-stable linkages following microinjection of oocytes with S-adenosyl-[methyl-3H]methionine alone. The rate of oocyte calmodulin carboxyl methylation in injected oocytes is calculated to be similar to that of lysine 115 trimethylation, suggesting that the rate of calmodulin carboxyl methylation is similar to that of calmodulin synthesis. At steady state, oocyte calmodulin contains approximately 0.0002 esters/mol of protein, which turn over rapidly. The results suggest the quantitative significance of carboxyl methylation in the metabolism of oocyte calmodulin.  相似文献   

10.
In a previous study we demonstrated the ability of dopamine (DA) to stimulate phospholipid methylation (PLM) via a novel mechanism involving the D4 dopamine receptor (D4R) in which single-carbon folates appeared to be the primary source of methyl groups. To further understand the relationship between D4R-mediated PLM and folate metabolism, we examined the effect of several folate pathway interventions on the level of basal and DA-stimulated incorporation of [14C]-labeled formate into phospholipids in cultured SH-SY5Y neuroblastoma cells. These interventions included: (i) Overexpression of methenyltetrahydrofolate synthetase (MTHFS). (ii) Treatment with 5-formylTHF. (iii) Treatment with the MTHFS inhibitor 5-formyltetrahydrohomofolic acid (5-formylTHHF). (iv) Growth in nucleoside-free media. 31P-NMR was also used to follow DA-induced changes in cell phospholipid composition. MTHFS overexpression and 5-formylTHHF treatment, both of which lower 5-methylTHF levels, each reduced basal PLM and its stimulation by DA. In contrast, 5-formylTHF, which increases 5-methylTHF, caused a dose-dependent increase in both basal and DA-stimulated PLM. Growth in nucleoside-free media caused time-dependent changes in PLM, which were due to the absence of purine nucleosides. While basal PLM was maintained at a reduced level, DA-stimulated PLM was initially increased followed by a later decrease. Together, these findings indicate a close functional relationship between single-carbon folate metabolism and DA-stimulated PLM, consistent with a role for 5-methylTHF as the methyl donor for the D4R-mediated process.  相似文献   

11.
12.
Summary A 14 kb DNA fragment from the Sym plasmid of the Rhizobium trifolii strain ANU843, known to carry common nodulation nod and host specific nodulation hsn genes, was extensively mutagenised with transposon Tn5. A correlation between the site of Tn5 insertion and the induced nodulation defect led to the identification of three specific regions (designated I, II, III) which affected nodulation ability. Twenty-three Tn5 insertions into region I (ca. 3.5 kb) affected normal root hair curling ability and abolished infection thread formation. The resulting mutants were unable to nodulate all tested plant species. Tn5 insertions in regions II and III resulted in mutants which showed an exaggerated root hair curling (Hac++) response on clover plants. Ten region II mutants which occurred over a 1.1 kb area showed a greatly reduced nodulation ability on clovers and produced aborted, truncated infection threads. Tn5 insertions into region III (ca. 1.5 kb) altered the outcome of crucial early plant recognition and infection steps by R. trifolii. Seven region III mutants displayed host-range properties which differed from the original parent strain. Region III mutants were able to induce marked root hair distortions, infection threads, and nodules on Pisum sativum including the recalcitrant Afghanistan variety. In addition region III mutants showed a poor nodulation ability on Trifolium repens even though the ability to induce infection threads was retained on this host. The altered host-range properties of region III mutants could only be revealed by mutation and the mutant phenotype was shown to be recessive.  相似文献   

13.
Epigenetic modifications, especially alteration in DNA methylation, are increasingly being recognized as a key factor in the pathogenesis of complex disorders, including atherosclerosis. However, there are limited data on the epigenetic changes in the coronary artery disease (CAD) patients. In the present study we evaluated the methylation status of genomic DNA from peripheral lymphocytes in a cohort of 287 individuals: 137 angiographically confirmed CAD patients and 150 controls. The differential susceptibility of genomic DNA to methylation-sensitive restriction enzymes was utilized to assess the methylation status of the genome. We observed that the genomic DNA methylation in CAD patients is significantly higher than in controls (p < 0.05). Since elevated homocysteine levels are known to be an independent risk factor for CAD and a key modulator of macromolecular methylation, we investigated the probable correlation between plasma homocysteine levels and global DNA methylation. We observed a significant positive correlation of global DNA methylation with plasma homocysteine levels in CAD patients (p = 0.001). Further, within a higher range of serum homocysteine levels (>/=12-50 muM), global DNA methylation was significantly higher in CAD patients than in controls. The alteration in genomic DNA methylation associated with cardiovascular disease per se appears to be further accentuated by higher homocysteine levels.  相似文献   

14.
We studied the effect of chronic ethanol ingestion on folate transport across the colonic apical membranes (CAM) in rats. Male Wistar rats were fed 1 g/kg body weight/day ethanol (20%) solution orally for 3 months and folate transport was studied in the isolated colon apical membrane vesicles. The folate transport was found to be carrier mediated, saturable, with pH optima at 5.0. Chronic ethanol ingestion reduced the folate transport across the CAM by decreasing the affinity of transporters (high Km) for the substrate and by decreasing the number of transporter molecules (low Vmax) on the colon luminal surface. The decreased transport activity at the CAM was associated with down‐regulation of the proton‐coupled folate transporter (PCFT) and the reduced folate carrier (RFC) which resulted in decreased PCFT and RFC protein levels in the colon of rats fed alcohol chronically. Moreover, the PCFT and the RFC were found to be distributed in detergent insoluble fraction of the CAM in rats. Floatation experiments on Optiprep density gradients demonstrated the association of the PCFT and the RFC protein with lipid rafts (LR). Chronic alcoholism decreased the PCFT and the RFC protein levels in the CAM LR in accordance with the decreased synthesis. Hence, we propose that downregulation in the expression of the PCFT and the RFC in colon results in reduced levels of these transporters in colon apical membrane LR as a mechanism of folate malabsorption during chronic alcoholism. J. Cell. Physiol. 226: 579–587, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
16.
Preferential methylation of regulatory genes in HeLa cells   总被引:1,自引:0,他引:1  
P Volpe  T Eremenko 《FEBS letters》1974,44(2):121-126
  相似文献   

17.
The altered DNA methylation pattern and its implications in liver cancer   总被引:11,自引:0,他引:11  
De Zhu J 《Cell research》2005,15(4):272-280
  相似文献   

18.
Intestinal transport of [3H]folate was studied using everted sacs of rat jejunum. The proximal small intestine transports folate against a concentration gradient by a system which is saturable, pH-dependent, energy-dependent, sodium-dependent, sensitive to temperature, and appears to be a common transport system for folate' compounds. Chromatographic analysis of folate compounds in the serosal compartment after a 60 min incubation with folate in the mucosal medium in sodium phosohate buffer indicated that metabolism of folate to 5-methyltetrahydrofolate was extensive at pH 6.0 and negligible at pH 7.5. The percent conversion of folate to 5-methyltetrahydrofolate at pH 6.0 was reduced by increasing the concentration of folate in the mucosal medium, thus indicating saturation of the reduction and methylation process. These findings indicate that folate transport in rat jejunum occurs by an energy-dependent, carried-mediated system and that both folate transport and intestinal conversion of folate to 5-methyltetrahydrofolate are pH-dependent.  相似文献   

19.
MicroRNA mediates DNA methylation of target genes   总被引:1,自引:0,他引:1  
Small RNAs represented by microRNA (miRNA) plays important roles in plant development and responds to biotic and abiotic stresses. Previous studies have placed special emphasis on gene-repression mediated by miRNA. In this work, the DNA methylation pattern of microRNA genes (MIRs) was interrogated. Full-length cDNA and EST were used to confirm the entity of pri-miRNA. In parallel, miRNA in 24 nucleotides (nt) was pooled to detect chromatin modification effect by using bisulfite sequencing data. 97 MIRs were supported by full-length cDNA and 30 more were hit by EST. Notably, methylation levels of conserved MIRs were significantly lower than the non-conserved at all contexts (CG, CHG, and CHH). Additionally, a substantial part of 24-nt miRNA was able to induce target site methylation, providing a broader perspective for researchers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号