首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cattani MV  Presgraves DC 《Genetics》2012,191(2):549-559
The Dobzhansky-Muller model posits that postzygotic reproductive isolation results from the evolution of incompatible epistatic interactions between species: alleles that function in the genetic background of one species can cause sterility or lethality in the genetic background of another species. Progress in identifying and characterizing factors involved in postzygotic isolation in Drosophila has remained slow, mainly because Drosophila melanogaster, with all of its genetic tools, forms dead or sterile hybrids when crossed to its sister species, D. simulans, D. sechellia, and D. mauritiana. To circumvent this problem, we used chromosome deletions and duplications from D. melanogaster to map two hybrid incompatibility loci in F(1) hybrids with its sister species. We mapped a recessive factor to the pericentromeric heterochromatin of the X chromosome in D. simulans and D. mauritiana, which we call heterochromatin hybrid lethal (hhl), which causes lethality in F(1) hybrid females with D. melanogaster. As F(1) hybrid males hemizygous for a D. mauritiana (or D. simulans) X chromosome are viable, the lethality of deficiency hybrid females implies that a dominant incompatible partner locus exists on the D. melanogaster X. Using small segments of the D. melanogaster X chromosome duplicated onto the Y chromosome, we mapped a dominant factor that causes hybrid lethality to a small 24-gene region of the D. melanogaster X. We provide evidence suggesting that it interacts with hhl(mau). The location of hhl is consistent with the emerging theme that hybrid incompatibilities in Drosophila involve heterochromatic regions and factors that interact with the heterochromatin.  相似文献   

2.
    
Reproductive isolation can rise either as a consequence of genomic divergence in allopatry or as a byproduct of divergent selection in parapatry. To determine whether reproductive isolation in gynodioecious Silene nutans results from allopatric divergence or from ecological adaptation following secondary contact, we investigated the pattern of postzygotic reproductive isolation and hybridization in natural populations using two phylogeographic lineages, western (W1) and eastern (E1). Experimental crosses between the lineages identified strong, asymmetric postzygotic isolation between the W1 and the E1 lineages, independent of geographic overlap. The proportion of ovules fertilized, seeds aborted, and seeds germinated revealed relatively little effect on the fitness of hybrids. In contrast, hybrid mortality was high and asymmetric: while half of the hybrid seedlings with western lineage mothers died, nearly all hybrid seedlings with E1 mothers died. This asymmetric mortality mirrored the proportion of chlorotic seedlings, and is congruent with cytonuclear incompatibility. We found no evidence of hybridization between the lineages in regions of co‐occurrence using nuclear and plastid markers. Together, our results are consistent with the hypothesis that strong postzygotic reproductive isolation involving cytonuclear incompatibilities arose in allopatry. We argue that the dynamics of cytonuclear gynodioecy could facilitate the evolution of reproductive isolation.  相似文献   

3.
    
Multilocus interactions (also known as Dobzhansky-Muller incompatibilities) are thought to be the major source of hybrid inviability and sterility. Because cytoplasmic and nuclear genomes have conflicting evolutionary interests and are often highly coevolved, cytonuclear incompatibilities may be among the first to develop in incipient species. Here, we report the discovery of cytoplasm-dependent anther sterility in hybrids between closely related Mimulus species, outcrossing M. guttatus and selfing M. nasutus. A novel pollenless anther phenotype was observed in F2 hybrids with the M. guttatus cytoplasm (F2G) but not in the reciprocal F2N hybrids, F1 hybrids or parental genotypes. The pattern of phenotypic segregation in the F2G hybrids and two backcross populations fit a Mendelian single-locus recessive model, allowing us to map the underlying nuclear locus to a small region on LG7 of the Mimulus linkage map. Anther sterility was associated with a 20% reduction in flower size in backcross hybrids and we mapped a major cytoplasm-dependent corolla width QTL with its peak at the anther sterility locus. We argue that the cytonuclear anther sterility seen in hybrids reflects the presence of a cryptic cytoplasmic male sterility (CMS) and restorer system within the hermaphroditic M. guttatus population and therefore name the anther sterility locus restorer-of-male-fertility (RMF). The genetic mapping of RMF is a first step toward testing hypotheses about the molecular basis, individual fitness consequences, and ecological context of CMS and restoration in a system without stable CMS-restorer polymorphism (i.e., gynodioecy). The discovery of cryptic CMS in a hermaphroditic wildflower further suggests that selfish cytoplasmic evolution may play an important, but often undetected, role in shaping patterns of hybrid incompatibility and interspecific introgression in plants.  相似文献   

4.
    
Abstract Both chromosomal rearrangements and negative interactions among loci (Dobzhansky‐Muller incompatibilities) have been advanced as the genetic mechanism underlying the sterility of interspecific hybrids. These alternatives invoke very different evolutionary histories during speciation and also predict different patterns of sterility in artificial hybrids. Chromosomal rearrangements require drift, inbreeding, or other special conditions for initial fixation and, because heterozygosity per se generates any problems with gamete formation, F1 hybrids will be most infertile. In contrast, Dobzhansky‐Muller incompatibilities may arise as byproducts of adaptive evolution and often affect the segregating F2 generation most severely. To distinguish the effects of these two mechanisms early in divergence, we investigated the quantitative genetics of hybrid sterility in a line cross between two members of the Mimulus guttatus species complex (M. guttatus and M. nasutus). Hybrids showed partial male and female sterility, and the patterns of infertility were not consistent with the action of chromosomal rearrangements alone. F2 and F1 hybrids exhibited equal decreases in pollen viability (> 40%) relative to the highly fertile parental lines. A large excess of completely pollen‐sterile F2 genotypes also pointed to the segregation of Dobzhansky‐Muller incompatibility factors affecting male fertility. Female fertility showed a pattern similarly consistent with epistatic interactions: F2 hybrids produced far fewer seeds per flower than F1 hybrids (88.0 ± 2.8 vs. 162.9 ± 8.5 SE, respectively) and either parental line, and many F2 genotypes were completely female sterile. Dobzhansky‐Muller interactions also resulted in the breakdown of several nonreproductive characters and appear to contribute to correlations between male and female fertility in the F2 generation. These results parallel and contrast with the genetics of postzygotic isolation in model animal systems and are a first step toward understanding the process of speciation in this well‐studied group of flowering plants.  相似文献   

5.
    
How species evolve reproductive isolation in the species-rich Amazon basin is poorly understood in vertebrates. Here, we sequenced a reference genome and used a genome-wide sample of SNPs to analyze a hybrid zone between two highly cryptic species of Hypocnemis warbling-antbirds—the Rondonia warbling-antbird (H. ochrogyna) and Spix's warbling-antbird (H. striata)—in a headwater region of southern Amazonia. We found that both species commonly hybridize, producing F1s and a variety of backcrosses with each species but we detected only one F2-like hybrid. Patterns of heterozygosity, hybrid index, and interchromosomal linkage disequilibrium in hybrid populations closely match expectations under strong postzygotic isolation. Hybrid zone width (15.4 km) was much narrower than expected (211 km) indicating strong selection against hybrids. A remarkably high degree of concordance in cline centers and widths across loci, and a lack of reduced interspecific Fst between populations close to versus far from the contact zone, suggest that genetic incompatibilities have rendered most of the genome immune to introgression. These results support intrinsic postzygotic isolation as a driver of speciation in a moderately young cryptic species pair from the Amazon and suggest that species richness of the Amazon may be grossly underestimated.  相似文献   

6.
    
Postmating reproductive isolation can help maintain species boundaries when premating barriers to reproduction are incomplete. The strength and identity of postmating reproductive barriers are highly variable among diverging species, leading to questions about their genetic basis and evolutionary drivers. These questions have been tackled in model systems but are less often addressed with broader phylogenetic resolution. In this study we analyse patterns of genetic divergence alongside direct measures of postmating reproductive barriers in an overlooked group of sympatric species within the model monkeyflower genus, Mimulus. Within this Mimulus brevipes species group, we find substantial divergence among species, including a cryptic genetic lineage. However, rampant gene discordance and ancient signals of introgression suggest a complex history of divergence. In addition, we find multiple strong postmating barriers, including postmating prezygotic isolation, hybrid seed inviability and hybrid male sterility. M. brevipes and M. fremontii have substantial but incomplete postmating isolation. For all other tested species pairs, we find essentially complete postmating isolation. Hybrid seed inviability appears linked to differences in seed size, providing a window into possible developmental mechanisms underlying this reproductive barrier. While geographic proximity and incomplete mating isolation may have allowed gene flow within this group in the distant past, strong postmating reproductive barriers today have likely played a key role in preventing ongoing introgression. By producing foundational information about reproductive isolation and genomic divergence in this understudied group, we add new diversity and phylogenetic resolution to our understanding of the mechanisms of plant speciation.  相似文献   

7.
8.
    
One of the longest debates in biology has been over the relative importance of different isolating barriers in speciation. However, for most species, there are few data evaluating their relative contributions and we can only speculate on the general roles of pre- and postzygotic isolation. Here, we quantify the absolute and cumulative contribution of 19 potential reproductive barriers between two sympatric damselfly sister species, Ischnura elegans and I. graellsii, including both premating (habitat, temporal, sexual and mechanical isolation) and postmating barriers (prezygotic: sperm insemination success and removal rate, oviposition success, fertility, fecundity; postzygotic: hybrid viability, hybrid sterility and hybrid breakdown). In sympatry, total reproductive isolation between I. elegans females and I. graellsii males was 95.2%, owing mostly to a premating mechanical incompatibility (93.4%), whereas other barriers were of little importance. Isolation between I. graellsii females and I. elegans males was also nearly complete (95.8%), which was caused by the cumulative action of multiple prezygotic (n= 4, 75.4%) and postzygotic postmating barriers (n= 5, 7.4%). Our results suggest that premating barriers are key factors in preventing gene flow between species, and that the relative strengths of premating barriers is highly asymmetrical between the reciprocal crosses.  相似文献   

9.
    
To understand how new species form and what causes their collapse, we examined how reproductive isolation evolves during the speciation process, considering species pairs with little to extensive divergence, including a recently collapsed pair. We estimated many reproductive barriers in each of five sets of stickleback fish species pairs using our own data and decades of previous work. We found that the types of barriers important early in the speciation process differ from those important late. Two premating barriers—habitat and sexual isolation—evolve early in divergence and remain two of the strongest barriers throughout speciation. Premating isolation evolves before postmating isolation, and extrinsic isolation is far stronger than intrinsic. Completing speciation, however, may require postmating intrinsic incompatibilities. Reverse speciation in one species pair was characterized by significant loss of sexual isolation. We present estimates of barrier strengths before and after collapse of a species pair; such detail regarding the loss of isolation has never before been documented. Additionally, despite significant asymmetries in individual barriers, which can limit speciation, total isolation was essentially symmetric between species. Our study provides important insight into the order of barrier evolution and the relative importance of isolating barriers during speciation and tests fundamental predictions of ecological speciation.  相似文献   

10.
  总被引:6,自引:0,他引:6  
Ecological speciation occurs when reproductive isolation evolves ultimately as a result of divergent natural selection between populations inhabiting different environments or exploiting alternative resources. I tested a prediction of the ecological model concerning the fitness of hybrids between two young, sympatric species of threespine sticklebacks (Benthics and Limnetics). The two species are ecologically and morphologically divergent: the Benthic is adapted to feeding on invertebrates in the littoral zone of the lake whereas the Limnetic is adapted to feeding on zooplankton in the open water. The growth rate of two types of hybrids, the Benthic backcross and the Limnetic backcross, as well as both parent species, was evaluated in enclosures in both parental habitats in the lake. The use of backcrosses is ideal because a comparison of their growth rates in the two habitats estimates an ecologically dependent component of their fitness while controlling for any intrinsic genetic incompatibilities that may exist between the Benthic and Limnetic genomes. The backcross results revealed a striking pattern of ecological dependence: in the littoral zone, Benthic backcrosses grew at approximately twice the rate of Limnetic backcrosses, while in the open water, Limnetic backcrosses grew at approximately twice the rate of Benthic backcrosses. Such a reversal of relative fitness of the two cross-types in the two environments provides strong evidence that divergent natural selection has played a central role in the evolution of postmating isolation between Benthics and Limnetics. Although the rank order of growth rates of all cross-types in the littoral zone was Benthic > Benthic backcross > Limnetic backcross > Limnetic, neither backcross differed significantly from the parent from which it was mainly derived. Implications of this result are discussed in terms of ecological speciation and possible introgressive hybridization between the species. Results in the open water were less clear and were not fully consistent with the ecological model of speciation, mainly as a result of the low growth rate of Limnetics. However, analysis of the diet of the fish in the open water suggests that these enclosures may not have been fully successful at replicating the food regimes characteristic of this habitat.  相似文献   

11.
Abstract .Theory predicts that sexual (or behavioral) isolation will be the first form of reproductive isolation to evolve in lineages characterized by sexual selection. Here I directly compare the rate of evolution of sexual isolation with that of hybrid inviability in a diverse and sexually dimorphic genus of freshwater fish. The magnitude of both sexual isolation and hybrid inviability were quantified for multiple pairs of allopatric species. Rates of evolution were inferred by comparing genetic distances of these species pairs with the magnitude of each form of reproductive isolation: the slope of the regression of genetic distance on the magnitude of reproductive isolation represents the rate of evolution. Of the two forms of isolation, the magnitude of sexual isolation exhibited the steeper slope of regression, indicating that sexual isolation will tend to evolve to completion earlier than hybrid inviability, strictly as a by-product of evolution in geographically isolated populations. Additional evidence from the literature is used to qualitatively compare rates of evolution of sexual isolation with that of other forms of reproductive isolation. Preliminary comparisons support the prediction that sexual isolation will evolve more rapidly than other forms. Because Etheostoma is characterized by striking sexual dimorphism, these results are consistent with the hypothesis that sexual selection for exaggerated mate-recognition characters causes the relatively rapid evolution of sexual isolation.  相似文献   

12.
13.
    
We present a likelihood-based statistical method for examining the pattern or rate of evolution of reproductive isolation. The method uses large empirical datasets to estimate, for a given clade, the average duration of two phases in the divergence of populations. The first phase is a lag phase and refers to the period during which lineages diverge but no detectable reproductive isolation evolves. The second is an accumulation phase, referring to the period during which the magnitude of reproductive isolation between diverging lineages increases. The pattern of evolution is inferred from the relative durations of these two phases. Results of analyses of postzygotic isolation data indicate significant differences among taxa in the pattern of evolution of postzygotic isolation that are consistent with predictions based on genetic differences among these groups. We also examine whether the evolution of postzygotic isolation is best explained by either of two models for the rate of accumulation: a linear model or a quadratic function as may be suggested by recent studies. Our analysis indicates that the appropriateness of either model varies among taxa.  相似文献   

14.
    
Identifying the phenotypes underlying postzygotic reproductive isolation is crucial for fully understanding the evolution and maintenance of species. One potential postzygotic isolating barrier that has rarely been examined is learning and memory ability in hybrids. Learning and memory are important fitness‐related traits, especially in scatter‐hoarding species, where accurate retrieval of hoarded food is vital for winter survival. Here, we test the hypothesis that learning and memory ability can act as a postzygotic isolating barrier by comparing these traits among two scatter‐hoarding songbird species, black‐capped (Poecile atricapillus) and Carolina chickadees (Poecile carolinensis), and their naturally occurring hybrids. In an outdoor aviary setting, we find that hybrid chickadees perform significantly worse on an associative learning spatial task and are worse at solving a novel problem compared to both parental species. Deficiencies in learning and memory abilities could therefore contribute to postzygotic reproductive isolation between chickadee species. Given the importance of learning and memory for fitness, our results suggest that these traits may play an important, but as yet overlooked, role in postzygotic reproductive isolation.  相似文献   

15.
16.
Clarkia australis and C. virgata grow on the western slope of the central Sierra Nevada of California. Clarkia australis was established to accommodate populations of C. virgata from south of the Tuolumne River that could not be successfully hybridized to populations north of the river. Although the species is maintained in the new Jepson Manual, its validity has been questioned because only two populations were originally tested, and they had no useful morphological traits that distinguished them from C. virgata. We report here the results of a large program of interpopulation hybridizations that show that C. australis is distinct and that its reproductive isolation from C. virgata is complete and absolute and reflects a compatibility block that apparently causes abortion of hybrid seeds in early development. Both species include populations north and south of the Tuolumne River and, in general, those of C. australis occupy higher elevations. Morphologically, the species are extremely similar though the mean values of several dimensions of the petals are different. However, significant variation among their populations has the consequence that, at present, the only certain way to assign particular populations to species is to test their compatibility with previously tested populations.  相似文献   

17.
    
Haldane's rule is an empirical phenomenon that has been observed in animals with sex chromosomes. The rule states that the heterogametic sex (XY or ZW) will be “absent, rare, or sterile” following hybridization between two species. Despite the near ubiquity of Haldane's rule in animal hybridizations, it has not been documented in organisms other than animals. Here, we show evidence for both rarity and sterility in hybrid male but not female offspring in crosses between three dioecious plant species from the genus Silene with heteromorphic (XY) sex chromosomes. Our results are consistent with Haldane's rule, extending its applicability to plants with sex chromosomes.  相似文献   

18.
J Cheng  T Czypionka  A W Nolte 《Heredity》2013,111(6):520-529
Cottus rhenanus and Cottus perifretum have formed hybrid lineages and narrow hybrid zones that can be best explained through the action of natural selection. However, the underlying selective forces as well as their genomic targets are not well understood. This study identifies genomic regions in the parental species that cause hybrid incompatibilities and tests whether these manifest in a sex-specific manner to learn about processes that affect natural hybridization in Cottus. Interspecific F2 crosses were analyzed for 255 markers for genetic mapping and to detect transmission distortion as a sign for genetic incompatibilities. The Cottus map consists of 24 linkage groups with a total length of 1575.4 cM. A male heterogametic (XY) sex determination region was found on different linkage groups in the two parental species. Genetic incompatibilities were incomplete, varied among individuals and populations and were not associated with the heterogametic sex. The variance between populations and individuals makes it unlikely that there are species-specific incompatibility loci that could affect the gene pool of natural hybrids in a simple and predictable way. Conserved synteny with sequenced fish genomes permits to genetically study the Cottus genome through the transfer of genomic information from the model fish species. Homology relationships of candidate genomic regions in Cottus indicate that sex determination is not based on the same genomic regions found in other fish species. This suggests a fast evolutionary turnover of the genetic basis of sex determination that, together with the small size of the heterogametic regions, may contribute to the absence of fitness effects related to the Haldane''s rule.  相似文献   

19.
    
Speciation, the evolution of reproductive isolation between populations, serves as the driving force for generating biodiversity. Postzygotic barriers to gene flow, such as F 1 hybrid sterility and inviability, play important roles in the establishment and maintenance of biological species. F 1 hybrid incompatibilities in taxa that obey Haldane's rule, the observation that the heterogametic sex suffers greater hybrid fitness problems than the homogametic sex, are thought to often result from interactions between recessive-acting X-linked loci and dominant-acting autosomal loci. Because they play such prominent roles in producing hybrid incompatibilities, we examine the dominance and nature of epistasis between alleles derived from Drosophila persimilis that confer hybrid male sterility in the genetic background of its sister species, D. pseudoobscura bogotana . We show that epistasis elevates the apparent dominance of individually recessive-acting QTL such that they can contribute to F 1 hybrid sterility. These results have important implications for assumptions underlying theoretical models of hybrid incompatibilities and may offer a possible explanation for why, to date, identification of dominant-acting autosomal \"speciation genes\" has been challenging.  相似文献   

20.
  总被引:6,自引:0,他引:6  
Hybrids may suffer a reduced fitness both because they fall between ecological niches (ecologically dependent isolation) and as a result of intrinsic genetic incompatibilities between the parental genomes (ecologically independent isolation). Whereas genetic incompatibilities are common to all theories of speciation, ecologically dependent isolation is a unique prediction of the ecological model of speciation. This prediction can be tested using reciprocal transplants in which the fitness of various genotypes is evaluated in both parental habitats. Here we expand a quantitative genetic model of Lynch (1991) to include two parental environments. We ask whether a sufficient experimental design exists for detecting ecologically dependent isolation. Analysis of the model reveals that by using both backcrosses in both parental environments, environment-specific additive genetic effects can be estimated while correcting for any intrinsic genetic isolation. Environment-specific dominance effects can also be estimated by including the F1 and F2 in the reciprocal transplant. In contrast, a reciprocal transplant comparing only F1s or F2s to the parental species cannot separate ecologically dependent from intrinsic genetic isolation. Thus, a reduced fitness of F1 or F2 hybrids relative to the parental species is not sufficient to demonstrate ecological speciation. The model highlights the importance of determining the contribution of genetic and ecological mechanisms to hybrid fitness if inferences concerning speciation mechanisms are to be made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号