首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Thymic stromal lymphopoietin (TSLP) is a cytokine that plays diverse roles in the regulation of immune responses. TSLP requires a heterodimeric receptor complex consisting of IL-7 receptor α subunit and its unique TSLP receptor (gene symbol CRLF2) to transmit signals in cells. Abnormal TSLP signaling (e.g. overexpression of TSLP or its unique receptor TSLPR) contributes to the development of a number of diseases including asthma and leukemia. However, a detailed understanding of the signaling pathways activated by TSLP remains elusive. In this study, we performed a global quantitative phosphoproteomic analysis of the TSLP signaling network using stable isotope labeling by amino acids in cell culture. By employing titanium dioxide in addition to antiphosphotyrosine antibodies as enrichment methods, we identified 4164 phosphopeptides on 1670 phosphoproteins. Using stable isotope labeling by amino acids in cell culture-based quantitation, we determined that the phosphorylation status of 226 proteins was modulated by TSLP stimulation. Our analysis identified activation of several members of the Src and Tec families of kinases including Btk, Lyn, and Tec by TSLP for the first time. In addition, we report TSLP-induced phosphorylation of protein phosphatases such as Ptpn6 (SHP-1) and Ptpn11 (Shp2), which has also not been reported previously. Co-immunoprecipitation assays showed that Shp2 binds to the adapter protein Gab2 in a TSLP-dependent manner. This is the first demonstration of an inducible protein complex in TSLP signaling. A kinase inhibitor screen revealed that pharmacological inhibition of PI-3 kinase, Jak family kinases, Src family kinases or Btk suppressed TSLP-dependent cellular proliferation making them candidate therapeutic targets in diseases resulting from aberrant TSLP signaling. Our study is the first phosphoproteomic analysis of the TSLP signaling pathway that greatly expands our understanding of TSLP signaling and provides novel therapeutic targets for TSLP/TSLPR-associated diseases in humans.  相似文献   

2.
3.
The accepted paradigm for G protein-coupled receptor kinase (GRK)-mediated desensitization of G protein-coupled receptors involves GRK-mediated receptor phosphorylation followed by the binding of arrestin proteins. Although GRKs contribute to metabotropic glutamate receptor 1 (mGluR1) inactivation, beta-arrestins do not appear to be required for mGluR1 G protein uncoupling. Therefore, we investigated whether the phosphorylation of serine and threonine residues localized within the C terminus of mGluR1a is sufficient to allow GRK2-mediated attenuation of mGluR1a signaling. We find that the truncation of the mGluR1a C-terminal tail prevents mGluR1a phosphorylation and that GRK2 does not contribute to the phosphorylation of an mGluR1 splice variant (mGluR1b). However, mGluR1a-866Delta- and mGluR1b-stimulated inositol phosphate formation is attenuated following GRK2 expression. The expression of the GRK2 C-terminal domain to block membrane translocation of endogenous GRK2 increases mGluR1a-866Delta- and mGluR1b-stimulated inositol phosphate formation, presumably by blocking membrane translocation of GRK2. In contrast, expression of the kinase-deficient GRK2-K220R mutant inhibits inositol phosphate formation by these unphosphorylated receptors. Expression of the GRK2 N-terminal domain (residues 45-185) also attenuates both constitutive and agonist-stimulated mGluR1a, mGluR1a-866Delta, and mGluR1b signaling, and the GRK2 N terminus co-precipitates with mGluR1a. Taken together, our observations indicate that attenuation of mGluR1 signaling by GRK2 is phosphorylation-independent and that the interaction of the N-terminal domain of GRK2 with mGluR1 contributes to the regulation of mGluR1 G protein coupling.  相似文献   

4.
The complex disease asthma, an obstructive lung disease in which excessive airway smooth muscle (ASM) contraction as well as increased ASM mass reduces airway lumen size and limits airflow, can be viewed as a consequence of aberrant airway G protein-coupled receptor (GPCR) function. The central role of GPCRs in determining airway resistance is underscored by the fact that almost every drug used in the treatment of asthma directly or indirectly targets either GPCR–ligand interaction, GPCR signaling, or processes that produce GPCR agonists. Although many airway cells contribute to the regulation of airway resistance and architecture, ASM properties and functions have the greatest impact on airway homeostasis. The theme of this review is that GPCR-mediated regulation of ASM tone and ASM growth is a major determinant of the acute and chronic features of asthma, and multiple strategies targeting GPCR signaling may be employed to prevent or manage these features.  相似文献   

5.
《Autophagy》2013,9(2):356-371
Under conditions of nutrient shortage autophagy is the primary cellular mechanism ensuring availability of substrates for continuous biosynthesis. Subjecting cells to starvation or rapamycin efficiently induces autophagy by inhibiting the MTOR signaling pathway triggering increased autophagic flux. To elucidate the regulation of early signaling events upon autophagy induction, we applied quantitative phosphoproteomics characterizing the temporal phosphorylation dynamics after starvation and rapamycin treatment. We obtained a comprehensive atlas of phosphorylation kinetics within the first 30 min upon induction of autophagy with both treatments affecting widely different cellular processes. The identification of dynamic phosphorylation already after 2 min demonstrates that the earliest events in autophagy signaling occur rapidly after induction. The data was subjected to extensive bioinformatics analysis revealing regulated phosphorylation sites on proteins involved in a wide range of cellular processes and an impact of the treatments on the kinome. To approach the potential function of the identified phosphorylation sites we performed a screen for MAP1LC3-interacting proteins and identified a group of binding partners exhibiting dynamic phosphorylation patterns. The data presented here provide a valuable resource on phosphorylation events underlying early autophagy induction.  相似文献   

6.
Intracellular trafficking and spatial dynamics of membrane receptors critically regulate receptor function. Using microscopic and subcellular fractionation analysis, we studied the localization of the murine G protein-coupled receptor G2A (muG2A). Evaluating green fluorescent protein-tagged, exogenously expressed as well as the endogenous muG2A, we observed that this receptor was spontaneously internalized and accumulated in endosomal compartments, whereas its surface expression was enhanced and stabilized by lysophosphatidylcholine (LPC) treatment. Monensin, a general inhibitor of recycling pathways, blocked LPC-regulated surface localization of muG2A as well as muG2A-dependent extracellular signal-regulated kinase (ERK) activation and cell migration induced by LPC treatment. Mutation of the conserved DRY motif (R-->A) enhanced the surface expression of muG2A, resulting in its resistance to monensin inhibition of ERK activation. Our data suggest that intracellular sequestration and surface expression regulated by LPC, rather than direct agonistic activity control the signaling responses of murine G2A toward LPC.  相似文献   

7.
It is believed that the membrane-proximal C tail of the G protein-coupled receptors forms an additional alpha helix with amphipathic properties (helix 8). It was previously shown for the vasopressin V2 receptor (V2R) that a conserved dileucine motif (L(339), L(340)) in this putative helix 8 is necessary for endoplasmic reticulum (ER) to Golgi transfer of the receptor. Here, we demonstrate that the other hydrophobic residues forming the non-polar side of this helix (F(328), V(332) and L(336)) are also transport-relevant. In contrast, the multiple serine residues contributing to the more hydrophilic side (S(330), S(331), S(333), S(334), S(338)) do not influence receptor trafficking. In addition, we show unambiguously by the use of pharmacological chaperones that the hydrophobic residues of the putative helix 8 do not form a transport signal necessary for receptor sorting into ER to Golgi vesicles. Instead, they are necessary to establish a transport-competent folding state in the early secretory pathway.  相似文献   

8.
G protein-coupled receptors (GPCRs) belong to one of the largest family of signaling receptors in the mammalian genome [1]. GPCRs elicit cellular responses to multiple diverse stimuli and play essential roles in human health and disease. GPCRs have important clinical implications in various diseases and are the targets of approximately 25–50% of all marketed drugs [2], [3]. Understanding how GPCRs are regulated is essential to delineating their role in normal physiology and in the pathophysiology of several diseases. Given the vast number and diversity of GPCRs, it is likely that multiple mechanisms exist to regulate GPCR function. While GPCR signaling is typically regulated by desensitization and endocytosis mediated by phosphorylation and β-arrestins, it can also be modulated by ubiquitination. Ubiquitination is emerging an important regulatory process that may have unique roles in governing GPCR trafficking and signaling. Recent studies have revealed a mechanistic link between GPCR phosphorylation, β-arrestins and ubiquitination that may be applicable to some GPCRs but not others. While the function of ubiquitination is generally thought to promote receptor endocytosis and endosomal sorting, recent studies have revealed that ubiquitination also plays an important role in positive regulation of GPCR signaling. Here, we will review recent developments in our understanding of how ubiquitin regulates GPCR endocytic trafficking and how it contributes to signal transduction induced by GPCR activation.  相似文献   

9.
10.
Bennett EJ  Rush J  Gygi SP  Harper JW 《Cell》2010,143(6):951-965
Dynamic reorganization of signaling systems frequently accompanies pathway perturbations, yet quantitative studies of network remodeling by pathway stimuli are lacking. Here, we report the development of a quantitative proteomics platform centered on multiplex absolute quantification (AQUA) technology to elucidate the architecture of the cullin-RING ubiquitin ligase (CRL) network and to evaluate current models of dynamic CRL remodeling. Current models suggest that CRL complexes are controlled by cycles of CRL deneddylation and CAND1 binding. Contrary to expectations, acute CRL inhibition with MLN4924, an inhibitor of the NEDD8-activating enzyme, does not result in a global reorganization of the CRL network. Examination of CRL complex stoichiometry reveals that, independent of cullin neddylation, a large fraction of cullins are assembled with adaptor modules, whereas only a small fraction are associated with CAND1. These studies suggest an alternative model of CRL dynamicity where the abundance of adaptor modules, rather than cycles of neddylation and CAND1 binding, drives CRL network organization.  相似文献   

11.
Abundant evidence has indicated that protein tyrosine kinases (PTKs) convey signals from G protein-coupled receptors (GPCRs) to regulate cell proliferation, migration, adhesion, and potentialy cellular transformation. Molecular mechanisms by which PTKs regulate such diverse effects in GPCR signaling are not well understood. Recently, an unifying theme has emerged where both growth factors and GPCRs utilize protein tyrosine kinase activity and the highly conserved Ras/MAP kinase pathway to control mitogenic signals. Additionally, PTKs are also involved in the regulation of signal transmission from GPCRs to activation of the JNK/SAPK kinase pathway. Furthermore novel insights in chemokine receptor-activated PTKs and their role in mediating cell functions are discussed in this review.  相似文献   

12.
13.
G protein-coupled receptors (GPCRs) control a variety of fundamental cellular processes by regulating phospholipid signaling pathways. Essential for signaling by a large number of receptors is the hydrolysis of the membrane phosphoinositide PIP(2) by phospholipase C (PLC) into the second messengers IP(3) and DAG. Many receptors also stimulate phospholipase D (PLD), leading to the generation of the versatile lipid, phosphatidic acid. Particular PLC and PLD isoforms take differential positions in receptor signaling and are additionally regulated by small GTPases of the Ras, Rho and ARF families. It is now recognized that the PLC substrate, PIP(2), has signaling capacity by itself and can, by direct interaction, affect the activity and subcellular localization of PLD and several other proteins. As expected, the synthesis of PIP(2) by phosphoinositide 5-kinases is tightly regulated as well. In this review, we present an overview of how these signaling pathways are governed by GPCRs, explain the molecular basis for the spatially and temporally organized, highly dynamic quality of phospholipid signaling, and point to the functional connection of the pathways.  相似文献   

14.
G protein-coupled receptors (GPCRs) control a variety of fundamental cellular processes by regulating phospholipid signaling pathways. Essential for signaling by a large number of receptors is the hydrolysis of the membrane phosphoinositide PIP2 by phospholipase C (PLC) into the second messengers IP3 and DAG. Many receptors also stimulate phospholipase D (PLD), leading to the generation of the versatile lipid, phosphatidic acid. Particular PLC and PLD isoforms take differential positions in receptor signaling and are additionally regulated by small GTPases of the Ras, Rho and ARF families. It is now recognized that the PLC substrate, PIP2, has signaling capacity by itself and can, by direct interaction, affect the activity and subcellular localization of PLD and several other proteins. As expected, the synthesis of PIP2 by phosphoinositide 5-kinases is tightly regulated as well. In this review, we present an overview of how these signaling pathways are governed by GPCRs, explain the molecular basis for the spatially and temporally organized, highly dynamic quality of phospholipid signaling, and point to the functional connection of the pathways.  相似文献   

15.
16.
Conserved structural motifs on pathogens trigger pattern recognition receptors present on APCs such as dendritic cells (DCs). An important class of such receptors is the Toll-like receptors (TLRs). TLR signaling triggers a cascade of events in DCs that includes modified chemokine and cytokine production, altered chemokine receptor expression, and changes in signaling through G protein-coupled receptors (GPCRs). One mechanism by which TLR signaling could modify GPCR signaling is by altering the expression of regulator of G protein signaling (RGS) proteins. In this study, we show that human monocyte-derived DCs constitutively express significant amounts of RGS2, RGS10, RGS14, RGS18, and RGS19, and much lower levels of RGS3 and RGS13. Engagement of TLR3 or TLR4 on monocyte-derived DCs induces RGS16 and RGS20, markedly increases RGS1 expression, and potently down-regulates RGS18 and RGS14 without modifying other RGS proteins. A similar pattern of Rgs protein expression occurred in immature bone marrow-derived mouse DCs stimulated to mature via TLR4 signaling. The changes in RGS18 and RGS1 expression are likely important for DC function, because both proteins inhibit G alpha(i)- and G alpha(q)-mediated signaling and can reduce CXC chemokine ligand (CXCL)12-, CC chemokine ligand (CCL)19-, or CCL21-induced cell migration. Providing additional evidence, bone marrow-derived DCs from Rgs1(-/-) mice have a heightened migratory response to both CXCL12 and CCL19 when compared with similar DCs prepared from wild-type mice. These results indicate that the level and functional status of RGS proteins in DCs significantly impact their response to GPCR ligands such as chemokines.  相似文献   

17.
Histamine stimulates uterine contraction; however, little is known regarding the mechanism or regulation of uterine histamine receptor signaling. Here we investigated the regulation of Galpha(q/11)-coupled histamine receptor signaling in human myometrial smooth muscle cells using the inositol 1,4,5-trisphosphate biosensor pleckstrin homology domain of phospholipase-delta1 tagged to enhanced green fluorescent protein and the Ca(2+)-sensitive dye Fluo-4. Histamine addition caused concentration-dependent increases in inositol 1,4,5-trisphosphate and [Ca(2+)](i) in the ULTR human uterine smooth muscle cell line and primary human myometrial cells. These effects were completely inhibited by the H(1) histamine receptor antagonist, diphenhydramine, and were unaffected by the H(2) histamine receptor antagonist, cimetidine. ULTR and primary myometrial cells were transfected with either dominant-negative G protein-coupled receptor kinases (GRKs) or small interfering RNAs targeting specific GRKs to assess the roles of this protein kinase family in H(1) histamine receptor desensitization. Dominant-negative GRK2, but not GRK5 or GRK6, prevented H(1) histamine receptor desensitization. Similarly, transfection with short interfering RNAs (that each caused >70% depletion of the targeted GRK) for GRK2, but not GRK3 or GRK6, also prevented H(1) histamine receptor desensitization. Our data suggest that histamine stimulates phospholipase C-signaling in myometrial smooth muscle cells through H(1) histamine receptors and that GRK2 recruitment is a key mechanism in the regulation of H(1) histamine receptor signaling in human uterine smooth muscle. These data provide insights into the in situ regulation of this receptor subtype and may inform pathophysiological functioning in preterm labor and other conditions involving uterine smooth muscle dysregulation.  相似文献   

18.
Cells display chemotaxis and electrotaxis by migrating directionally in gradients of specific chemicals or electrical potential. Chemotaxis in Dictyostelium discoideum is mediated by G protein–coupled receptors. The unique Gβ is essential for all chemotactic responses, although different chemoattractants use different receptors and Gα subunits. Dictyostelium amoebae show striking electrotaxis in an applied direct current electric field. Perhaps electrotaxis and chemotaxis share similar signaling mechanisms? Null mutation of Gβ and cAMP receptor 1 and Gα2 did not abolish electrotaxis, although Gβ-null mutations showed suppressed electrotaxis. By contrast, G protein signaling plays an essential role in chemotaxis. G protein–coupled receptor signaling was monitored with PHcrac–green fluorescent protein, which translocates to inositol phospholipids at the leading edge of cells during chemotaxis. There was no intracellular gradient of this protein during electrotaxis. However, F-actin was polymerized at the leading edge of cells during electrotaxis. We conclude that reception and transduction of the electrotaxis signal are largely independent of G protein–coupled receptor signaling and that the pathways driving chemotaxis and electrotaxis intersect downstream of heterotrimeric G proteins to invoke cytoskeletal elements.  相似文献   

19.
RGS proteins (regulators of G protein signaling) serve as GTPase-activating proteins (GAPs) for G alpha subunits and negatively regulate G protein-coupled receptor signaling. In this study, we characterized biochemical properties of RGS5 and its N terminal (1-33)-deleted mutant (deltaN-RGS5). RGS5 bound to G alpha(i1), G alpha(i2), G alpha(i3), G alpha(o) and G alpha(q) but not to G alpha(s) and G alpha13 in the presence of GDP/AIF4-, and accelerated the catalytic rate of GTP hydrolysis of G alpha(i3) subunit. When expressed in 293T cells stably expressing angiotensin (Ang) AT1a receptors (AT1a-293T cells), RGS5 suppressed Ang II- and endothelin (ET)-1-induced intracellular Ca2+ transients. The effect of RGS5 was concentration-dependent, and the slope of the concentration-response relationship showed that a 10-fold increase in amounts of RGS5 induced about 20-25% reduction of the Ca2+ signaling. Furthermore, a comparison study of three sets of 293T cells with different expression levels of AT1a receptors showed that RGS5 inhibited Ang II-induced responses more effectively in 293T cells with the lower density of AT1a receptors, suggesting that the degree of inhibition by RGS proteins reflects the ratio of amounts of RGS proteins to those of activated G alpha subunits after receptor stimulation by agonists. When expressed in AT1a-293T cells, deltaN-RGS5 was localized almost exclusively in the cytosolic fraction, and exerted the inhibitory effects as potently as RGS5 which was present in both membrane and cytosolic fractions. Studies on relationship between subcellular localization and inhibitory effects of RGS5 and deltaN-RGS5 revealed that the N terminal (1-33) of RGS5 plays a role in targeting this protein to membranes, and that the N terminal region of RGS5 is not essential for exerting activities.  相似文献   

20.
The human V2 vasopressin receptor contains one consensus site for N-linked glycosylation at asparagine 22 in the predicted extracellular amino terminal segment of the protein. This segment also contains clusters of serines and threonines that are potential sites for O-glycosylation. Mutagenesis of asparagine 22 to glutamine abolished N-linked glycosylation of the V2 receptor (N22Q-V2R), without altering its function or level of expression. The N22Q-V2R expressed in transfected cells migrated in denaturing acrylamide gels as two protein bands with a difference of 7000 Da. Protein labeling experiments demonstrated that the faster band could be chase to the slower one suggesting the presence of O-linked sugars. Sialidase treatment of membranes from cells expressing the N22Q-V2R or of immunoprecipitated metabolically labeled V2R accelerated the migration of the protein in acrylamide gels demonstrating the existence of O-glycosylation, the first time this type of glycosylation has been found in a G protein coupled receptor. Synthesis of metabolically labeled receptor in the presence of 1 mM phenyl-N-acetyl-alpha-D-galactosaminide, a competitive inhibitor of N-acetyl-alpha-D-galactose and N-acetylneuraminic acid transferases, also produced a receptor that migrated faster in denaturing gels. Serines and threonines present in the amino terminus were analyzed by alanine scanning mutagenesis to identify the acceptor sites. O-glycosylation was found at most serines and threonines present in the amino terminus. Because the disappearance of a site opened the availability of others to the transferases, the exact identification of the acceptor sites was not feasible. The wild type V2R expressed in HEK 293, COS, or MDCK cells underwent N- and O-linked glycosylation. The mutant V2R bearing all serine/threonine substitutions by alanine at the amino terminus yielded a receptor functionally indistinguishable from the wild type protein, whose mobility in polyacrylamide gels was no longer affected by sialidase treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号