首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
It has become increasingly evident that gene content of the sex chromosomes is markedly different from that of the autosomes. Both sex chromosomes appear enriched for genes related to sexual differentiation and reproduction; but curiously, the human X chromosome also seems to bear a preponderance of genes linked to brain and muscle functions. In this review, we will synthesize several evolutionary theories that may account for this nonrandom assortment of genes on the sex chromosomes, including 1) asexual degeneration, 2) sexual antagonism, 3) constant selection, and 4) hemizygous exposure. Additionally, we will speculate on how the evolution of sex-chromosome gene content might have impacted on the phenotypic evolution of mammals and particularly humans. Our discussion will focus on the mammalian sex chromosomes, but will cross reference other species where appropriate.  相似文献   

3.
The medaka Oryzias latipes and its two sister species, O. curvinotus and O. luzonensis, possess an XX-XY sex-determination system. The medaka sex-determining gene DMY has been identified on the orthologous Y chromosome [O. latipes linkage group 1 (LG1)] of O. curvinotus. However, DMY has not been discovered in other Oryzias species. These results and molecular phylogeny suggest that DMY was generated recently [approximately 10 million years ago (MYA)] by gene duplication of DMRT1 in a common ancestor of O. latipes and O. curvinotus. We identified seven sex-linked markers from O. luzonensis (sister species of O. curvinotus) and constructed a sex-linkage map. Surprisingly, all seven sex-linked markers were located on an autosomal linkage group (LG12) of O. latipes. As suggested by the phylogenetic tree, the sex chromosomes of O. luzonensis should be "younger" than those of O. latipes. In the lineage leading to O. luzonensis after separation from O. curvinotus approximately 5 MYA, a novel sex-determining gene may have arisen and substituted for DMY. Oryzias species should provide a useful model for evolution of the master sex-determining gene and differentiation of sex chromosomes from autosomes.  相似文献   

4.
Most empirical and theoretical studies have shown that sex increases the rate of evolution, although evidence of sex constraining genomic and epigenetic variation and slowing down evolution also exists. Faster rates with sex have been attributed to new gene combinations, removal of deleterious mutations, and adaptation to heterogeneous environments. Slower rates with sex have been attributed to removal of major genetic rearrangements, the cost of finding a mate, vulnerability to predation, and exposure to sexually transmitted diseases. Whether sex speeds or slows evolution, the connection between reproductive mode, the evolutionary rate, and species diversity remains largely unexplored. Here we present a spatially explicit model of ecological and evolutionary dynamics based on DNA sequence change to study the connection between mutation, speciation, and the resulting biodiversity in sexual and asexual populations. We show that faster speciation can decrease the abundance of newly formed species and thus decrease long-term biodiversity. In this way, sex can reduce diversity relative to asexual populations, because it leads to a higher rate of production of new species, but with lower abundances. Our results show that reproductive mode and the mechanisms underlying it can alter the link between mutation, evolutionary rate, speciation and biodiversity and we suggest that a high rate of evolution may not be required to yield high biodiversity.  相似文献   

5.
6.
Front Cover     
In most animals, competition for mating opportunities is higher among males, whereas females are more likely to provide parental care. In few species, though, these "conventional" sex roles are reversed such that females compete more strongly for matings and males provide most or all parental care. This "reversal" in sex roles is often combined with classical polyandry—a mating system in which a female forms a harem with several males. Here, we review the major hypotheses relating such role reversals to evolutionary and behavioural traits (anisogamy, phylogenetic history, sexy males, parental care, genetic paternity, trade‐off between mating and parenting, adult sex ratio) and to ecological factors (food supply, offspring predation). We evaluate each hypothesis in relation to coucals (Centropodinae), a group of nesting cuckoos of great interest for mating system and parental care theory. The black coucal (Centropus grillii) is the only known bird combining classical polyandry with altricial development of young, a costly trait with regard to parental care. Our long‐term study offers a unique possibility to compare the strongly polyandrous black coucal with a monogamous close relative breeding in the same area and habitat, the white‐browed coucal (C. superciliosus). We show that the evolution of sex roles in coucals and other animals has many different facets. Whereas phylogenetic constraints are important, confidence in genetic paternity is not. In combination with facilitating ecological conditions, adult sex ratios are key to understanding sex roles in coucals, shorebirds, and most likely also other animals. We plead for more studies including experimental tests to understand how biased adult sex ratios emerge and whether they drive sexual selection or vice versa. How do sex ratios and sexual selection interact and feedback on each other? Answers to these questions will be fundamental for understanding the evolution of sex roles in mating and parenting in coucals and other species.  相似文献   

7.
A combination of analytical and simulation models is used to explore the initial evolution of genic sex determination from polygenic sex determination. Prior studies have indicated that polygenic sex determination is rare or absent in extant species but that it has likely played an important intermediate role in the evolution of other genetic sex-determination systems. This study explores why polygenic sex determination does not persist. Two possibilities are considered. First it is assumed that a major sex-determining gene also pleiotropically increases fitness. Second it is assumed that the sex-determining gene is neutral but linked to another locus segregating for a rare selectively favored allele. The major conclusion from the models is that sex-specific natural selection will cause polygenic sex determination to be a transient state in most populations. Polygenic sex determination may be an important intermediate step in the evolution of genetically controlled sexual differentiation, but it is unlikely to persist unless there is some selective advantage compared to genic sex determination. This may in part explain the relatively small number of extant species that have polygenic sex determination.  相似文献   

8.
Sex‐dependent gene expression is likely an important genomic mechanism that allows sex‐specific adaptation to environmental changes. Among Drosophila species, sex‐biased genes display remarkably consistent evolutionary patterns; male‐biased genes evolve faster than unbiased genes in both coding sequence and expression level, suggesting sex differences in selection through time. However, comparatively little is known of the evolutionary process shaping sex‐biased expression within species. Latitudinal clines offer an opportunity to examine how changes in key ecological parameters also influence sex‐specific selection and the evolution of sex‐biased gene expression. We assayed male and female gene expression in Drosophila serrata along a latitudinal gradient in eastern Australia spanning most of its endemic distribution. Analysis of 11 631 genes across eight populations revealed strong sex differences in the frequency, mode and strength of divergence. Divergence was far stronger in males than females and while latitudinal clines were evident in both sexes, male divergence was often population specific, suggesting responses to localized selection pressures that do not covary predictably with latitude. While divergence was enriched for male‐biased genes, there was no overrepresentation of X‐linked genes in males. By contrast, X‐linked divergence was elevated in females, especially for female‐biased genes. Many genes that diverged in D. serrata have homologs also showing latitudinal divergence in Drosophila simulans and Drosophila melanogaster on other continents, likely indicating parallel adaptation in these distantly related species. Our results suggest that sex differences in selection play an important role in shaping the evolution of gene expression over macro‐ and micro‐ecological spatial scales.  相似文献   

9.
10.
Prevention of recombination is needed to preserve both phenotypic differentiation between species and sexual phenotypic differentiation within species. For species differentiation (speciation), isolating barriers preventing recombination may be pre-zygotic (gamete transfer barriers), or post-zygotic (either a developmental barrier resulting in hybrid inviability, or a chromosomal-pairing barrier resulting in hybrid sterility). The sterility barrier is usually the first to appear and, although often initially only manifest in the heterogametic sex (Haldane's rule), is finally manifest in both sexes. For sexual differentiation, the first and only barrier is chromosomal-pairing, and always applies to the heterogametic sex. For regions of sex chromosomes affecting sexual differentiation there must be something analogous to the process generating the hybrid sterility seen when allied species cross. Explanations for Haldane's rule have generally assumed that the chromosomal-pairing barrier initiating evolutionary divergence into species is due to incompatibilities between gene products ("genic), or sets of gene products ("polygenic), rather than between chromosomes per se ("chromosomal"). However, if chromosomal incompatibilities promoting incipient sexual differentiation could also contribute to the process of incipient speciation, then a step towards speciation would have been taken in the heterogametic sex. Thus, incipient speciation, manifest as hybrid sterility when "varieties" are crossed, would appear at the earliest stage in the heterogametic sex, even in genera with homomorphic sex chromosomes (Haldane's rule for hybrid sterility). In contrast, it has been proposed that Haldane's rule for hybrid inviability needs differences in dosage compensation, so could not apply to genera with homomorphic sex chromosomes.  相似文献   

11.
12.
The repeated, convergent evolution of body shape and microhabitat use in Greater Antillean lizards of the genus Anolis (anoles) provides compelling evidence of the importance of microhabitat specialization in shaping morphology. Interestingly, sexual dimorphism is also extensive, with males and females differing in body size as well as in shape. It is important to note that the components of shape analyzed in these studies is related to locomotion and are size-adjusted, including: relative limb and body lengths and mass of the body. Numbers of lamellae were also used and these do not vary with size. Furthermore, dimorphism in both size and shape differs by habitat type. Thus, does functionally-relevant sexual dimorphism imply that one sex is the "ecological" sex, with the other being maladapted to it's environment? Alternatively, sexual dimorphism may interact with adaptive diversification. Different classes of individuals within a species may act as separate ecological units if they play ecologically different roles. Here, I reanalyze a data set of morphological data for 15 species of Puerto Rican and Jamaican Anolis, which represent two largely independent adaptive radiations of lizards. I test for concordance between size and shape dimorphism and microhabitat (ecomorph) type, and for "parallel" patterns of sexual dimorphism among species. I integrate these results and, in the light of previous research, evaluate the relative influence that larger-scale ecological patterns have on sexual dimorphism, as well as the influence of sexual dimorphism on community structuring. I conclude that the presence of ecologically-relevant dimorphism may in fact increase the adaptive diversity present within a community.  相似文献   

13.
14.
Gene sequences mediating sexual reproduction are more divergent within and between closely related species. Microsatellite or simple sequence repeat (SSR) markers are valuable molecular tools for analysis of genetic variability, phylogeny, and also for identifying sex at seedling stage in dioecious plant species. Calamus travancoricus Bedd. ex. Becc. and Calamus nagbettai R.R.Fernald & Dey are economically important rattan species. The dioecious nature of the Calamus spp. limits its breeding and cultivation. The sex of rattans can only be identified after attaining reproductive maturity which ranges from 5 to 15 years. A study was carried out in this background and 9 putative sex-specific PCR products were identified as sex markers for C. travancoricus and C. nagbettai and sequenced by Sanger method. The sequence homology search revealed occurrence of identical sequences in many plant species across different families indicating the conserved nature of the sequences. However, these sequences were not present in opposite sex in the studied species, indicating divergent evolution favoring sex determination. Annotation of these sequences revealed that most of these are mediating sexual reproduction by and large. An adequate sex ratio is to be maintained for these dioecious palms in natural habitat for producing offsprings having equal gene complements for continual evolution and sustainable utilization. Developing scientific management strategies and improved utilization of canes could help to generate employment locally and thus contribute to the socioeconomics sustainably.  相似文献   

15.
The loss of sex in clonal plants   总被引:6,自引:0,他引:6  
Most plants combine sexual and clonal reproduction, and the balance between the two may vary widely between and within species. There are many anecdotal reports of plants that appear to have abandoned sex for clonal reproduction, yet few studies have quantified the degree of sexual variation in clonal plants and fewer still have determined the underlying ecological and/or genetic factors. Recent empirical work has shown that some clonal plants exhibit very wide variation in sexual reproduction that translates into striking variation in genotypic diversity and differentiation of natural populations. Reduced sexual reproduction may be particularly common at the geographical margins of species' ranges. Although seed production and sexual recruitment may often be limited by biotic and abiotic aspects of the environment in marginal populations, genetic factors, including changes in ploidy and sterility mutations, may also play a significant role in causing reduced sexual fertility. Moreover, environmental suppression of sexual recruitment may facilitate the evolution of genetic sterility because natural selection no longer strongly maintains the many traits involved in sex. In addition to the accumulation of neutral sterility mutations in highly clonal populations, the evolution of genetic infertility may be facilitated if sterility is associated with enhanced vegetative growth, clonal propagation or survival through either resource reallocation or pleiotropy. However, there are almost no experimental data with which to distinguish among these possibilities. Ultimately, wide variation in genotypic diversity and gene flow associated with the loss of sex may constrain local adaptation and the evolution of the geographical range limit in clonal plants.  相似文献   

16.
17.
The evolution of sex determination remains one of the most fascinating enigmas in biology. Transitions between genotypic sex determination (GSD) and temperature‐dependent sex determination (TSD) have occurred multiple times during vertebrate evolution, however, the molecular basis and consequences of these transitions in closely related taxa remain unresolved. Here I address a critical question: Do species with GSD derived from ancestors possessing TSD retain any ancestral thermal sensitivity in the developmental pathways underlying gonadal differentiation? Results from an expression study of a gene involved in early gonadogenesis in GSD (Apalone mutica) and TSD (Chrysemys picta) turtles, support the hypothesis that Wt1 in A. mutica displays such a relic thermal sensitivity. This retention is likely enabled by Sf1, a gene immediately downstream from Wt1 whose expression is independent of temperature in this species. My results constitute the first empirical evidence of a GSD vertebrate exhibiting thermal sensitivity in the expression of a gene regulating gonadogenesis. This novel finding reveals an undocumented source of raw material for future evolutionary change that may exist in other GSD taxa, and one that enhances the evolutionary potential of the gene networks underlying sexual differentiation and contributes to the astonishing ability of sex‐determining mechanisms.  相似文献   

18.
Although the sex-determining genes are known in mammals, Drosophila, and C. elegans, little is known in other animals. Fishes are an attractive group of organisms for studying the evolution of sex determination because they show an amazing variety of mechanisms, ranging from environmental sex determination and different forms of hermaphroditism to classical sex chromosomal XX/XY or WZ/ZZ systems and modifications thereof. In the fish medaka, dmrt1b(Y) has recently been found to be the candidate male sex-determining gene. It is a duplicate of the autosomal dmrt1a gene, a gene acting in the sex determination/differentiation cascade of flies, worms, and mammals. Because in birds dmrt1 is located on the Z-chromosome, both findings led to the suggestion that dmrt1b(Y) is a "non-mammalian Sry" with an even more widespread distribution. However, although Sry was found to be the male sex-determining gene in the mouse and some other mammalian species, in some it is absent and has obviously been replaced by other genes that now fulfil the same function. We have asked if the same might be true of the dmrt1b(Y) gene. We find that the gene duplication generating dmrt1b(Y) occurred recently during the evolution of the genus Oryzias. The gene is absent from all other fish species studied. Therefore, it may not be the male-sex determining gene in all fishes.  相似文献   

19.
20.
Evolution of sexual dimorphism in ecologically relevant traits, for example, via resource competition between the sexes, is traditionally envisioned to stall the progress of adaptive radiation. An alternative view is that evolution of ecological sexual dimorphism could in fact play an important positive role by facilitating sex‐specific adaptation. How competition‐driven disruptive selection, ecological sexual dimorphism, and speciation interact during real adaptive radiations is thus a critical and open empirical question. Here, we examine the relationships between these three processes in a clade of salamanders that has recently radiated into divergent niches associated with an aquatic life cycle. We find that morphological divergence between the sexes has occurred in a combination of head shape traits that are under disruptive natural selection within breeding ponds, while divergence among species means has occurred independently of this disruptive selection. Further, we find that adaptation to aquatic life is associated with increased sexual dimorphism across taxa, consistent with the hypothesis of clade‐wide character displacement between the sexes. Our results suggest the evolution of ecological sexual dimorphism may play a key role in niche divergence among nascent species and demonstrate that ecological sexual dimorphism and ecological speciation can and do evolve concurrently in the early stages of adaptive radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号