首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Cryptosporidium parvum is a well-known waterborne intracellular protozoan that causes severe diarrheal illness in immunocompromised individuals. This organism is highly resistant to harsh environmental conditions and various disinfectants, and it exhibits one of the highest known resistances to gamma irradiation. We investigated rejoining of gamma-ray-induced DNA damage in C. parvum by neutral comet assay. Oocysts were gamma irradiated at various doses (1, 5, 10, and 25 kGy) and were incubated for various periods (6-96 h) after exposure to 10 kGy. The comet tail moment showed that the number of DNA double-strand breaks increased concomitantly with the gamma irradiation dose. When investigating rejoining after irradiation at 10 kGy, double-strand breaks peaked at 6 h postirradiation, and rejoining was highest at 72 h postirradiation. The observed rejoining pattern suggests that repair process occurs slowly even when complex DNA double-strand breaks in C. parvum were induced by high dose irradiation, 10 kGy.  相似文献   

2.
The soft-electron beam (low-energy electrons) and gamma-radiation sensitivities of phosphine-resistant (PHR) and -susceptible (PHS) strains of adults lesser grain borer Rhyzopertha dominica (F.) were studied, with particular reference to DNA damage assessed using single-cell electrophoresis (comet assay). Results showed that mortality in adult R. dominica varied significantly between both PHR and PHS strains. Adults of the PHR strain were found to be more tolerant toward soft-electron and gamma radiation than adults of the PHS strain. Studies on the longevity of strains showed that mean survival time and dose rate were highly correlated with both strains and treatments. Results also showed that adults of the PHR strain lived longer than adults of PHS strain for both treatments. Radiation sensitivity indices, however, decreased as radiation dose increased in both strains. Analysis of DNA damage, after 40- and 160-Gy gamma radiation, was carried out using cells obtained from both strains. Gamma-irradiated adults of both strains showed typical DNA fragmentation, compared with cells from nonirradiated adults, which showed more intact DNA. Investigations using the comet assay showed that tail length, moment, olive-tail moment, percentage of tail DNA, and percentage of DNA damage were all greater in the PHS strain compared with the PHR strain and the control insects. Results also showed that DNA damage remained at a constant level for up to 24 h after irradiation. The results have been discussed in relation to the observed strain differences in radiation sensitivity and resistance to phosphine.  相似文献   

3.
Several recent studies have reported that whole-body exposure of rodents to power frequency magnetic fields (MFs) can result in DNA single- and double-strand breaks in the brains of these animals. The current study was undertaken to investigate whether an acute 2h exposure of a 1 mT, 60 Hz MF could elicit DNA damage, and subsequently apoptosis, in the brains of immature (10-day-old) mice. DNA damage was quantitated at 0, 2, 4, and 24h after exposure using the alkaline comet assay. Apoptosis was quantitated in the external granule cell layer (EGCL) of the immature mouse cerebellum at 0 and 24h after exposure to MF by the TdT-mediated dUTP nick-end labeling (TUNEL) assay. Four parameters (tail ratio, tail moment, comet length and tail length) were used to assess DNA damage for each comet. While increased DNA damage was detected by tail ratio at 2h after MF exposure, no supporting evidence of increased DNA damage was detected by the other parameters. In addition, no similar differences were observed using these parameters at any of the other post-exposure times. No increase in apoptosis was observed in the EGCL of MF-exposed mice, when compared to sham mice. Taken together, these results do not support the hypothesis that acute MF exposure causes DNA damage in the cerebellums of immature mice.  相似文献   

4.
The comet assay was performed to elucidate the linearity of calibration curves and detection limits for DNA damage in multiple organs of whole body X-irradiated mice, and rates of reduction in DNA damage by DNA repair during the irradiation period were estimated in the respective organs by comparing the rates of increase in DNA damage at different absorbed dose rates of X-rays. Of the assay parameters, tail length and the percentage DNA in the tail showed a higher sensitivity to DNA damage in most organs than Olive tail moment. Data at the higher absorbed dose rates (2.22 or 1.44 Gy/min) showed good correlations between absorbed doses and these two parameters, with correlation coefficients of more than 0.7 in many organs. However, this assay had difficulty detecting DNA damage at the lower absorption dose rate (0.72 Gy/min). The estimated rates of increase in DNA damage and those of DNA repair during the irradiation period in the respective organs suggested differences in the radiosensitivity of nuclear DNA and DNA repair capacity among organs. Our results indicated that absorbed dose rates of 1.0-1.3 Gy/min or greater were needed to induce detectable DNA damages by the comet assay in many organs.  相似文献   

5.
The in vivo and in vitro effects of UV-C (254 nm) exposure (0.039 watt . m(-2) . s for 2 h) of currant tomato (Lycopersicon pimpinellifolium), indigenous to Peru and Ecuador, were assayed. H(2)O(2) deposits, dead cells and DNA damage were localized, 12/24 h after irradiation, mainly in periveinal parenchyma of the 1st and 2nd order veins of the leaves, and before the appearance of visible symptoms, which occurred 48 h after irradiation. Cell death index was of 43.5 +/- 12% in exposed leaf tissues, 24 h after treatment. In currant tomato protoplasts, the percentage of viable cells dropped 1 h after UV-C irradiation from 97.42 +/- 2.1% to 43.38 +/- 4.2%. Afterwards, the protoplast viability progressively decreased to 40.16 +/- 7.25% at 2 h, to 38.31 +/- 6.9% at 4 h, and to 36.46 +/- 1.84% at 6 h after the exposure. The genotoxic impact of UV-C radiation on protoplasts was assessed with single cell gel electrophoresis (SCGE, or comet assay). UV-C treatment greatly enhanced DNA migration, with 75.37 +/- 3.7% of DNA in the tail versus 7.88 +/- 5.5% in the case of untreated nuclei. Oxidative stress by H(2)O(2) used as a positive control, induced a similar damage on non-irradiated protoplasts, with 71.59 +/- 5.5% of DNA in the tail, whereas oxidative stress imposed on UV-C irradiated protoplasts slightly increased the DNA damage (85.13 +/- 4.1%). According to these results, SCGE of protoplasts could be an alternative to nuclei extraction directly from leaf tissues.  相似文献   

6.
The comet assay was performed to elucidate the linearity of calibration curves and detection limits for DNA damage in multiple organs of whole body X-irradiated mice, and rates of reduction in DNA damage by DNA repair during the irradiation period were estimated in the respective organs by comparing the rates of increase in DNA damage at different absorbed dose rates of X-rays. Of the assay parameters, tail length and the percentage DNA in the tail showed a higher sensitivity to DNA damage in most organs than Olive tail moment. Data at the higher absorbed dose rates (2.22 or 1.44 Gy/min) showed good correlations between absorbed doses and these two parameters, with correlation coefficients of more than 0.7 in many organs. However, this assay had difficulty detecting DNA damage at the lower absorption dose rate (0.72 Gy/min). The estimated rates of increase in DNA damage and those of DNA repair during the irradiation period in the respective organs suggested differences in the radiosensitivity of nuclear DNA and DNA repair capacity among organs. Our results indicated that absorbed dose rates of 1.0–1.3 Gy/min or greater were needed to induce detectable DNA damages by the comet assay in many organs.  相似文献   

7.
The effect of X-ray irradiation on cell survival, induction, and repair of DNA damage was studied by using 10 Chroococcidiopsis strains isolated from desert and hypersaline environments. After exposure to 2.5 kGy, the percentages of survival for the strains ranged from 80 to 35%. In the four most resistant strains, the levels of survival were reduced by 1 or 2 orders of magnitude after irradiation with 5 kGy; viable cells were recovered after exposure to 15 kGy but not after exposure to 20 kGy. The severe DNA damage evident after exposure to 2.5 kGy was repaired within 3 h, and the severe DNA damage evident after exposure to 5 kGy was repaired within 24 h. The increase in trichloroacetic acid-precipitable radioactivity in the culture supernatant after irradiation with 2.5 kGy might have been due to cell lysis and/or an excision process involved in DNA repair. The radiation resistance of Chroococcidiopsis strains may reflect the ability of these cyanobacteria to survive prolonged desiccation through efficient repair of the DNA damage that accumulates during dehydration.  相似文献   

8.
Guo Z  Zhao J  Xue TM  Ma JX  Wang CJ  Huang SS 《生理学报》2011,63(2):164-170
本文研究醋酸棉酚(gossypol acetic acid,GAA)对人粘液表皮样癌细胞MEC-1体外增殖的影响,并初步探讨其抑制肿瘤细胞增殖的机制.体外培养人粘液表皮样癌细胞系MEC-1细胞,用MTT法检测GAA对MEC-1细胞增殖的影响;用中性彗星实验检测GAA对MEC-1细胞的DNA双链断裂;用免疫荧光染色法检测...  相似文献   

9.
The alkaline single-cell gel electrophoresis (comet) assay can be combined with fluorescence in situ hybridization (FISH) methodology to investigate the localization of specific gene domains within an individual cell. The position of the fluorescent hybridization spots in the comet head or tail indicates whether the sequence of interest lies within or in the vicinity of a damaged region of DNA. In this study, we used the comet-FISH assay to examine initial DNA damage and subsequent repair in the TP53 gene region of RT4 and RT112 bladder carcinoma cells after 5 Gy gamma irradiation. In addition to standard comet parameter measurements, the number and location of TP53 hybridization spots within each comet was recorded at each repair time. The results indicate that the rate of repair of the TP53 gene region was fastest during the first 15 min after damage in both cell lines. When compared to overall genomic repair, the repair of the TP53 gene region was observed to be significantly faster during the first 15 min and thereafter followed a rate similar to that for the overall genome. The data indicate that the TP53 domain in RT4 and RT112 cells is repaired rapidly after gamma irradiation. Furthermore, this repair may be preferential compared to the repair of overall genomic DNA, which gives a measure of the average DNA repair response of the whole genome. We suggest that the comet-FISH assay has considerable potential in the study of gene-specific repair after DNA damage.  相似文献   

10.
The effect of X-ray irradiation on cell survival, induction, and repair of DNA damage was studied by using 10 Chroococcidiopsis strains isolated from desert and hypersaline environments. After exposure to 2.5 kGy, the percentages of survival for the strains ranged from 80 to 35%. In the four most resistant strains, the levels of survival were reduced by 1 or 2 orders of magnitude after irradiation with 5 kGy; viable cells were recovered after exposure to 15 kGy but not after exposure to 20 kGy. The severe DNA damage evident after exposure to 2.5 kGy was repaired within 3 h, and the severe DNA damage evident after exposure to 5 kGy was repaired within 24 h. The increase in trichloroacetic acid-precipitable radioactivity in the culture supernatant after irradiation with 2.5 kGy might have been due to cell lysis and/or an excision process involved in DNA repair. The radiation resistance of Chroococcidiopsis strains may reflect the ability of these cyanobacteria to survive prolonged desiccation through efficient repair of the DNA damage that accumulates during dehydration.  相似文献   

11.
Cadmium (Cd) is one of the important pollutants of soil and the genotoxicity of Cd-contaminated soil was studied in combination with imidacloprid. The single cell gel electrophoresis or comet assay was used to quantify DNA strand breaks as a measure of DNA damage induced by Cd and imidacloprid contamination in soil. The soil was artificially contaminated by Cd (0.0, 0.2, 0.5, 1.0, 2.0 mg· kg?1 dry soil) or Cd (0.0, 0.2, 0.5, 1.0, 2.0 mg · kg?1 dry soil) and imidacloprid (0.5 mg · kg?1 dry soil). Roots ofVicia faba were exposed to the contaminated soil for 2 h at 25°C and were used in the comet assay. DNA damage was measured as the values of percentage of nuclei with tails, tail length, tail DNA, tail moment (TM), and Olive tail moment (OTM). DNA damages of root tips ofVicia faba increased after Cd treatment and there were dose-related increases in DNA damage measured as these parameters. However, the addition of imidacloprid further increased the DNA damage. These data confirmed the genotoxic effect of Cd to plants, and that the combined pollution with imidacloprid can enhance the genotoxicity of Cd.  相似文献   

12.
Cadmium (Cd) is one of the important pollutants of soil and the genotoxicity of Cd-contaminated soil was studied in combination with imidacloprid. The single cell gel electrophoresis or comet assay was used to quantify DNA strand breaks as a measure of DNA damage induced by Cd and imidacloprid contamination in soil. The soil was artificially contaminated by Cd 2 h at 25℃ and were used in the comet assay. DNA damage was measured as the values of percentage of nuclei with tails, tail length, tail DNA, tail moment (TM), and Olive tail moment (OTM). DNA damages of root tips of Vicia faba increased after Cd treatment and there were dose-related increases in DNA damage measured as these parameters. However, the addition of imidacloprid further increased the DNA damage. These data confirmed the genotoxic effect of Cd to plants, and that the combined pollution with imidacloprid can enhance the genotoxicity of Cd.  相似文献   

13.
Comet assay has been used to estimate cancer risk by quantification of DNA damage and repair in response to mutagen challenge. Our goal was to adopt best practices for the alkaline comet assay to measure DNA repair capacity of white blood cells in whole blood of patients with squamous cell carcinoma of the head and neck (HNSCC). The results show that initial damage by 10 Gy of gamma radiation expressed as percent DNA in comet tail was higher in stimulated lymphocytes (61.1+/-11.8) compared to whole blood (43.0+/-12.1) but subsequent repair was similar with comet tail of approximately 20% at 15 min and 13% at 45 min after exposure. Exposure of whole blood embedded in agarose from 5 to 10 Gy gamma radiation was followed by an approximately 70% repair of the DNA damage within 45 min with a faster repair phase in the first 15 min. Variability of the measurement was lower within repeated measurements of the same person compared to measurement of different healthy individuals. The repair during first 15 min was slower (p=0.01) in ex-/non-smokers (41.0+/-2.1%) compared to smokers (50.3+/-2.7%). This phase of repair was also slower (p=0.02) in HNSCC patients (36.8+/-2.1%) compared to controls matched on age and smoking (46.4+/-3.0%). The results of this pilot study suggest that quantification of repair in whole blood following a gamma radiation challenge is feasible. Additional method optimization would be helpful to improve the assay for a large population screening.  相似文献   

14.
The alkaline version of single cell gel electrophoresis (comet) assay is widely used for evaluating DNA damage at the individual cell level. The standard alkaline method of the comet assay involves deproteinization of cells embedded in agarose gel using a high salt–detergent lysis buffer, followed by denaturation of DNA and electrophoresis using a strong alkali at pH > 13 [N.P. Singh, M.T. McCoy, R.R. Tice, E.L. Schneider, A simple technique for quantitation of low levels of DNA damage in individual cells, Exp. Cell. Res. 175 (1988) 184–191]. However, a recent report showed that a strong alkali treatment results in simultaneous deproteinization of cells and denaturation of genomic DNA [P. Sestili, C. Martinelli, V. Stocchi, The fast halo assay: an improved method to quantify genomic DNA strand breakage at the single cell-level, Mutat. Res. 607 (2006) 205–214]. This study was carried out to test whether the strong alkali deproteinization of cells could replace the high salt–detergent lysis step used in the standard method of the alkaline comet assay. Peripheral blood lymphocytes from 3 healthy individuals were irradiated with gamma rays at doses varying between 0 and 10 Gy. Following irradiation, the comet assay was performed according to the standard alkaline method (pH > 13) and a modified method. In the modified method, agarose embedded cells were treated with a strong alkali (0.3 M NaOH, 0.02 M Trizma and 1 mM EDTA, pH > 13) for 20 min to allow deproteinization of cells and denaturation of DNA. This was followed by electrophoresis using the same alkali solution to obtain comets. DNA damage expressed in terms of comet tail length, percentage of DNA in comet tail and tail moment obtained by the standard alkaline method and the modified method were compared. In both methods, DNA damage showed a good correlation with the dose of gamma ray. The results indicate a satisfactory sensitivity of the modified method in detecting radiation-induced DNA damage in human peripheral blood lymphocytes.  相似文献   

15.
DNA damage was induced by either 2 mM ethylmethanesulfonate or 1 Gy of gamma-irradiation in Allium cepa L. root meristems. The percentage of DNA that migrated towards the anode during microelectrophoresis after alkali denaturation (pH approximately 13.5) of the isolated nuclei (comet assay) reflects the amount of single strand breaks present in them. There was some DNA migration (12.8+/-2.4%) in untreated roots. This percentage doubled at the end of 1.5 h treatment with the mono-functional alkylating agent 2 mM ethylmethanesulfonate, and trebled after a single exposure to 1 Gy of gamma-rays. A proportion of the DNA migration caused by these two treatments was reversed (repaired) by a 2 h long period of in vivo recovery. However, when 5 mM caffeine was applied after removal of the alkylating agent, the amount of DNA migrating to the comet tail over the same 2 h period was almost double that at the onset of recovery. In both control and irradiated nuclei, caffeine also increased the initial level of DNA migration in the comet assay, but to a lesser extent. These results indicate that caffeine increases the DNA damage that accumulates during the processing of alkylated bases and, to a lesser extent, of the DNA bases damaged by gamma-irradiation. Thus, the potentiation effect of caffeine on induced chromosomal damage may not just be due to caffeine-induced cancellation of the G2 checkpoint, but also to a direct effect this methylxantine has on the processing of DNA damage.  相似文献   

16.
Baulch JE  Li MW  Raabe OG 《Mutation research》2007,616(1-2):34-45
The ataxia telangiectasia mutated (ATM) gene product maintains genome integrity and initiates cellular DNA repair pathways following exposures to genotoxic agents. ATM also plays a significant role in meiotic recombination during spermatogenesis. Fertilization with sperm carrying damaged DNA could lead to adverse effects in offspring including developmental defects or increased cancer susceptibility. Currently, there is little information regarding the effect of ATM heterozygosity on germline DNA repair and heritable effects of paternal germline-ionizing irradiation. We used neutral pH comet assays to evaluate spermatozoa 45 days after acute whole-body irradiation of male mice (0.1Gy, attenuated (137)Cs gamma rays) to determine the effect of ATM heterozygosity on delayed DNA damage effects of Type A/B spermatogonial irradiation. Using the neutral pH sperm comet assay, significant irradiation-related differences were found in comet tail length, percent tail DNA and tail extent moment, but there were no observed differences in effect between wild-type and ATM +/- mice. However, evaluation of spermatozoa from third generation descendants of irradiated male mice for heritable chromatin effects revealed significant differences in DNA electrophoretic mobility in the F(3) descendants that were based upon the irradiated F(0) sire's genotype. In this study, radiation-induced chromatin alterations to Type A/B spermatogonia, detected in mature sperm 45 days post-irradiation, led to chromatin effects in mature sperm three generations later. The early cellular response to and repair of DNA damage is critical and appears to be affected by ATM zygosity. Our results indicate that there is potential for heritable genetic or epigenetic changes following Type A/B spermatogonial irradiation and that ATM heterozygosity increases this effect.  相似文献   

17.
The relationship between DNA damage and repair of peripheral blood leukocytes, liver, kidney and brain cells was investigated in Swiss albino mice (Mus musculus L.) after exposure to sevoflurane (2.4 vol% for 2 h daily, for 3 days). Genetic damage of mouse cells was investigated by the comet assay and micronucleus test. To perform the comet assay, mice were divided into a control group and 4 groups of exposed mice sacrificed on day 3 of the experiment, at 0, 2, 6 or 24 h after the last exposure to sevoflurane. Mean tail length (TL), tail moment (TM), and tail intensity (TI) values were significantly higher in exposed mice (all examined organs) than in the control group. Significant DNA damage immediately after exposure to sevoflurane was observed in leukocytes. Damage induction in the liver, kidney, and brain occurred 6 h later than in leukocytes, as expected according to the toxicokinetics of the drug, where blood is the first compartment to absorb sevoflurane. However, none of the tested tissues revealed signs of repair until 24 h after the exposure. To distinguish the unrepaired genome damage in vivo, the micronucleus test was applied. Number of micronuclei in reticulocytes showed a statistically significant increase, as compared with the control group at all observed times after the treatment.  相似文献   

18.
Human blood cultures were exposed to a 1.9 GHz continuous-wave (CW) radiofrequency (RF) field for 2 h using a series of six circularly polarized, cylindrical waveguides. Mean specific absorption rates (SARs) of 0.0, 0.1, 0.26, 0.92, 2.4 and 10 W/kg were achieved, and the temperature within the cultures during a 2-h exposure was maintained at 37.0 +/- 0.5 degrees C. Concurrent negative (incubator) and positive (1.5 Gy (137)Cs gamma radiation) control cultures were run for each experiment. DNA damage was quantified immediately after RF-field exposure using the alkaline comet assay, and four parameters (tail ratio, tail moment, comet length and tail length) were used to assess DNA damage for each comet. No evidence of increased primary DNA damage was detected by any parameter for RF-field-exposed cultures at any SAR tested. The formation of micronuclei in the RF-field-exposed blood cell cultures was assessed using the cytokinesis-block micronucleus assay. There was no significant difference in the binucleated cell frequency, incidence of micronucleated binucleated cells, or total incidence of micronuclei between any of the RF-field-exposed cultures and the sham-exposed controls at any SAR tested. These results do not support the hypothesis that acute, nonthermalizing 1.9 GHz CW RF-field exposure causes DNA damage in cultured human leukocytes.  相似文献   

19.
Alpha-crystallin, a major protein of all vertebrate lenses, consists of two different subunits, alpha A and alpha B, which form polymeric aggregates with an average molecular mass of 300-800 kDa. Both the alpha A and alpha B subunit have a molecular mass of about 20 kDa. It is not known why alpha crystallin aggregates comprise two different subunits, given that the physicochemical properties of these proteins are very similar. The present study compares the susceptibility of the alpha A and alpha B subunits to gamma-rays. We prepared a recombinant form of human alpha A- and alpha B-crystallin and then irradiated the proteins with gamma-rays. Based on far-UV CD spectra, alpha A-crystallin retained beta-sheet conformation after gamma irradiation up to 3.0 kGy, whereas alpha B-crystallin lost beta-sheet conformation upon exposure to gamma irradiation at >1.0 kGy. Size exclusion chromatography showed that the aggregation and polydispersity of recombinant alpha A-crystallin increased slightly after >1.0 kGy irradiation. In contrast, irradiation of alpha B-crystallin at 1.0 kGy resulted in the formation of huge aggregates and a marked increase in heterogeneity. We have also compared the chaperone activities of gamma-irradiated alpha A- and alpha B-crystallin aggregates. The activity of irradiated alpha A-crystallin was retained while that of the irradiated alpha B-crystallin was became inactive after irradiation of >0.5 kGy. Our results indicate that alpha A-crystallin is more stable to gamma irradiation than alpha B-crystallin.  相似文献   

20.
Aoyama K  Iwahori K  Miyata N 《Mutation research》2003,538(1-2):155-162
Alkaline single-cell gel electrophoresis (comet assay) enables sensitive detection of DNA damage in eukaryotic cells induced by genotoxic agents. We performed a comet assay of unicellular green alga Euglena gracilis that was exposed to genotoxic chemicals, 1-methyl-3-nitro-1-nitrosoguanidine (MNNG), benzo[a]pyrene (BAP), mitomycin C (MMC) and actinomycin D (AMD). Tail length and tail moment in migrated DNA were measured as indications of DNA damage. MNNG and BAP were found to cause concentration-dependent increases in DNA damage. The responses were more sensitive than those of human lymphocytes under the same treatment conditions. MMC and AMD showed no positive response, as reported elsewhere. The comet assays performed at specified times after treatment revealed that the DNA damaged by MNNG and gamma-ray irradiation was repaired during the initial 1h. The results clearly show that the comet assay is useful for evaluating chemically-induced DNA damage and repair in E. gracilis. Given the ease of culturing and handling E. gracilis as well as its sensitivity, the comet assay of this alga would undoubtedly prove to be a useful tool for testing the genotoxicity of chemicals and monitoring of environmental pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号