首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Hydrocortisone administration to infant rats enhanced cellobiase and maltase activities and induced precocious expression of sucrase and trehalase activities along the length of the small intestine. These activity changes reflected proportional concentration increases in the enzymes lactase (EC 3.2.1.23), maltase/glucoamylase (EC 3.2.1.20) and sucrase-isomaltase (EC 3.2.1.48/10). Administration of an equivalent tracer dose of [3H]leucine (by body weight) to control and hydrocortisone-treated infant rats resulted in greater accumulation of label in the carbohydrase pools of the treated rats, suggesting their increased de novo synthesis. The increased concentrations of lactase and maltase/glucoamylase induced by exogenous hydrocortisone were matched by the presence of corresponding greater amounts of label in their brush border pools. Accumulation of label in each of the lactase, maltase/glucoamylase and sucrase-isomaltase pools was generally similar in the hydrocortisone-treated rats, suggesting equivalent stimulation of their synthesis as a group by the humoral agent. The turnover rates of the carbohydrases as a group were found to be similar and did not appear to differ in control and hydrocortisone-treated rats. Total protein synthesis rates were slightly greater in the intestine of the hydrocortisone-treated group of rats.  相似文献   

2.
3.
Although it is generally accepted that lactase (β-d-galactosidase, EC 3.2.1.23) activity is not influenced by intake of saccharides containing α-linkages, an effect of these carbohydrates on lactase activity was never thoroughly investigated. Activity of lactase and sucrase (sucrose α-d-glucohydrolase, EC 3.2.1.48) was determined in proximal, middle and distal thirds of the jejunoilem of female, 12-week-old rats, fed for 2 weeks a low-starch (5 cal%), high-fat (73%) diet, and in rats, that after this introduction period were fed for 1,2 and 3 days, an isocaloric middle-starch (40%), middle-fat (36%) diet or an isocaloric high-starch (70%), low-fat (7%) diet. During the entire experimental period, the body weight changes, food intake and the amount of protein per segment were practically the same in all three dietary groups. In all intestinal segments, increased intake of starch was followed by an increase of lactase and sucroase activity (both expressed as per tissue protein or per intestinal segment) within the first day. The increase continued during the second day and leveled off during the third day. A highly significant linear correlation was found between the search content of the diets and the lactase activity in all three segments. A highly significant correlation was also established in all three segments between sucrase and lactase activities. These studies thus demonstrated a dose- and time-dependency between the intake of starch (a carbohydrate containing only α-linkages) and the activity of lactase, a neutral β-galactosidase in adult rats.  相似文献   

4.
Biosynthesis and accumulation of seed storage proteins such as the wheat glutens depend on the activity of a variety of other proteins, including chaperones and foldases. cDNA probes and antibodies to two chaperone proteins and a foldase were used to follow mRNA and protein accumulation in developing grains of wheat ( Triticum aestivum , cvs Cheyenne and Butte). Endosperm was separated from other grain components and protein accumulation was analyzed on a per mg fresh weight basis. The ER resident chaperone BiP (binding protein) and foldase PDI (protein disulfide isomerase) accumulated to maximal levels in the middle stage of endosperm development, a period of rapid cell expansion and storage protein accumulation, whereas levels of a cytosolic chaperone, HSP70, remained relatively constant throughout grain development. In contrast, nucleoside diphosphate kinase (NDK), a cytosolic enzyme needed for synthesis of nucleoside triphosphates, accumulated early in endosperm development during the period of nuclear division and cell formation. When analyzed as a fraction of total protein the relative abundance of all four proteins peaked early in grain development and then declined. Accumulation of mRNA for the four proteins also peaked early in grain development. Although BiP and PDI formed a declining percentage of total protein as storage protein accumulated, their pattern of accumulation was compatible with a proposed role as catalysts for storage protein folding and accumulation in the ER.  相似文献   

5.
The amounts of lactase (beta-D-galactosidase, EC 3.2.1.23), sucrase (sucrose alpha-D-glucohydrolase, EC 3.2.1.48), maltase (alpha-D-glucosidase, EC 3.2.1.20) microvillus aminopeptidase (EC 3.4.11.2) and dipeptidyl peptidase IV (EC 3.4.14.-) in tangentially sectioned biopsies from jejunum were studied by quantitative immunoelectrophoresis and enzymic assays. All enzymes had their maximum activities near the mid-region of the villi and their lowest activities at the bases of the crypts. The ratio between enzyme activity and immunoreactive protein was constant along the villus-crypt axis. This result is consistent with a continuous brush-border-enzyme synthesis as the enterocytes migrate up the villi.  相似文献   

6.
7.
Lactase-phlorizin hydrolase (LPH), a membrane-bound glycoprotein present in the luminal surface of enterocytes in the intestine is responsible for lactose intolerance, a phenomenon prevalent in humans worldwide. In the rodent intestine, the post-natal development of the LPH follows a specific pattern, such that the enzyme levels are high in the peri-natal period, but declines considerably upon maturation. The observed maturational decline in the LPH activity is very similar to adult-type hypolactasia observed in humans. Majority of the studies have been carried out using animal models or cell lines and a number of hypotheses have been put forward to explain the maturational decline of lactase activity such as: (a) decreased amount of lactase protein, (b) defect in post-translational modification of precursor lactase to the mature enzyme, and (c) synthesis of an inactive, high molecular weight lactase with altered glycosylation, however, the precise underlying mechanism of adult-type hypolactasia remains undefined. The present review describes the recent developments in understanding the regulation of lactase expression and the possible mechanism of adult-type hypolactasia, as a cause of lactose intolerance.  相似文献   

8.
The regulatory mechanism of decline in catalytic activity for intestinal lactase (lactase-phlorizin hydrolase, beta-galactosidase) as mammals mature has not been defined. Solubilized intestinal brush-border membranes from adult male rats (greater than 4 months of age, 200-400 g) were examined by high performance liquid Zorbax GF-450 chromatography, subjected to denaturing acrylamide electrophoresis, blotted to nitrocellulose, and identified by specific polyvalent anti-lactase. Three major species were present within the 235-kDa active lactase peak (225, 130, and 100 kDa). The 100-kDa moiety was also prominent in the approximately 300-kDa region of the GF-450 effluent, suggesting it is a catalytically inactive oligomer. In vivo synthesis and assembly of lactase by intraintestinal pulse [( 35S]methionine, 5 min) and chase (15-120 min) revealed rapid (15 min of chase; maximum, 60 min) intracellular synthesis in the endoplasmic reticulum-Golgi fraction of multiple species (64, 100, 130, 175, and 225 kDa). The 64-kDa species disappeared from the intracellular membrane compartment and was not transferred to the brush-border surface. The 175-kDa moiety appeared to be processed to the 225-kDa unit prior to relocation to the surface membrane. By 120 min, the 100-kDa species became the predominant (approximately 60%) radiolabeled unit in both endoplasmic reticulum-Golgi and brush border. In the adult rat, lactase is assembled in multiple molecular forms that are differentially processed: (a) intracellular degradation (64-kDa unit) or (b) transfer to the brush-border surface as catalytically active (225 and 130 kDa) or inactive (100 kDa) species. Although substantial synthesis of lactase proteins prevails, major changes in processing appear to serve as an important regulatory mechanism producing the maturational decline of catalytic activity. The accompanying article (Castillo, R. O., Reisenauer, A. M., Kwong, L. K., Tsuboi, K. K., Quan, R., and Gray, G. M. (1990) J. Biol. Chem. 265, 15889-15893) extends our studies to synthesis and assembly during the neonatal period of maturation.  相似文献   

9.
The synthesis of cytoplasmic and nuclear proteins has been studied in HeLa cells by examining the amount of radioactive protein appearing in the various subcellular fractions after labeling for brief periods. Due to the rapid equilibration of the amino acid pool, the total radioactivity in cytoplasmic protein increases linearly. The radioactivity observed in the cytoplasm is the sum of two components, the nascent proteins on the ribosomes and the completed proteins. At very short labeling times the specific activity of newly formed proteins found in the soluble supernatant fraction (completed protein) increases as the square of time, whereas the specific activity of the ribosomal fraction (nascent protein) reaches a plateau after 100 sec. The kinetics of accumulation of radioactive protein in the nucleus and the nucleolus is very similar to that of completed cytoplasmic protein, which suggests that the proteins are of similar origin. The rate of release and migration of proteins from the ribosomes into the nucleus requires less time than the synthesis of a polypeptide, which is about 80 sec. The uptake of label into nucleolar proteins is as rapid as the uptake of label into proteins of the soluble fraction of the cytoplasm, while nuclear proteins, including histones, tend to be labeled more slowly. The same results are obtained if protein synthesis is slowed with low concentrations of cycloheximide. The kinetics of incorporation of amino acids into various fractions of the cell indicates that the nucleus and the nucleolus contain few if any growing polypeptide chains, and thus do not synthesize their own proteins.  相似文献   

10.
11.
12.
The adult guinea-pig small intestinal microvillus membrane was purified approximately 25-fold by both cation-precipitation and differential centrifugation methods. Comparison by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed no substantial differences in polypeptide composition between the two preparations. One-dimensional SDS-PAGE and two-dimensional isoelectric focussing (IEF)/SDS-PAGE, together with Coomassie-blue, silver and lectin-staining, showed three major high molecular weight polypeptides, Mr 108 000, 116 000 and 127 000, as well as a 47 kDa protein (actin), as major constituents of the membrane. The proteins of Mr 108 000 and 116 000 were strongly concanavalin A reactive. A detailed two-dimensional IEF/SDS-PAGE map of the membrane was constructed. Sodium carbonate treatment showed the two concanavalin A-reactive glycoproteins, Mr 108 000 and 116 000, comprising the sucrase-isomaltase complex, to be loosely-associated 'extrinsic' microvillus membrane proteins. Two proteins, Mr 127 000 and 135 000, were tightly-associated 'intrinsic' microvillus proteins. Despite regional differences in specific activity of some small intestinal microvillar enzymes, most noticeably enterokinase (EC 3.4.21.9) and dipeptidyl peptidase IV (EC 3.4.14.x), no substantial regional differences were seen in microvillus membrane polypeptide composition. In contrast, a substantial increase in the major high molecular weight proteins of Mr 108 000 and 116 000 accompanied a 10-fold rise in sucrase-isomaltase activity, and loss of a major protein of Mr 131 000 accompanied the complete loss of lactase activity from the membrane during postnatal development.  相似文献   

13.
14.
Several parameters of amino acid metabolism were studied in detached primary leaves of wheat (Triticum aestivum L. cv. Castell) during a 14 day incubation period in the dark. Protein loss was accompanied by a 5-fold increase in the total amount of free amino acids during the first 4 days of the incubation period with asparagine being the most important. Beyond this stage a pronounced intracellular accumulation of ammonium occured. A gradual decrease in the levels of free amino acids and ammonium at the later stages of senescence could in part be accounted for by leakage from the leaves. Additionally, some nitrogen was lost due to ammonia volatilization. The rapid decay of the glutamine synthetase (GS; EC 6.3.1.2)-glutamate synthase (Fd-GOGAT; EC 1.4.7.1) system and the fast decline of glutamate-pyruvate transaminase (GPT; EC 2.6.1.2) activity appear to be predominant features of senescence in the dark. Decreasing Fd-GOGAT activity was slightly compensated by a small and temporary increase in the activity of NADH-GOGAT (EC 1.4.1.14). Glutamateoxalocetate transaminase (GOT: EC 2.6.1.1) activity, although declining continuously, proved to be much more persistent. Changes in glutamate dehydrogenase (GDH; EC 1.4.1.3) activity closely resembled the profile of ammonium evolution in the leaves and NADP-isocitrate dehydrogenase (IDH; EC 1.1.1.42) activity revealed a temporary maximum during the period of rapid increase in GDH activity. Increased activity of GDH could also be induced by exogenous ammonium. Ammonium accumulation could, at least partly, be caused by increased asparaginase (EC 3.5.1.1) activity which accompanied the rapid conversion of asparagine to aspartic acid. Asparagine aminotransferase (EC 2.6.1.14) activity declined sharply from the beginning of the senescence period. Although the activity profile of glutaminase (EC 3.5.1.2) was similar to that of asparaginase, glutamine was of little importance quantitatively and an analogous relationship between glutamine and glutamic acid could not be detected.  相似文献   

15.
Disaccharides 2-O-, 3-O-, and 4-O-beta-D-galactopyranosyl-D-xyloses (2, 3, and 1, respectively) were obtained by beta-galactosidase-catalyzed reactions for their use in the evaluation of intestinal lactase activity in vivo. Their administration to suckling rats followed by determination of the derived D-xylose in the urine and measurement of lactase activity in intestinal homogenates showed 1 to be the most suitable disaccharide for a potential test of the deficiency of intestinal lactase. The synthesis of 1 was further studied by evaluating the effect of different variables on the yield and regioselectivity of the enzymatic galactosylation, and the purification process was optimized.  相似文献   

16.
17.
A comparative investigation was undertaken with pigeon pea leaves and attached flower buds/flowers/pods during their developmental stages including senescence in a natural system in experimental plots. Alterations in chloroplast pigments, total soluble proteins, lipid peroxidation, malondialdehyde (MDA) content and activities of guaiacol peroxidase (POD, EC 1.11.1.7) and superoxide dismutase (SOD, EC 1.15.1.1) were studied at 5-day interval from initial to 40-day stage. Chloroplast pigments and proteins of leaves increased upto 15 and 20-day stages respectively followed by a steady decline. Reproductive parts, however, exhibited rise in chloroplast pigments upto 25-day and protein till last stage as developing pods gain the amount from the senescing leaves which are nearest to them. Senescing leaves show very high POD activity than the developing and senescing pods and POD appears to be associated with chlorophyll degradation. Considerably higher activity and amount of LOX and MDA respectively have been noticed in senescing leaves than in flowers and pods. Increase in SOD activity during early stage of leaf growth and maturation indicates protective role that declined at senescent stages. Pods are unique in having very high SOD activity, only last stage of senescence does show a decline.  相似文献   

18.
Lactase-phlorizin hydrolase (LPH, EC 3.2.1.23-62) is a brush border membrane (BBM)-associated enzyme in intestinal cells that hydrolyse lactose, the most important sugar in milk. Impairing in lactase activity during rotavirus infection has been described in diseased infants but the mechanism by which the functional lesion occurs remains unknown. We undertook a study to elucidate whether rotavirus impairs the lactase enzymatic activity in BBM of human enterocyte cells. In this study we use cultured human intestinal fully differentiated enterocyte-like Caco-2 cells to demonstrate how the lactase enzymatic activity at BBM is significantly decreased in rhesus monkey rotavirus (RRV)-infected cells. We found that the decrease in enzyme activity is not dependent of the Ca(2+)- and cAMP-dependent signalling events triggered by the virus. The LPH biosynthesis, stability, and expression of the protein at the BBM of infected cells were not modified. We provide evidence that in RRV-infected cells the kinetic of lactase enzymatic activity present at the BBM was modified. Both BBM(control) and BBM(RRV) have identical K(m) values, but hydrolyse the substrate at different rates. Thus, the BBM(RRV) exhibits almost a 1.5-fold decreased V(max) than that of BBM(control) and is therefore enzymatically less active than the latter. Our study demonstrate conclusively that the impairment of lactase enzymatic activity at the BBM of the enterocyte-like Caco-2 cells observed during rotavirus infection results from an inhibitory action of the secreted non-structural rotavirus protein NSP4.  相似文献   

19.
Digestive enzymatic activities (maltase, lactase and sucrase) have been determined in the intestinal mucosa of rats subjected to a jejunoileal bypass of 45 cm. The weight and protein content of the mucosa (mg/cm) were significantly decreased in the bypassed segment and significantly increased in the unbypassed segment, as compared to control rats. Maltase, lactase and sucrase specific (U/g protein) and total activity (U/cm intestine) were significantly decreased in the bypassed jejunum, compared to sham-operated rats. In the ileum, maltase specific and total activities increased in bypassed animals while the lactase and sucrase activities remained unchanged.  相似文献   

20.
The mechanism of decline in the catalytic activity of intestinal lactase during neonatal maturation has not been defined, but a shift in the lactase subunit synthesis from an active 130-kDa subunit to an inactive 100-kDa species has now been noted in the adult rat (Quan, R., Santiago, N. A., Tsuboi, K. K., and Gray, G. M. (1990) J. Biol. Chem. 265, 15882-15888). The subunit structure, synthesis, intracellular assembly, and subsequent degradation of lactase from the brush-border surface membrane was examined in 15-day-old pre-weaned and 30-day-old post-weaned intact rats. Lactase was labeled intraintestinally with [35S]methionine, isolated from Triton-solubilized membranes with monospecific polyclonal anti-lactase, and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The protein-stained gel revealed subunits of 225 and 130 kDa, the latter species predominating in both the pre- and post-weaned state. The distinct adult-type 100-kDa moiety was present in post-weaned animals while only a trace of a slightly larger (approximately 110 kDa) species was observed in pre-weaned animals. Quantitation of radioactivity in newly synthesized lactase revealed an increasing prominence of the 100-kDa species in post-weaned rats (130/100 incorporation ratio: pre-weaned 6.2; post-weaned 3.3). Accumulation of newly labeled lactase in brush-border membranes after intraperitoneal [35S]methionine labeling was similar in both groups at 3 h. Despite these comparable rates of lactase synthesis, assembly and insertion in the pre- and post-weaned state, subsequent removal of the 130-kDa unit was more rapid in post-weaned animals (t1/2 = 11 h; pre-weaned t1/2 = 37 h). In intact rats, the neonatal maturational decline in lactase catalytic activities involves both a shift to production of the inactive 100-kDa subunit and increased membrane surface degradation of the active 130-kDa subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号