首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eliezer D  Chung J  Dyson HJ  Wright PE 《Biochemistry》2000,39(11):2894-2901
The partly folded state of apomyoglobin at pH 4 represents an excellent model for an obligatory kinetic folding intermediate. The structure and dynamics of this intermediate state have been extensively examined using NMR spectroscopy. Secondary chemical shifts, (1)H-(1)H NOEs, and amide proton temperature coefficients have been used to probe residual structure in the intermediate state, and NMR relaxation parameters T(1) and T(2) and ?(1)H?-(15)N NOE have been analyzed using spectral densities to correlate motion of the polypeptide chain with these structural observations. A significant amount of helical structure remains in the pH 4 state, indicated by the secondary chemical shifts of the (13)C(alpha), (13)CO, (1)H(alpha), and (13)C(beta) nuclei, and the boundaries of this helical structure are confirmed by the locations of (1)H-(1)H NOEs. Hydrogen bonding in the structured regions is predominantly native-like according to the amide proton chemical shifts and their temperature dependence. The locations of the A, G, and H helix segments and the C-terminal part of the B helix are similar to those in native apomyoglobin, consistent with the early, complete protection of the amides of residues in these helices in quench-flow experiments. These results confirm the similarity of the equilibrium form of apoMb at pH 4 and the kinetic intermediate observed at short times in the quench-flow experiment. Flexibility in this structured core is severely curtailed compared with the remainder of the protein, as indicated by the analysis of the NMR relaxation parameters. Regions with relatively high values of J(0) and low values of J(750) correspond well with the A, B, G, and H helices, an indication that nanosecond time scale backbone fluctuations in these regions of the sequence are restricted. Other parts of the protein show much greater flexibility and much reduced secondary chemical shifts. Nevertheless, several regions show evidence of the beginnings of helical structure, including stretches encompassing the C helix-CD loop, the boundary of the D and E helices, and the C-terminal half of the E helix. These regions are clearly not well-structured in the pH 4 state, unlike the A, B, G, and H helices, which form a native-like structured core. However, the proximity of this structured core most likely influences the region between the B and F helices, inducing at least transient helical structure.  相似文献   

2.
J L Markley 《Biochemistry》1975,14(16):3546-3554
The deuterium exchange kinetics of the C(2) protons of the four histidine residues of native bovine pancreatic ribonuclease A have been followed at pH 6.5 and 8.0 by proton magnetic resonance spectroscopy (1H NMR). Comparison of the order of exchange of the histidine peaks with tritium exchange rates into individual histidine residues [Ohe, M., Matsuo, H., Sakiyama, F., and Narita, K. (1974), J. Biochem. (Tokyo) 75, 1197] supports the previous assignment of histidine NMR peaks H(1) and H(4) to histidine-105 and histidine-48 but requires reassignment of peaks H(2) and H(3) to histidine-119 and histidine-12, respectively. Ribonuclease A samples having differentially deuterated histidines have been used to verify the existence of crossover points in the histidine proton magnetic resonance titration curves and to observe the discontinuous titration curve of histidine-48. Proton magnetic resonance peaks have been assigned to the C(4) protons of the four histidine residues of ribonuclease A on the basis of their unit proton areas and by matching their titration shifts with the more readily visible C(2)-H peaks of the histidines. The pK' values derived from the C(4)-H data agree, within experimental limits, with those derived from C(2)-H data. The C(4)-H peaks were assigned to histidine-12, -48, -105, and -119 of ribonuclease A on the basis of their pH dependence, pK' values, shifts of their pK' values in the presence of inhibitor cytidine 3'-phosphate, and by comparison with the assignments of the histidine C(2)-H peaks above.  相似文献   

3.
G D Henry  B D Sykes 《Biochemistry》1990,29(26):6303-6313
The coat protein of the filamentous coliphage M13 is a 50-residue polypeptide which spans the inner membrane of the Escherichia coli host upon infection. Amide hydrogen exchange kinetics have been used to probe the structure and dynamics of M13 coat protein which has been solubilized in sodium dodecyl sulfate (SDS) micelles. In a previous 1H nuclear magnetic resonance (NMR) study [O'Neil, J. D. J., & Sykes, B. D. (1988) Biochemistry 27, 2753-2762], multiple exponential analysis of the unresolved amide proton envelope revealed the existence of two slow "kinetic sets" containing a total of about 30 protons. The slower set (15-20 amides) originates from the hydrophobic membrane-spanning region and exchanges at least 10(5)-fold slower than the unstructured, non-H-bonded model polypeptide poly(DL-alanine). Herein we use 15N NMR spectroscopy of biosynthetically labeled coat protein to follow individual, assigned, slowly exchanging amides in or near the hydrophobic segment. The INEPT (insensitive nucleus enhancement by polarization transfer) experiment [Morris, G. A., & Freeman, R. (1979) J. Am. Chem. Soc. 101, 760-762] can be used to transfer magnetization to the 15N nucleus from a coupled proton; when 15N-labeled protonated protein is dissolved in 2H2O, the INEPT signal disappears with time as the amide protons are replaced by solvent deuterons. Amide hydrogen exchange is catalyzed by both H+ and OH- ions. Base catalysis is significantly more effective, resulting in a characteristic minimum rate in model peptides at pH approximately equal to 3. Rate versus pH profiles have been obtained by using the INEPT experiment for the amides of leucine-14, leucine-41, tyrosine-21, tyrosine-24, and valines-29, -30, -31, and -33 in M13 coat protein. The valine residues exchange most slowly and at very similar rates, showing an apparent 10(6)-fold retardation over poly(DL-alanine). A substantial basic shift in the pH of the minimum rate (up to 1.5 pH units) was also observed for some residues. Possible reasons for the shift include accumulation of catalytic H+ ions at the negatively charged micelle surface or destabilization of the negatively charged transition state of the base-catalyzed reaction by either charge or hydrophobic effects within the micelle. The time-dependent exchange-out experiment is suitable for slow exchange rates (kex), i.e., less than (1-2) x 10(-4) s-1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
1H NMR spectra of low-spin cyanide-ligated bacterial hemoglobin from Vitreoscilla (VtHb-CN) are reported. The assignments of the 1H NMR spectra of VtHb-CN have been made through MCOSY, NOESY, 1D TOE and SUPERWEFT experiments. Almost all resonance peaks of heme and ligated His85 are identified. The spin-lattice relaxation time T1's and the variation relationships of chemical shifts of these peaks with temperature have been acquired, from which the distances between the measured protons and Fe3 , and the diamagnetic chemical shifts have been acquired, respectively. The ionization constants of pKa's of ligated His85 are determined through pH titration of chemical shift, which is 4.95 for ligated His85 C2H proton. The lower pKa is attributed to the influence of the Fe3 of carrying positive charge and the coordination of His85 and Fe3 of heme.  相似文献   

5.
pH dependence of hydrogen exchange from backbone peptide amides in apamin   总被引:1,自引:0,他引:1  
C E Dempsey 《Biochemistry》1986,25(13):3904-3911
The kinetics of hydrogen exchange of the 11 most protected backbone amides of bee venom apamin have been measured between pH 1 and pH 8.5 by using time-resolved and saturation-transfer NMR spectroscopy. The five amides most protected from base-catalyzed exchange, those of residues 5 and 12-15, show highly correlated exchange behavior in the base-catalyzed regime. It is proposed that the intramolecular hydrogen bonds stabilizing these amides define a stable cooperative unit of secondary structure in apamin (a C-terminal helix and an N-terminal beta-turn). This conformational unit is further stabilized (by 5-6 kJ mol-1) on titration of the Glu-7 side-chain carboxyl group. The relative contributions of specific intramolecular interactions to this conformational stabilization are estimated. The pHminima in the pH-dependent single amide exchange curves are compared with values predicted by correcting for sequence-dependent contributions to amide exchange rates [Molday, R. S., Englander, S. W., & Kallen, R. G. (1972) Biochemistry 11, 150-158]. The lack of correlation suggests that the "open" conformers from which amide exchange occurs are nonrandom. This conclusion is dependent on the assumption that acid-catalyzed exchange occurs via N-protonation so that residual conformational effects on exchange rates in the open conformers will affect acid- and base-catalyzed rates in approximately equal and opposite ways. A strong correlation between the measured pHminima and the amide proton chemical shifts is observed, however, and this may be most easily accommodated if acid-catalyzed exchange occurs by the imidic acid mechanism (via amide O-protonation).  相似文献   

6.
G D Henry  J H Weiner  B D Sykes 《Biochemistry》1987,26(12):3626-3634
Hydrogen-exchange rates have been measured for individual assigned amide protons in M13 coat protein, a 50-residue integral membrane protein, using a 13C nuclear magnetic resonance (NMR) equilibrium isotope shift technique. The locations of the more rapidly exchanging amides have been determined. In D2O solutions, a peptide carbonyl resonance undergoes a small upfield isotope shift (0.08-0.09 ppm) from its position in H2O solutions; in 1:1 H2O/D2O mixtures, the carbonyl line shape is determined by the exchange rate at the adjacent nitrogen atom. M13 coat protein was labeled biosynthetically with 13C at the peptide carbonyls of alanine, glycine, phenylalanine, proline, and lysine, and the exchange rates of 12 assigned amide protons in the hydrophilic regions were measured as a function of pH by using the isotope shift method. This equilibrium technique is sensitive to the more rapidly exchanging protons which are difficult to measure by classical exchange-out experiments. In proteins, structural factors, notably H bonding, can decrease the exchange rate of an amide proton by many orders of magnitude from that observed in the freely exposed amides of model peptides such as poly(DL-alanine). With corrections for sequence-related inductive effects [Molday, R. S., Englander, S. W., & Kallen, R. G. (1972) Biochemistry 11, 150-158], the retardation of amide exchange in sodium dodecyl sulfate solubilized coat protein has been calculated with respect to poly(DL-alanine). The most rapidly exchanging protons, which are retarded very little or not at all, are shown to occur at the N- and C-termini of the molecule.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The 270 MHz 1H NMR spectra of 3'-UMP and 3'-CMP were observed in the presence of a two-fold molar excess of bovine pancreatic RNase A [EC 3.1.27.5] at various pHs. For the C(5), C(6), and C(1') protons of these nucleotides, the pH profiles of chemical shifts induced by binding to RNase A were obtained by plotting the differences between chemical shifts in the presence and the absence of RNase A against pH. Such profiles were bell-shaped for the C(5) and C(6) protons of both 3'-UMP and 3'-CMP. However the profiles of C(1') protons were not bell-shaped but appeared to consist of two bell-shaped curves and reflect the dissociations of at least three ionizable groups. The observations for the C(1') protons suggest that there are at least two forms of complexes different from each other in the interaction reflecting the chemical shift of the C(1') proton. In order to clarify the interacting sites of ribonucleotides affecting the induced shift profile of the C(1') proton, the pH titration curves were observed for 3'-dCMP in the presence of RNase A. The induced shift profile was bell-shaped for the C(1') proton as well as for the C(5) proton of the base. This indicates that the interaction at the O(2')H [or O(2')] sites of ribonucleotides causes the two forms of complexes of 3'-UMP and 3'-CMP with RNase A. The interacting sites and modes were discussed with these and the pH titration curves of His-12, His-119, and Phe-120 of RNase A in the presence of a three-fold molar excess of ribonucleotides.  相似文献   

8.
The interaction between anthracycline antitumor antibiotics daunomycin and novatrone and the vitamin nicotinamide has been investigated by one- and two-dimensional 1H NMR spectroscopy (500 MHz). Due to significant differences in structures of the chromophores of interacting molecules, a two-site heteroassociation model has been developed, allowing the arrangement of one and two nicotinamide molecules on the chromophore of the antibiotic. The equilibrium association constant, thermodynamical parameters (deltaH, deltaS) of the heteroassociation of nicotinamide with daunomycin and novatrone and the induced proton chemical shifts in the heterocomplexes have been determined from the concentration and temperature dependences of proton chemical shifts of interacting molecules. The most favorable structures of 1:1 nicotinamide--daunomycin and nicotinamide-novatrone heteroassociation complexes have been determined using both the molecular mechanics methods (X-PLOR software) and the calculated values of induced proton chemical shifts. Analysis of the results obtained allows one to conclude that two nicotinamide molecules cannot simultaneously bind on one side of the chromophore of antibiotic. Heterocomplexes of the vitamin with the antibiotics with a stoichiometry 1:1 are mainly stabilized by the stacking of aromatic chromophores.  相似文献   

9.
Proton nuclear magnetic resonance (NMR) spectra of crotamine, a myotoxic protein from a Brazilian rattlesnake (Crotalus durissus terrificus), have been analyzed. All the aromatic proton resonances have been assigned to amino acid types, and those from Tyr-1, Phe-12, and Phe-25 to the individual residues. ThepH dependence of the chemical shifts of the aromatic proton resonances indicates that Tyr-1 and one of the two histidines (His-5 or His-10) are in close proximity. A conformational transition takes place at acidicpH, together with immobilization of Met-28 and His-5 or His-10. Two sets of proton resonances have been observed for He-17 and His-5 or His-10, which suggests the presence of two structural states for the crotamine molecule in solution.  相似文献   

10.
1H NMR spectroscopy of the isotropically shifted signals in cobalt carboxypeptidase, CoCPD, permits a direct and selective detection of protons belonging to the residues liganded to the metal. The chemical shift of these protons in the free enzyme and enzyme-inhibitor complexes with changing pH monitors the state of ionization of the ligands directly and of other residues in the active center indirectly. The 1H NMR spectrum of CoCPD at pH 6 shows three well-resolved isotropically shifted signals in the downfield region at 62 (a), 52 (c), and 45 (d) ppm which have been assigned to the NH proton of His-69 and to the C-4 H's of His-69 and His-196, respectively. Titration of signal a with pH is characterized by a pKa of 8.8 which is identical to that seen in prior electronic absorption and kinetic studies. The fact that the signal reflecting the NH of His-69 is still observed at pH 10 and no major shifts occur for the signals reflecting the C-4 H's indicates the alkaline pKa in carboxypeptidase A catalysis, pKEH, cannot be ascribed to ionization of the histidyl NH of either His-69 or His-196. Binding of L-Phe shifts this pKa to 7.7 while not greatly perturbing the downfield 1H NMR signals that reflect the ligation shell of the cobalt coordination sphere. These results indicate the pKa of 8.8 in CoCPD and the pKa of 7.7 in the CoCPD.L-Phe adduct reflect ionization of the same group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Proton pumping of the vacuolar-type H(+)-ATPase into the lumen of the central plant organelle generates a proton gradient of often 1-2 pH units or more. Although structural aspects of the V-type ATPase have been studied in great detail, the question of whether and how the proton pump action is controlled by the proton concentration on both sides of the membrane is not understood. Applying the patch clamp technique to isolated vacuoles from Arabidopsis mesophyll cells in the whole-vacuole mode, we studied the response of the V-ATPase to protons, voltage, and ATP. Current-voltage relationships at different luminal pH values indicated decreasing coupling ratios with acidification. A detailed study of ATP-dependent H(+)-pump currents at a variety of different pH conditions showed a complex regulation of V-ATPase activity by both cytosolic and vacuolar pH. At cytosolic pH 7.5, vacuolar pH changes had relative little effects. Yet, at cytosolic pH 5.5, a 100-fold increase in vacuolar proton concentration resulted in a 70-fold increase of the affinity for ATP binding on the cytosolic side. Changes in pH on either side of the membrane seem to be transferred by the V-ATPase to the other side. A mathematical model was developed that indicates a feedback of proton concentration on peak H(+) current amplitude (v(max)) and ATP consumption (K(m)) of the V-ATPase. It proposes that for efficient V-ATPase function dissociation of transported protons from the pump protein might become higher with increasing pH. This feature results in an optimization of H(+) pumping by the V-ATPase according to existing H(+) concentrations.  相似文献   

12.
Uchida K  Markley JL  Kainosho M 《Biochemistry》2005,44(35):11811-11820
A novel method for monitoring proton-deuteron (H/D) exchange at backbone amides is based on the observation of H/D isotope effects on the (13)C NMR signals from peptide carbonyls. The line shape of the carbonyl (13)C(i) signal is influenced by differential H/D occupancy at the two adjacent amides: the H(N)(i)(+1) (beta site) and the H(N)(i) (gamma site). At a carbon frequency of 75.4 MHz, the H --> D isotope shifts on the (13)C signal are about 5-7 Hz for exchange at the beta site and 2 Hz or less for exchange at the gamma site. Because the effects at the two sites are additive, the time dependence of the line shape of a particular carbonyl resonance can report not only the exchange rates at the individual sites but also the level of dual exchange. Therefore, the data can be analyzed to determine the rate (k(c)) and degree of correlated exchange (X(betagamma)) at the two sites. We have applied this approach to the investigation of the pH dependence of hydrogen exchange at several adjacent residues in Streptomyces subtilisin inhibitor (SSI). Two selectively labeled SSI proteins were produced: one with selective (13)C' labeling at all valyl residues and one with selective (13)C' labeling at all leucyl residues. This permitted the direct observation by one-dimensional (13)C NMR of selected carbonyl signals from residues with slowly exchanging amides at the i and i + 1 positions. The residues investigated were located in an alpha helix and in a five-stranded antiparallel beta sheet. Samples of the two labeled proteins were prepared at various pH values, and (13)C NMR spectra were collected at 50 degrees C prior to and at various times after transferring the sample from H(2)O to (2)H(2)O. Most of the slowly exchanging amides studied were intramolecular hydrogen-bond donors. In agreement with prior studies, the results indicated that the exchange rates of the amide hydrogens in proteins are governed not only by hydrogen bonding but also by other factors. For example, the amide hydrogen of Thr34 exchanges rapidly even though it is an intramolecular hydrogen-bond donor. Over nearly the whole pH range studied, the apparent rates of uncorrelated exchange (k(beta) and k(gamma)) were proportional to [OH(-)] and the apparent rates of correlated exchange at two adjacent sites (k(c)) were roughly proportional to [OH(-)](2). This enabled us to extract the pH-independent exchange rates (k(beta) degrees , k(gamma) degrees , and k(c) degrees ). In all cases in which correlated exchange could be measured, the observed sigmoidal pH dependence of X(betagamma) could be replicated roughly from the derived pH-independent rates.  相似文献   

13.
K H Mayo  M J Chen 《Biochemistry》1989,28(24):9469-9478
As a function of protein concentration, proton NMR spectra of human platelet factor 4 (PF4) differ. Correlation with low-angle laser light scattering data has allowed identification of concentration-dependent NMR spectral changes to PF4 aggregation, with tetramers being the largest aggregates formed. Well-resolved aromatic ring proton NMR resonances were assigned to Tyr-60, His-I, and His-II in monomer, dimer, and tetramer states. Since Tyr-60 3.5 ring proton resonances are well resolved from state to state, estimation of fractional populations in each state was possible. By varying the PF4 concentration, changes in these populations when plotted according to the Hill equation show a bimolecular mechanism of aggregation which proceeds from monomers to tetramers through a dimer intermediate. Equilibrium constants for dimer association (KD) and tetramer association (KT) have been estimated as a function of pH and ionic strength. At pH 4, where KD and KT approach the same value, resonances associated with all three aggregate states are observed. Lowering the pH shifts the equilibrium to the monomer state, while raising the pH shifts the equilibrium to dimer and tetramer states. Analysis of the pH dependence of KD and KT suggests that electrostatic interactions, probably arising from Glu/Asp and Lys/Arg side chains, play a role in the binding process. Increasing the solvent ionic strength stabilizes the tetramer state especially at low pH, suggesting that intersubunit, repulsive electrostatic interactions probably between/among cationic side chains (Lys/Arg) attenuate the aggregation process. Information based primarily on histidine pKa values and photo-CIDNP 1H NMR data suggests that Tyr-60 and His-I, but not His-II, are significantly affected by the aggregation process.  相似文献   

14.
Summary Proton chemical shifts of a series of disordered linear peptides (H-Gly-Gly-X-Gly-Gly-OH, with X being one of the 20 naturally occurring amino acids) have been obtained using 1D and 2D 1H NMR at pH 5.0 as a function of temperature and solvent composition. The use of 2D methods has allowed some ambiguities in side-chain assignments in previous studies to be resolved. An additional benefit of the temperature data is that they can be used to obtain ‘random coil’ amide proton chemical shifts at any temperature between 278 and 318 K by interpolation. Changes of chemical shift as a function of trifluoroethanol concentration have also been determined at a variety of temperatures for a subset of peptides. Significant changes are found in backbone and side-chain amide proton chemical shifts in these ‘random coil’ peptides with increasing amounts of trifluoroethanol, suggesting that caution is required when interpreting chemical shift changes as a measure of helix formation in peptides in the presence of this solvent. Comparison of the proton chemical shifts obtained here for H-Gly-Gly-X-Gly-Gly-OH with those for H-Gly-Gly-X-Ala-OH [Bundi, A. and Wüthrich, K. (1979) Biopolymers, 18, 285–297] and for Ac-Gly-Gly-X-Ala-Gly-Gly-NH2 [Wishart, D.S., Bigam, C.G., Holm, A., Hodges, R.S. and Sykes, B.D. (1995) J. Biomol. NMR, 5, 67–81] generally shows good agreement for CH protons, but reveals significant variability for NH protons. Amide proton chemical shifts appear to be highly sensitive to local sequence variations and probably also to solution conditions. Caution must therefore be exercised in any structural interpretation based on amide proton chemical shifts.  相似文献   

15.
We have determined by (15)N, (1)H, and (13)C NMR, the chemical behavior of the six histidines in subtilisin BPN' and their PMSF and peptide boronic acid complexes in aqueous solution as a function of pH in the range of from 5 to 11, and have assigned every (15)N, (1)H, C(epsilon 1), and C(delta2) resonance of all His side chains in resting enzyme. Four of the six histidine residues (17, 39, 67, and 226) are neutrally charged and do not titrate. One histidine (238), located on the protein surface, titrates with pK(a) = 7.30 +/- 0.03 at 25 degrees C, having rapid proton exchange, but restricted mobility. The active site histidine (64) in mutant N155A titrates with a pK(a) value of 7.9 +/- 0.3 and sluggish proton exchange behavior, as shown by two-site exchange computer lineshape simulation. His 64 in resting enzyme contains an extremely high C(epsilon 1)-H proton chemical shift of 9.30 parts per million (ppm) owing to a conserved C(epsilon 1)-H(.)O=C H-bond from the active site imidazole to a backbone carbonyl group, which is found in all known serine proteases representing all four superfamilies. Only His 226, and His 64 at high pH, exist as the rare N(delta1)-H tautomer, exhibiting (13)C(delta1) chemical shifts approximately 9 ppm higher than those for N(epsilon 2)-H tautomers. His 64 in the PMSF complex, unlike that in the resting enzyme, is highly mobile in its low pH form, as shown by (15)N-(1)H NOE effects, and titrates with rapid proton exchange kinetics linked to a pK(a) value of 7.47 +/- 0.02.  相似文献   

16.
In the photosynthetic reaction center (RC) from the purple bacterium Rhodobacter sphaeroides, proton-coupled electron-transfer reactions occur at the secondary quinone (QB) site. Involved in the proton uptake steps are carboxylic acids, which have characteristic infrared vibrations in the 1770-1700 cm-1 spectral range that are sensitive to 1H/2H isotopic exchange. With respect to the native RC, a novel protonation pattern for carboxylic acids upon QB photoreduction has been identified in the Glu-L212 --> Asp/Asp-L213 --> Glu mutant RC using light-induced FTIR difference spectroscopy (Nabedryk, E., Breton, J., Okamura, M. Y., and Paddock, M. L. (2004) Biochemistry 43, 7236-7243). These carboxylic acids are structurally close and have been implicated in proton transfer to reduced QB. In this work, we extend previous studies by measuring the pH dependence of the QB-/QB FTIR difference spectra of the mutant in 1H2O and 2H2O. Large pH dependent changes were observed in the 1770-1700 cm-1 spectral range between pH 8 and pH 4. The IR fingerprints of the protonating carboxylic acids upon QB- formation were obtained from the calculated double-difference spectra 1H2O minus 2H2O. These IR fingerprints are specific for each pH, indicative of the contribution of different titrating groups. In particular, the 1752 cm-1 signal indicates that Glu-L213 protonates upon QB- formation at pH >or= 5, whereas the 1746 cm-1 signal indicates protonation of Asp-L212 even at pH 4. An unidentified carboxylic acid absorbing at approximately 1765 cm-1 could be the proton donor between pH 8 and 5. The observation that in the swap mutant there are several uniquely behaving carboxylic acids shows that electrostatic interactions occurring between them are sufficiently modified from the native RC to reveal their IR signatures.  相似文献   

17.
H J Dyson  L L Tennant  A Holmgren 《Biochemistry》1991,30(17):4262-4268
A series of two-dimensional (2D) correlated 1H NMR spectra of reduced and oxidized Escherichia coli thioredoxin have been used to probe the effects of pH in the vicinity of the active site, -Cys32-Gly-Pro-Cys35-, using the complete proton resonance assignments available for thioredoxin. In either oxidation state, the majority of residues of the thioredoxin molecule remain unchanged between pH 5.7 and pH 10, as indicated by the identical chemical shifts of the C alpha H, C beta H, and other protons. In reduced thioredoxin, a fairly widespread region around the active-site dithiol is affected by the titration of a group or groups with pKa approximately 7.1-7.4 in 2H2O. Another titration, with pKa approximately 8.4, affects a smaller region of the protein. Oxidized thioredoxin contains a disulfide and no free thiol groups; nevertheless, the proton resonances of many groups in the active-site region were observed to titrate with a pKa of 7.5, probably as a result of an abnormally high pKa value for the carboxyl group of the buried Asp-26 residue. For reduced thioredoxin, the results indicate that Asp-26 is titrating in this pH range, as well as both thiol groups. The new results are strongly suggestive that the mechanism of thioredoxin-catalyzed protein disulfide reduction may be critically dependent on proton transfer as well as electron transfer within the active site.  相似文献   

18.
J D O'Neil  B D Sykes 《Biochemistry》1988,27(8):2753-2762
The coat protein of bacteriophage M13 is inserted into the inner membrane of Escherichia coli where it exists as an integral membrane protein during the reproductive cycle of the phage. The protein sequence consists of a highly hydrophobic 19-residue central segment flanked by an acidic 20-residue N-terminus and a basic 11-residue C-terminus. We have measured backbone amide hydrogen exchange of the protein solubilized in perdeuteriated sodium dodecyl sulfate using 1H nuclear magnetic resonance (NMR) spectroscopy. Direct proton exchange-out measurements in D2O at 24 degrees C were used to follow the exchange of the slowest amides in the protein. Multiple exponential fitting of the exchange data showed that these amides (29 +/- 3 at pH 4.5) exchanged in two kinetic sets with exchange rates [(1.2 +/- 0.4) x 10(-4) s-1 and (4.1 +/- 1.2) x 10(-7) s-1] that differed by more than 100-fold, the slower kinetic set being retarded 10(5)-fold relative to poly(DL-alanine). The exchange rate constant for the slowest set of amides exhibited an unusual pD dependence, being proportional to [OD-]1/2. It is shown that this is an artifact of the multiple exponential fitting of the data, and a new method of presentation of exchange data as a function of pD is introduced. Steady-state saturation-transfer techniques were also used to measure exchange. These methods showed that 15-20 amides in the protein are very stable at 55 degrees C and that about 30 amides have exchange rates retarded by at least 10(5)-fold at 24 degrees C. Saturation-transfer studies also showed that the pH dependence of exchange in the hydrophilic termini was unusual. This is explained as being due to long-range electrostatic effects arising both from the protein itself and also from the anionic detergent molecules. Hydrogen exchange studies on the products of proteinase K digestion of the protein localized the slowly exchanging amides to the hydrophobic core of the protein. Relaxation [Henry, G.D., Weiner, J.H., & Sykes, B.D. (1986) Biochemistry 25, 590-598] and solid-state NMR experiments [Leo, G.C., Colnago, L.A., Valentine, K.G., & Opella, S.J. (1987) Biochemistry 26, 854-862] have previously shown that the majority of the protein backbone is rigid on the picosecond to microsecond time scale, except for the extreme ends of the molecule which are mobile.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Proton NMR studies at 300 MHz and 500 MHz have been carried out on the trinucleoside bisphosphate d(CpGpG) and on cis-Pt(NH3)2[d(CpGpG)-N7(2),N7(3)] [abbreviated as d(CpGpGp) . cisPt]. For the Pt adduct, 13C and 31P NMR was also used for characterizing the oligonucleotide. d(CpGpG) appears to revert to a B-DNA-type single helix at lower temperatures. The relatively small concentration dependence of the proton chemical shifts, in comparison with shifts due to intramolecular stacking effects, indicates that the compound is essentially single-stranded. In d(CpGpGp) . cisPt, the first nucleoside, C(1), stacks well on top of the second, G(2), despite the N conformation of the G(2) sugar ring. The platinated GpG part in this trimer adopts largely the same structure as in cis-Pt(NH3)2[d(GpGpG)-N7(1),N7(2)] [den Hartog, J. H. J., et al. (1982) Nucleic Acids Res. 10, 4715-4730]. Main differences however, are changes in H8 chemical shifts and a 0.6-ppm downfield shift of the third nucleotide phosphorus, P(3), in d(CpGpGp) . cisPt with respect to P(2) in d(GpG) . cisPt. The latter shift change is likely to be induced by a structural alteration, caused by stacking of C(1) on top of G(2). Also, the large chemical shift differences between the two H8 protons in d(NpGpG) . cisPt fragments is discussed; the deviation from a mirror symmetry of the two guanine bases seems to be the main origin of this effect. The chemical shift changes, observed in the proton and phosphorus NMR chemical shift temperature and chemical shift pH profiles have been explained in terms of stack-destack equilibria changes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号