首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the neuron, SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) assembly acts centrally in driving membrane fusion, a required process for neurotransmitter release. In the cytoplasm, vesicular SNARE VAMP-2 (vesicle-associated membrane protein-2) engages with two plasma membrane SNAREs, syntaxin 1A and SNAP-25 (synaptosome-associated protein of 25 kDa), to form the core complex that bridges two membranes. Although various factors regulate SNARE assembly, the membrane also aids in regulation by trapping VAMP-2 in the membrane. Fluorescence and EPR analyses revealed that the insertion of seven C-terminal core-forming residues into the membrane controls complex formation of the entire core region, even though the preceding 54 core-forming residues are fully exposed and freely moving. When two interfacial tryptophan residues in this region were replaced with hydrophilic serine residues, the mutation supported rapid complex formation. The results suggest that the membrane-proximal region of VAMP-2 is a regulatory module for SNARE assembly, providing new insights into calcium-triggered membrane fusion.  相似文献   

2.
Biomaterials constructed from self-assembling peptides, peptide derivatives, and peptide-polymer conjugates are receiving increasing attention as defined matrices for tissue engineering, controlled therapeutic release, and in vitro cell expansion, but many are constructed from peptide structures not typically found in the human extracellular matrix. Here we report a self-assembling biomaterial constructed from a designed peptide inspired by the coiled coil domain of human fibrin, the major protein constituent of blood clots and the provisional scaffold of wound healing. Targeted substitutions were made in the residues forming the interface between coiled coil strands for a 37-amino acid peptide from human fibrinogen to stabilize the coiled coil peptide bundle, while the solvent-exposed residues were left unchanged to provide a surface similar to that of the native protein. This peptide, which self-assembled into coiled coil dimers and tetramers, was then used to produce triblock peptide-PEG-peptide bioconjugates that self-assembled into viscoelastic hydrogel biomaterials.  相似文献   

3.
We utilize structurally targeted peptides to identify a "tC fusion switch" inherent to the coil domains of the neuronal t-SNARE that pairs with the cognate v-SNARE. The tC fusion switch is located in the membrane-proximal portion of the t-SNARE and controls the rate at which the helical bundle that forms the SNAREpin can zip up to drive bilayer fusion. When the fusion switch is "off" (the intrinsic state of the t-SNARE), zippering of the helices from their membrane-distal ends is impeded and fusion is slow. When the tC fusion switch is "on," fusion is much faster. The tC fusion switch can be thrown by a peptide that corresponds to the membrane-proximal half of the cognate v-SNARE, and binds reversibly to the cognate region of the t-SNARE. This structures the coil in the membrane-proximal domain of the t-SNARE and accelerates fusion, implying that the intrinsically unstable coil in that region is a natural impediment to the completion of zippering, and thus, fusion. Proteins that stabilize or destabilize one or the other state of the tC fusion switch would exert fine temporal control over the rate of fusion after SNAREs have already partly zippered up.  相似文献   

4.
Simulated annealing was performed to model parallel dimers of alpha-helical transmembrane peptides with the sequence L(11)XL(12), predicting left-handed coiled coil geometry in all cases. Insertion of peptides containing threonine, asparagine, alanine, phenylalanine, and leucine in position 12 into realistic model membranes showed these structures were stable for 20 ns of molecular dynamics simulation time. Threonine could participate in intermolecular hydrogen bonds, but predominantly formed hydrogen bonds to the backbone of the helix it resided on. These hydrogen bonds, although infrequent, appeared to promote closer association of polyleucine helices. Asparagine participated in multiple, rapidly fluctuating intermolecular and intramolecular hydrogen bonds, and may have slightly destabilized optimum van der Waals packing in favor of optimum hydrogen bonding. Coordinated rotations of transmembrane helices about their axes were observed, indicating helices may rotate around one another during the folding of membrane proteins or other processes. These rotations were inhibited by phenylalanine, suggesting a role for bulky residues in modulating membrane protein dynamics.  相似文献   

5.
6.
Assembly of the SNARE complex is an essential step for membrane fusion and neurotransmitter release in neurons. The plasma membrane SNAREs syntaxin 1A and SNAP-25 (t-SNAREs) and the delivery-vesicle SNARE VAMP2 (or v-SNARE) contain the "SNARE regions" that essentially mediate SNARE pairing. Using site-directed spin labeling and EPR distance measurement we show that two identical copies of the SNARE region from syntaxin 1A intertwine as a coiled coil near the "ionic layer" region. The structure of the t-SNARE complex appears to be virtually identical to that of the ternary SNARE complex, except that VAMP2 is substituted to the second copy of syntaxin 1A. Furthermore, it appears that the coiled coil structure is maintained up to residue 259 of syntaxin 1A, identical to that of the ternary complex. These results are somewhat contradictory to the previous reports, suggesting that the t-SNARE complex has the disordered midsection (Xiao, W. Z., Poirier, M. A., Bennett, M. K., and Shin, Y. K. (2001) Nat. Struc. Biol. 8, 308-311) and the uncoiled C-terminal region (Margittai, M., Fasshauer, D., Pabst, S., Jahn, R., and Langen, R. (2001) J. Biol. Chem. 276, 13169-13177). The newly refined structure of the t-SNARE complex provides a basis for the better understanding of the SNARE assembly process. It also provides possible structural-functional clues to the membrane fusion in the v-SNARE deleted fusion models.  相似文献   

7.
We have successfully designed a simple peptide sequence that forms highly stable coiled-coil heterotetramers. Our model system is based on the GCN4-pLI parallel coiled-coil tetramer, first described by Kim and coworkers (Harbury et al., Science 1993;262:1401–1407). We introduced glutamates at all of the e and c heptad positions of one sequence (ecE) and lysines at the same positions in a second sequence (ecK). Based on a modeling study, these sidechains are close enough in space to form structure-stabilizing salt bridges. We show that ecE and ecK are highly unstable by themselves but form very stable parallel helical tetramers when mixed, as judged by circular dichroism, analytical ultracentrifugation, and disulfide crosslinking studies. The origin of the difference in stabilities between the homomeric structures and the heteromeric structures comes from a combination of the relief of electrostatic repulsions with concomitant formation of electrostatic attractive interactions based on pH and NaCl screening experiments. We quantify the stability of the heterotetrameric coiled coil from a thermodynamic analysis and compare the finding to other similar coiled-coil systems.  相似文献   

8.
Coiled coils consist of two or more amphipathic a-helices wrapped around each other to form a superhelical structure stabilized at the interhelical interface by hydrophobic residues spaced in a repeating 3-4 sequence pattern. Dimeric coiled coils have been shown to often form in a single step reaction in which association and folding of peptide chains are tightly coupled. Here, we ask whether such a simple folding mechanism may also apply to the formation of a three-stranded coiled coil. The designed 29-residue peptide LZ16A was shown previously to be in a concentration-dependent equilibrium between unfolded monomer (M), folded dimer (D), and folded trimer (T). We show by time-resolved fluorescence change experiments that folding of LZ16A to D and T can be described by 2M (k1)<==>(k(-1)) D and M + D (k2)<==>(k(-2)) T. The following rate constants were determined (25 degrees C, pH 7): k1 = 7.8 x 10(4) M(-1) s(-1), k(-1) = 0.015 s(-1), k2 = 6.5 x 10(5) M(-1) s(-1), and k(-2) = 1.1 s(-1). In a separate experiment, equilibrium binding constants were determined from the change with concentration of the far-ultraviolet circular dichroism spectrum of LZ16A and were in good agreement with the kinetic rate constants according to K(D) = k1/2k(-1) and K(T) = k2/k(-2). Furthermore, pulsed hydrogen-exchange experiments indicated that only unfolded M and folded D and T were significantly populated during folding. The results are compatible with a two-step reaction in which a subpopulation of association competent (e.g., partly helical) monomers associate to dimeric and trimeric coiled coils.  相似文献   

9.
A five-membered ring amino acid (Ac5c), the peptides of which exhibit a preference for helical secondary structures, was introduced into peptides for the purpose of designing coiled coil peptides with high binding affinities. We prepared five types of peptides containing Ac5c with different numbers or at different positions. The incorporation of Ac5c into peptides enhanced their α-helicities; however, in contrast to our expectations, it did not result in stable coiled coil formation. The structures of side chains in hydrophobic amino acids, not α-helicities appeared to be important for stable hydrophobic interactions between peptides. Although we were unable to develop coiled coil peptides with high binding affinities, the present results will be useful for designing novel coiled coil peptides.  相似文献   

10.
《Biophysical journal》2022,121(16):3081-3102
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) form the SNARE complex to mediate most fusion events of the secretory pathway. The neuronal SNARE complex is featured by its high stability and half-zippered conformation required for driving robust and fast synaptic exocytosis. However, these two features seem to be thermodynamically mutually exclusive. In this study, we have employed temperature-dependent disassociation assays and single-molecule Förster resonance energy transfer (FRET) experiments to analyze the stability and conformation of the neuronal SNARE complex. We reclassified the amino acids of the SNARE motif into four sub-groups (core, core-side I and II, and non-contact). Our data showed that the core residues predominantly contribute to the complex stability to meet a basal requirement for SNARE-mediated membrane fusion, while the core-side residues exert an unbalanced effect on the N- and C-half bundle stability that determines the half-zippered conformation of the neuronal SNARE complex, which would accommodate essential regulations by complexins and synaptotagmins for fast Ca2+-triggered membrane fusion. Furthermore, our data confirmed a strong coupling of folding energy between the N- and C-half assembly of the neuronal SNARE complex, which rationalizes the strong potency of the half-zippered conformation to conduct robust and fast fusion. Overall, these results uncovered that the stability profile of the neuronal SNARE complex reflects its potency to drive fast and robust membrane fusion. Based on these results, we also developed a new parameter, the stability factor (Fs), to characterize the overall stability of the neuronal SNARE complex and resolved a linear correlation between the stability and inter-residue coulombic interactions of the neuronal SNARE complex, which would help rationally design artificial SNARE complexes and remold functional SNARE complexes with desirable stability.  相似文献   

11.
pH-induced folding of an apoptotic coiled coil   总被引:6,自引:0,他引:6       下载免费PDF全文
Par-4 is a 38-kD protein pivotal to the apoptotic pathways of various cell types, most notably prostate cells and neurons, where it has been linked to prostate cancer and various neurodegenerative disorders including Alzheimer's and Huntington's diseases and HIV encephalitis. The C-terminal region of Par-4 is responsible for homodimerization and the ability of Par-4 to interact with proposed effector molecules. In this study, we show that the C-terminal 47 residues of Par-4 are natively unfolded at physiological pH and temperature. Evidence is rapidly accumulating that natively unfolded proteins play an important role in various cellular functions and signaling pathways, and that folding can often be induced on complexation with effector molecules or alteration of environment. Here we use primarily CD studies to show that changes in the environment, particularly pH and temperature, can induce the Par-4 C terminus to form a self-associated coiled coil.  相似文献   

12.
T Heimburg  J Schünemann  K Weber  N Geisler 《Biochemistry》1999,38(39):12727-12734
Coiled coils of different order were investigated using infrared (IR) spectroscopy. Recently, we demonstrated that dimeric coiled coils display unique vibrational spectra with at least three separable bands instead of only one band of a classical alpha-helix in the amide I region.This was attributed to a distortion of the helical structure by the supercoil bending, giving rise to bands that are not observed in the undistorted helix. Here, we investigated coiled coils forming trimers, tetramers, and pentamers. These higher order coiled coils, in general, possess larger superhelical pitches, resulting in a smaller helical distortion. We found that all coiled coils studied, including the native dimeric GCN4 leucine zipper and its variants leading to parallel trimers and tetramers as well as the rod portions of fibritin (parallel trimer), alpha-actinin (antiparallel spectrin type trimer), and COMP (parallel pentamer), displayed the typical three band pattern of the coiled coil amide I spectra. However, the separation of these three bands and their positional deviation from the classical alpha-helical band position was correlated to the extent of the helical distortion as reflected by the pitch values of the supercoils. The most pronounced spectral anomaly was found for the tropomyosin dimer with a reported helical pitch of 137 A, whereas the smallest spectral distortion was found for the pentameric COMP complex and the tetrameric leucine zipper mutant, both with a pitch of about 205 A.  相似文献   

13.
We examined GenBank sequence files with a heptad repeat analysis program to assess the phylogenetic occurrence of coiled coil proteins, how heptad repeat domains are organized within them, and what structural/functional categories they comprise. Of 102,007 proteins analyzed, 5.95% (6,074) contained coiled coil domains; 1.26% (1,289) contained “extended” (> 75 amino acid) domains. While the frequency of proteins containing coiled coils was surprisingly constant among all biota, extended coiled coil proteins were fourfold more frequent in the animal kingdom and may reflect early events in the divergence of plants and animals. Structure/function categories of extended coils also revealed phylogenetic differences. In pathogens and parasites, many extended coiled coil proteins are external and bind host proteins. In animals, the majority of extended coiled coil proteins were identified as constituents of two protein categories: 1) myosins and motors; or 2) components of the nuclear matrix-intermediate filament scaffold. This scaffold, produced by sequential extraction of epithelial monolayers in situ, contains only 1–2% of the cell mass while accurately retaining morphological features of living epithelium and is greatly enriched in proteins with extensive, interrupted coiled coil forming domains. The increased occurrence of this type of protein in Metazoa compared with plants or protists leads us to hypothesize a tissue-wide matrix of coiled coil interactions underlying metazoan differentiated cell and tissue structure.  相似文献   

14.
In the past decade, significant progress has been made in the development of new protein nanopores. Despite these advancements, there is a pressing need for the creation of nanopores equipped with relatively large functional groups for the sampling of biomolecular events on their extramembranous side. Here, we designed, produced, and analyzed protein nanopores encompassing a robust truncation of a monomeric β-barrel membrane protein. An exogenous stably folded protein was anchored within the aqueous phase via a flexible peptide tether of varying length. We have extensively examined the pore-forming properties of these modular protein nanopores using protein engineering and single-molecule electrophysiology. This study revealed distinctions in the nanopore conductance and current fluctuations that arose from tethering the exogenous protein to either the N terminus or the C terminus. Remarkably, these nanopores insert into a planar lipid membrane with one specific conductance among a set of three substate conductance values. Moreover, we demonstrate that the occurrence probabilities of these insertion substates depend on the length of the peptide tether, the orientation of the exogenous protein with respect to the nanopore opening, and the molecular mass of tethered protein. In addition, the three conductance values remain unaltered by major changes in the composition of modular nanopores. The outcomes of this work serve as a platform for further developments in areas of protein engineering of transmembrane pores and biosensor technology.  相似文献   

15.
c-Myc is one of the most frequently deregulated oncogenes in human cancers, and recent studies showed that even brief inactivation of Myc can be sufficient to induce tumor regression or loss. Consequently, inactivation of Myc provides a novel therapeutic opportunity and challenge, as the dimerization of Myc with Max is crucial for its function. We applied two strategies to specifically target this coiled coil mediated interaction with interfering peptides: a dominant-negative human Max sequence (Max) and a peptide selected from a genetic library (Mip). Both peptides form coiled coils and were fused to an acidic extension interacting with the basic DNA-binding region of human Myc. The genetic library was obtained by semi-rational design randomizing residues important for interaction, and selection was carried out using a protein-fragment complementation assay. The peptides Max and Mip easily outcompeted the human Myc:Max interaction and successfully interfered with the DNA binding of the complex. Both interfering peptides exhibited higher T(m) (DeltaT(m) = 13 and 15 degrees C) upon interaction with Myc compared to wt Max. The inhibitory effect of the two interfering peptides on human Myc:Max activity makes them promising molecules for analytical and therapeutic Myc-directed research. Copyright (c) 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
The C terminus of Sir4 forms a coiled-coil structure. The coiled-coil domain is responsible for the dimerization of Sir4 and contains the binding site of Sir3. Structural and biochemical analyses of the Sir4 coiled-coil domain provide important insights into the molecular mechanisms of Sir3-Sir4 interaction and the assembly of a ternary Sir2/Sir3/Sir4 complex that are essential for epigenetic control of gene expression in S. cerevisiae.  相似文献   

17.
Oligomerization is an important regulatory mechanism for many proteins, including oncoproteins and other pathogenic proteins. The oncoprotein Bcr-Abl relies on oligomerization via its coiled coil domain for its kinase activity, suggesting that a designed coiled coil domain with enhanced binding to Bcr-Abl and reduced self-oligomerization would be therapeutically useful. Key mutations in the coiled coil domain of Bcr-Abl were identified that reduce homo-oligomerization through intermolecular charge-charge repulsion yet increase interaction with the Bcr-Abl coiled coil through additional salt bridges, resulting in an enhanced ability to disrupt the oligomeric state of Bcr-Abl. The mutations were modeled computationally to optimize the design. Assays performed in vitro confirmed the validity and functionality of the optimal mutations, which were found to exhibit reduced homo-oligomerization and increased binding to the Bcr-Abl coiled coil domain. Introduction of the mutant coiled coil into K562 cells resulted in decreased phosphorylation of Bcr-Abl, reduced cell proliferation, and increased caspase-3/7 activity and DNA segmentation. Importantly, the mutant coiled coil domain was more efficacious than the wild type in all experiments performed. The improved inhibition of Bcr-Abl through oligomeric disruption resulting from this modified coiled coil domain represents a viable alternative to small molecule inhibitors for therapeutic intervention.  相似文献   

18.
The high resolution X-ray structure of the Sendai virus oligomerization domain reveals a homotetrameric coiled coil structure with many details that are different from classic coiled coils with canonical hydrophobic heptad repeats. Alternatives to the classic knobs-into-holes packing lead to differences in supercoil pitch and diameter that allow water molecules inside the core. This open and more hydrophilic structure does not seem to be destabilized by mutations that would be expected to disrupt classic coiled coils.  相似文献   

19.
20.
The amino acid sequence that forms the alpha-helical coiled coil structure has a representative heptad repeat denoted by defgabc, according to their positions. Although the a and d positions are usually occupied by hydrophobic residues, hydrophilic residues at these positions sometimes play important roles in natural proteins. We have manipulated a few amino acids at the a and d positions of a de novo designed trimeric coiled coil to confer new functions to the peptides. The IZ peptide, which has four heptad repeats and forms a parallel triple-stranded coiled coil, has Ile at all of the a and d positions. We show three examples: (1) the substitution of one Ile at either the a or d position with Glu caused the peptide to become pH sensitive; (2) the metal ion induced alpha-helical bundles were formed by substitutions with two His residues at the d and a positions for a medium metal ion, and with one Cys residue at the a position for a soft metal ion; and (3) the AAB-type heterotrimeric alpha-helical bundle formation was accomplished by a combination of Ala and Trp residues at the a positions of different peptide chains. Furthermore, we applied these procedures to prepare an ABC-type heterotrimeric alpha-helical bundle and a metal ion-induced heterotrimeric alpha-helical bundle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号