首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The isolation, purification, and biochemical characterization of the novel peptide Contryphan-Vn, extracted from the venom of the Mediterranean marine snail Conus ventricosus, is reported. Contryphan-Vn is the first Conus peptide described from a vermivorous species and the first purified from the venom of the single Mediterranean Conus species. The amino acid sequence of Contryphan-Vn is As with other contryphans, Contryphan-Vn contains a d-tryptophan residue, is amidated at the C-terminus, and maintains the five-residue intercystine loop size. However, Contryphan-Vn differs from the known contryphans by the insertion of the Asp residue at position 2, by the lack of hydroxylation of Pro(4), and, remarkably, by the presence of the basic residue Lys(6) within the intercystine loop. Although the biological function(s) of contryphans is still unknown, these characteristics suggest distinct molecular target(s) and/or function(s) for Contryphan-Vn.  相似文献   

2.
Contryphans constitute a group of conopeptides that are known to contain an unusual density of post-translational modifications including tryptophan bromination, amidation of the C-terminal residue, leucine, and tryptophan isomerization, and proline hydroxylation. Here we report the identification and characterization of a new member of this family, glacontryphan-M from the venom of Conus marmoreus. This is the first known example of a contryphan peptide carrying glutamyl residues that have been post-translationally carboxylated to gamma-carboxyglutamyl (Gla) residues. The amino acid sequence of glacontryphan-M was determined using automated Edman degradation and electrospray ionization mass spectrometry. The amino acid sequence of the peptide is: Asn-Gla-Ser-Gla-Cys-Pro-D-Trp-His-Pro-Trp-Cys. As with most other contryphans, glacontryphan-M is amidated at the C terminus and maintains the five-residue intercysteine loop. The occurrence of a D-tryptophan residue was confirmed by chemical synthesis and HPLC elution profiles. Using fluorescence spectroscopy we demonstrated that the Gla-containing peptide binds calcium with a K(D) of 0.63 mM. Cloning of the full-length cDNA encoding glacontryphan-M revealed that the primary translation product carries an N-terminal signal/propeptide sequence that is homologous to earlier reported contryphan signal/propeptide sequences up to 10 amino acids preceding the toxin region. Electrophysiological experiments, carried out on mouse pancreatic B-cells, showed that glacontryphan-M blocks L-type voltage-gated calcium ion channel activity in a calcium-dependent manner. Glacontryphan-M is the first contryphan reported to modulate the activity of L-type calcium ion channels.  相似文献   

3.
The three-dimensional solution structure of conotoxin TVIIA, a 30-residue polypeptide from the venom of the piscivorous cone snail Conus tulipa, has been determined using 2D 1H NMR spectroscopy. TVIIA contains six cysteine residues which form a 'four-loop' structural framework common to many peptides from Conus venoms including the omega-, delta-, kappa-, and muO-conotoxins. However, TVIIA does not belong to these well-characterized pharmacological classes of conotoxins, but displays high sequence identity with conotoxin GS, a muscle sodium channel blocker from Conus geographus. Structure calculations were based on 562 interproton distance restraints inferred from NOE data, together with 18 backbone and nine side-chain torsion angle restraints derived from spin-spin coupling constants. The final family of 20 structures had mean pairwise rms differences over residues 2-27 of 0.18+/-0.05 A for the backbone atoms and 1.39+/-0.33 A for all heavy atoms. The structure consists of a triple-stranded, antiparallel beta sheet with +2x, -1 topology (residues 7-9, 16-20 and 23-27) and several beta turns. The core of the molecule is formed by three disulfide bonds which form a cystine knot motif common to many toxic and inhibitory polypeptides. The global fold, molecular shape and distribution of amino-acid sidechains in TVIIA is similar to that previously reported for conotoxin GS, and comparison with other four-loop conotoxin structures provides further indication that TVIIA and GS represent a new and distinct subgroup of this structural family. The structure of TVIIA determined in this study provides the basis for determining a structure-activity relationship for these molecules and their interaction with target receptors.  相似文献   

4.
Pallaghy PK  He W  Jimenez EC  Olivera BM  Norton RS 《Biochemistry》2000,39(42):12845-12852
The contryphan family of cyclic peptides, isolated recently from various species of cone shell, has the conserved sequence motif NH(3)(+)-X(1)COD-WX(5)PWC-NH(2), where X(1) is either Gly or absent, O is 4-trans-hydroxyproline, and X(5) is Glu, Asp, or Gln. The solution structures described herein of two new naturally occurring contryphan sequences, contryphan-Sm and des[Gly1]-contryphan-R, are similar to those of contryphan-R, the structure of which has been determined recently [Pallaghy et al. (1999) Biochemistry 38, 11553-11559]. The (1)H NMR chemical shifts of another naturally occurring peptide, contryphan-P, indicate that it also adopts a similar structure. All of these contryphans exist in solution as a mixture of two conformers due to cis-trans isomerization about the Cys2-Hyp3 peptide bond. The lower cis-trans ratio for contryphan-Sm enabled elucidation of the 3D structure of both its major and its minor forms, for which the patterns of (3)J(H)(alpha)(HN) coupling constants are very different. As with contryphan-R, the structure of the major form of contryphan-Sm (cis Cys2-Hyp3 peptide bond) contains an N-terminal chain reversal and a C-terminal type I beta-turn. The minor conformer (trans peptide bond) forms a hairpin structure with sheetlike hydrogen bonds and a type II beta-turn, with the D-Trp4 at the 'Gly position' of the turn. The ratio of conformers arising from cis-trans isomerism around the peptide bond preceding Hyp3 is sensitive to both the amino acid sequence and the solution conditions, varying from 2.7:1 to 17:1 across the five sequences. The sequence and structural determinants of the cis-trans isomerism have been elucidated by comparison of the cis-trans ratios for these peptides with those for contryphan-R and an N-acetylated derivative thereof. The cis-trans ratio is reduced for peptides in which either the charged N-terminal ammonium or the X(5) side-chain carboxylate is neutralized, implying that an electrostatic interaction between these groups stabilizes the cis conformer relative to the trans. These results on the structures and cis-trans equilibrium of different conformers suggest a paradigm of 'locally determined but globally selected' folding for cyclic peptides and constrained protein loops, where the series of stereochemical centers in the loop dictates the favorable conformations and the equilibrium is determined by a small number of side-chain interactions.  相似文献   

5.
A novel 13-residue peptide Mo1659 has been isolated from the venom of a vermivorous cone snail, Conus monile. HPLC fractions of the venom extract yielded an intense UV absorbing fraction with a mass of 1659Da. De novo sequencing using both matrix assisted laser desorption and ionization and electrospray MS/MS methods together with analysis of proteolytic fragments successfully yielded the amino acid sequence, FHGGSWYRFPWGY-NH(2). This was further confirmed by comparison with the chemically synthesized peptide and by conventional Edman sequencing. Mo1659 has an unusual sequence with a preponderance of aromatic residues and the absence of apolar, aliphatic residues like Ala, Val, Leu, and Ile. Mo1659 has no disulfide bridges distinguishing it from the conotoxins and bears no sequence similarity with any of the acyclic peptides isolated thus far from the venom of cone snails. Electrophysiological studies on the effect of Mo1659 on measured currents in dorsal root ganglion neurons suggest that the peptide targets non-inactivating voltage-dependent potassium channels.  相似文献   

6.
Employing nonequilibrium molecular dynamics simulations, a comprehensive computational study of the photoinduced conformational dynamics of a photoswitchable bicyclic azobenzene octapeptide is presented. The calculation of time-dependent probability distributions along various global and local reaction coordinates reveals that the conformational rearrangement of the peptide is rather complex and occurs on at least four timescales: 1) After photoexcitation, the azobenzene unit of the molecule undergoes nonadiabatic photoisomerization within 0.2 ps. 2) On the picosecond timescale, the cooling (13 ps) and the stretching (14 ps) of the photoexcited peptide is observed. 3) Most reaction coordinates exhibit a 50-100 ps component reflecting a fast conformational rearrangement. 4) The 500-1000 ps component observed in the simulation accounts for the slow diffusion-controlled conformational equilibration of the system. The simulation of the photoinduced molecular processes is in remarkable agreement with time-resolved optical and infrared experiments, although the calculated cooling as well as the initial conformational rearrangements of the peptide appear to be somewhat too slow. Based on an ab initio parameterized vibrational Hamiltonian, the time-dependent amide I frequency shift is calculated. Both intramolecular and solvent-induced contributions to the frequency shift were found to change by < or = 2 cm(-1), in reasonable agreement with experiment. The potential of transient infrared spectra to characterize the conformational dynamics of peptides is discussed in some detail.  相似文献   

7.
Molecular dynamics simulations were performed on the potent and slightly mu-receptor selective cyclic dermorphin analog H-Tyr-D-Orn-Phe-Glu-NH2 as well as on analogs containing a conformationally restricted phenylalanine derivative in place of Phe in the 3 position of the peptide sequence. Peptides studied included the potent and highly mu-selective analogs H-Tyr-D-Orn-Aic-Glu-NH2 (Aic = 2-aminoindan-2-carboxylic acid), H-Tyr-D-Orn-Atc-Glu-NH2 (Atc = 2-aminotetralin-2-carboxylic acid) and H-Tyr-D-Orn-D-Atc-Glu-NH2, and the weakly active analog H-Tyr-D-Orn-Tic-Glu-NH2 (Tic = tetrahydroisoquinoline-3-carboxylic acid). Four different starting conformations were chosen for each peptide, and after equilibration each simulation was allowed to proceed for 100 picoseconds at 600 degrees K. The 14-membered ring structures in the Phe-, Aic-, L- and D-Atc-containing analogs showed moderate structural flexibility, while the peptide ring in the Tic-containing analog was more rigid. As theoretically predicted, the phi 3 and psi 3 angles of the Aic-, L- and D-Atc-containing analogs were limited to values of either about +50 degrees or -50 degrees during almost the entire period of the simulations. In the Tic-containing analog the phi 3 and psi 3 angles were 0 degrees and 90 degrees, respectively, and did not change for the entire duration of the simulation. The side chains of the constrained amino acids showed limited movement, but transitions between the allowed conformations did occur on the time scale of the simulations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Membrane-traversing peptides offer opportunities for targeting intracellular proteins and oral delivery. Despite progress in understanding the mechanisms underlying membrane traversal in natural cell-permeable peptides, there are still several challenges to designing membrane-traversing peptides with diverse shapes and sizes. Conformational flexibility appears to be a key determinant of membrane permeability of large macrocycles. We review recent developments in the design and validation of chameleonic cyclic peptides, which can switch between alternative conformations to enable improved permeability through cell membranes, while still maintaining reasonable solubility and exposed polar functional groups for target protein binding. Finally, we discuss the principles, strategies, and practical considerations for rational design, discovery, and validation of permeable chameleonic peptides.  相似文献   

9.
A principal component analysis has been applied on equilibrium simulations of a beta-heptapeptide that shows reversible folding in a methanol solution. The analysis shows that the configurational space contains only three dense sub-states. These states of relatively low free energy correspond to the "native" left-handed helix, a partly helical intermediate, and a hairpin-like structure. The collection of unfolded conformations form a relatively diffuse cloud with little substructure. Internal hydrogen-bonding energies were found to correlate well with the degree of folding. The native helical structure folds from the N terminus; the transition from the major folding intermediate to the native helical structure involves the formation of the two most C-terminal backbone hydrogen bonds. A four-state Markov model was found to describe transition frequencies between the conformational states within error limits, indicating that memory-effects are negligible beyond the nanosecond time-scale. The dominant native state fluctuations were found to be very similar to unfolding motions, suggesting that unfolding pathways can be inferred from fluctuations in the native state. The low-dimensional essential subspace, describing 69% of the collective atomic fluctuations, was found to converge at time-scales of the order of one nanosecond at all temperatures investigated, whereas folding/unfolding takes place at significantly longer time-scales, even above the melting temperature.  相似文献   

10.
A new Conus peptide ligand for mammalian presynaptic Ca2+ channels.   总被引:15,自引:0,他引:15  
Voltage-sensitive Ca2+ channels that control neurotransmitter release are blocked by omega-conotoxin (omega-CgTx) GVIA from the marine snail Conus geographus, the most widely used inhibitor of neurotransmitter release. However, many mammalian synapses are omega-CgTx-GVIA insensitive. We describe a new Conus peptide, omega-CgTx-MVIIC, that is an effective inhibitor of omega-CgTx-GVIA-resistant synaptic transmission. Ca2+ channel targets that are inhibited by omega-CgTx-MVIIC but not by omega-CgTx-GVIA include those mediating depolarization-induced 45Ca2+ uptake in rat synaptosome preparations, "P" currents in cerebellar Purkinje cells, and a subset of omega-CgTx-GVIA-resistant currents in CA1 hippocampal pyramidal cells. The characterization of omega-CgTx-MVIIC by a combination of molecular genetics and chemical synthesis defines a general approach for obtaining ligands with novel receptor subtype specificity from Conus.  相似文献   

11.
Molecular dynamics simulations of the influenza hemagglutinin fusion peptide in two differently sized dodecylphosphocholine micelles and a palmitoyl oleoyl phosphatidylcholine bilayer were generated to analyze the influence of the environment. Four independent trajectories (5 ns each for the bilayer, and 2 ns each for the micelles) were generated for each system. The peptide lies at the surface of the micelles, while its N-terminal region inserts deeply in the bilayer. This leads to a substantial increase of the solvation and rigidity of the peptide in micelles as compared to the bilayer. The average structures, nevertheless, are similar in all three systems and agree reasonably with micelle-based NMR structures. When in the bilayer, the peptide increases the chain gauche population and area of adjacent lipids in the same binding leaflet, while it has the opposite effect for the nearby lipids of the other leaflet. These changes, which occur spontaneously to fill voids and defects, cause a decrease in the thickness of the membrane in the neighborhood of the peptide. They would be expected to promote positive curvature, as consistent with the formation of the convex bulge, or "nipple", in the initial stage of membrane fusion. An extension of the classical surfactant theory of Israelachvili based on shapes is proposed to introduce the concept of a "dynamically induced shape" of the membrane lipids by the peptide.  相似文献   

12.
A novel conotoxin belonging to the 'four-loop' structural class has been isolated from the venom of the piscivorous cone snail Conus tulipa. It was identified using a chemical-directed strategy based largely on mass spectrometric techniques. The new toxin, conotoxin TVIIA, consists of 30 amino-acid residues and contains three disulfide bonds. The amino-acid sequence was determined by Edman analysis as SCSGRDSRCOOVCCMGLMCSRGKCVSIYGE where O = 4-transL-hydroxyproline. Two under-hydroxylated analogues, [Pro10]TVIIA and [Pro10,11]TVIIA, were also identified in the venom of C. tulipa. The sequences of TVIIA and [Pro10]TVIIA were further verified by chemical synthesis and coelution studies with native material. Conotoxin TVIIA has a six cysteine/four-loop structural framework common to many peptides from Conus venoms including the omega-, delta- and kappa-conotoxins. However, TVIIA displays little sequence homology with these well-characterized pharmacological classes of peptides, but displays striking sequence homology with conotoxin GS, a peptide from Conus geographus that blocks skeletal muscle sodium channels. These new toxins and GS share several biochemical features and represent a distinct subgroup of the four-loop conotoxins.  相似文献   

13.
Deposition of amyloid is the most constantly present alteration in the islets of Langerhans in type 2 diabetes mellitus and is also quite common in insulin-producing tumors of the pancreas and it is very likely that these two amyloids are identical. We have isolated amyloid fibrils from an insulin-secreting human tumour and purified the fibrillar protein. N-terminal amino acid sequence of the protein is unique and does not resemble insulin or its precursors. Instead it has about 50% homology with the neuropeptide CGRP (calcitonin gene related peptide).  相似文献   

14.
A 50 pico-second molecular dynamics simulation on a cyclic LHRH antagonist analogue Ac-D-Phe1-D-Phe2-D-Trp3-Ser4-Glu5-D-Arg6-Leu7-Lys8+ ++-Pro9-D-Ala10-NH2 (where the cyclisation is via an amide linkage between the Glu5 and Lys8 side chains), reveals some hitherto unseen conformational features. The LHRH analogue is found to adopt a near beta-sheet type of conformation with the reversal in the chain being brought about by a D-Trp3-Ser4-Glu5-D-Arg6 beta turn. The N- and C-terminal ends of the peptide come close together and interact through a network of hydrogen bonds. Additional hydrogen bonds expected of a sheet type of conformation stabilise the lowest energy minima. A conformational search of all possible cyclic structures of a model system c(Glu-D-Ala-Ala-Lys) which was used to determine the starting structure for the simulation studies of the cyclic LHRH antagonist analogue is also highlighted. The influence of the cyclic part on the conformation of this LHRH analogue is discussed.  相似文献   

15.
A novel family of peptide precursors that have very similar N-terminal preprosequences followed by markedly different C-terminal domains has been identified in the skin of hylid frogs belonging to the genus Phyllomedusinae. Biologically active peptides derived from the variable domains include the dermaseptins, 28-34-residue peptides that have a broad-spectrum microbicidal activity, and dermorphin and the deltorphins, D-amino acid containing heptapeptides that are very potent agonists for the micro-opioid and delta-opioid receptors, respectively. This report describes the isolation, synthesis and cloning of phylloxin, a prototypical member of a novel family of antimicrobial peptides derived from the processing of a dermaseptin/dermorphin-like precursor. The structure of phylloxin (GWMSKIASGIGTFLSGIQQ amide) shows no homology to the dermaseptins, but bears some resemblance to the levitide-precursor fragment and the xenopsin-precursor fragment, two antimicrobial peptides isolated from the skin of an evolutionarily distant frog species, Xenopus laevis. Circular dichroism spectra of phylloxin in low polarity medium, which mimics the lipophilicity of the membrane of target microorganisms, indicated 60-70% alpha-helical conformation, and predictions of secondary structure suggested that the peptide can be configured as an amphipathic helix spanning residues 1-19. Phylloxin is an addition to the structurally and functionally diverse peptide families encoded by the rapidly evolving C-terminal domains of the dermorphin/dermaseptin group of precursors.  相似文献   

16.
In comparison with retrotransposons, which comprise the majority of the Triticeae genomes, very few class 2 transposons have been described in these genomes. Based on the recent discovery of a local accumulation of CACTA elements at the Glu-A3 loci in the two wheat species Triticum monococcum and Triticum durum, we performed a database search for additional such elements in Triticeae spp. A combination of BLAST search and dot-plot analysis of publicly available Triticeae sequences led to the identification of 41 CACTA elements. Only seven of them encode a protein similar to known transposases, whereas the other 34 are considered to be deletion derivatives. A detailed characterization of the identified elements allowed a further classification into seven subgroups. The major subgroup, designated the "Caspar " family, was shown by hybridization to be present in at least 3,000 copies in the T. monococcum genome. The close association of numerous CACTA elements with genes and the identification of several similar elements in sorghum (Sorghum bicolor) and rice (Oryza sativa) led to the conclusion that CACTA elements contribute significantly to genome size and to organization and evolution of grass genomes.  相似文献   

17.
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels. Alpha subunits, together with beta 2 and/or beta 4 subunits, form ligand-binding sites at alpha/beta subunit interfaces. Predatory marine snails of the genus Conus are a rich source of nAChR-targeted peptides. Using conserved features of the alpha-conotoxin signal sequence and 3'-untranslated sequence region, we have cloned a novel gene from the fish-eating snail, Conus bullatus; the gene codes for a previously unreported alpha-conotoxin with unusual 4/4 spacing of amino acids in the two disulfide loops. Chemical synthesis of the predicted mature toxin was performed. The resulting peptide, alpha-conotoxin BuIA, was tested on cloned nAChRs expressed in Xenopus oocytes. The peptide potently blocks numerous rat nAChR subtypes, with highest potency for alpha 3- and chimeric alpha 6-containing nAChRs; BuIA blocks alpha 6/alpha 3 beta 2 nAChRs with a 40,000-fold lower IC(50) than alpha 4 beta 2 nAChRs. The kinetics of toxin unblock are dependent on the beta subunit. nAChRs with a beta 4 subunit have very slow off-times, compared with the corresponding beta 2 subunit-containing nAChR. In each instance, rat alpha x beta 4 may be distinguished from rat alpha x beta 2 by the large difference in time to recover from toxin block. Similar results are obtained when comparing mouse alpha 3 beta 2 to mouse alpha 3 beta 4, and human alpha 3 beta2 to human alpha 3 beta 4, indicating that the beta subunit dependence extends across species. Thus, alpha-conotoxin BuIA also represents a novel probe for distinguishing between beta 2- and beta 4-containing nAChRs.  相似文献   

18.
A novel conotoxin, pc16a, was isolated from the venom of Conus pictus. This is the first peptide characterized from this South-African cone snail and it has only 11 amino acid residues, SCSCKRNFLCC*, with the rare cysteine framework XVI and a monoisotopic mass of 1257.6Da. Two peptides were synthesized with two possible conformations: globular (pc16a_1) and ribbon (pc16a_2). pc16a_1 co-eluted with the native peptide, which indicates a disulfide connectivity I-III, II-IV. The structure of pc16a_1 was determined by NMR. Both synthetic peptides were used to elucidate the biological activity. Bioassays were performed on crickets, ghost shrimps, larvae of the mealworm beetle and mice, but no effect was seen. Using two-electrode voltage clamp, a range of voltage-gated ion channels (Na(v) and K(v)) and nicotinic acetylcholine receptors were screened, but again no activity was found. Hence, the specific target of pc16a still remains to be discovered.  相似文献   

19.
Omega Conus geographus toxin: a peptide that blocks calcium channels   总被引:3,自引:0,他引:3  
We previously reported that omega Conus geographus toxin (omega CgTX), blocks evoked-release of transmitter at synapses in frog and attenuates the Ca2+ component of the action potential of chick dorsal root ganglion neurons. We report here voltage-clamp experiments on cultured chick dorsal root ganglion neurons which demonstrate that omega CgTX produces a persistent block of voltage-gated Ca2+ currents. Thus, we conclude that omega CgTX inhibits synaptic transmission by blocking Ca2+ channels in the presynaptic nerve terminal. The toxin had no effect on K+ currents; however, in some but not all neurons, omega CgTX reduced Na+ currents by 10-25%. These findings suggest that omega CgTX should be useful as a probe to examine synaptic Ca2+ channels.  相似文献   

20.
A novel retroviruslike family in mouse DNA.   总被引:3,自引:3,他引:3       下载免费PDF全文
In the course of structural analysis of VL30 DNA elements, a recombinant retroviruslike element was encountered that contained non-VL30 long terminal repeats (LTRs) flanking internal VL30 sequences. With the aid of this novel LTR sequence probe, we cloned several DNA elements that were apparently members of a new retroviruslike family. A particular DNA element representative of this family (designated GLN) was characterized. It was approximately 8 kilobase pairs long and contained LTRs that are 430 base pairs long. It possessed an unusual primer-binding site sequence that corresponds to tRNAGln and a polypurine tract primer that is adjacent to the 3' LTR. The nucleotide sequences of the LTRs and their adjacent regions (which together housed all cis-acting retroviral functions) were different from those of known retroviruses and retroviruslike families. The comparison of three different GLN LTR sequences revealed a marked heterogeneity of U3 sequences relative to the homogeneity of R and U5 sequences. We estimate that approximately 20 to 50 copies of GLN elements are dispersed in all species of mice. GLN-related LTRs, however, are present in a much higher copy number (1,000 to 1,500 per genome). Nucleotide sequences that are more distantly related to GLN DNA are present in multiple copies in DNAs of other rodents but not in nonrodent genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号