首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Copper homeostasis at the host-pathogen interface   总被引:1,自引:0,他引:1  
The trace element copper is indispensable for all aerobic life forms. Its ability to cycle between two oxidation states, Cu(1+) and Cu(2+), has been harnessed by a wide array of metalloenzymes that catalyze electron transfer reactions. The metabolic needs for copper are sustained by a complex series of transporters and carrier proteins that regulate its intracellular accumulation and distribution in both pathogenic microbes and their animal hosts. However, copper is also potentially toxic due in part to its ability to generate reactive oxygen species. Recent studies suggest that the macrophage phagosome accumulates copper during bacterial infection, which may constitute an important mechanism of killing. Bacterial countermeasures include the up-regulation of copper export and detoxification genes during infection, which studies suggest are important determinants of virulence. In this minireview, we summarize recent developments that suggest an emerging role for copper as an unexpected component in determining the outcome of host-pathogen interactions.  相似文献   

2.
Histoplasma capsulatum is the most common cause of invasive fungal pulmonary disease worldwide. The interaction of H. capsulatum with a host is a complex, dynamic process. Severe disease most commonly occurs in individuals with compromised immunity, and the increasing utilization of immunomodulators in medicine has revealed significant risks for reactivation disease in patients with latent histoplasmosis. Fortunately, there are well developed molecular tools and excellent animal models for studying H. capsulatum virulence and numerous recent advances have been made regarding the pathogenesis of this fungus that will improve our capacity to combat disease.  相似文献   

3.
Leishmania is a genus of protozoan parasites that are transmitted by the bite of phlebotomine sandflies and give rise to a range of diseases (collectively known as leishmaniases) that affect over 150 million people worldwide. Cellular immune mechanisms have a major role in the control of infections with all Leishmania spp. However, as discussed in this Review, recent evidence suggests that each host-pathogen combination evokes different solutions to the problems of parasite establishment, survival and persistence. Understanding the extent of this diversity will be increasingly important in ensuring the development of broadly applicable vaccines, drugs and immunotherapeutic interventions.  相似文献   

4.
5.
The NRAMP family of divalent-metal transporters plays a key role in the homeostasis of iron and other metals. NRAMP2 (DMT1) acts as an iron-uptake protein in both the duodenum and in peripheral tissues. NRAMP1 functions as a divalent-metal efflux pump at the phagosomal membrane of macrophages and neutrophils, and mutations in NRAMP1 cause susceptibility to several intracellular pathogens. NRAMP homologues have been identified in bacteria and are involved in acquiring divalent metals from the extracellular environment. Interestingly, bacterial and mammalian NRAMP proteins would compete for the same essential substrates within the microenvironment of the phagosome, at the interface of host-pathogen interactions.  相似文献   

6.
7.
8.
9.
10.
The identification of genes involved in host-pathogen interactions is important for the elucidation of mechanisms of disease resistance and host susceptibility. A traditional way to classify the origin of genes sampled from a pool of mixed cDNA is through sequence similarity to known genes from either the pathogen or host organism or other closely related species. This approach does not work when the identified sequence has no close homologues in the sequence databases. In our previous studies, we classified genes using their codon frequencies. This method, however, explicitly required the prediction of CDS regions and thus could not be applied to sequences composed from the non-coding regions of genes. In this study, we show that the use of sliding-window triplet frequencies extends the application of the algorithm to both coding and non-coding sequences and also increases the prediction accuracy of a Support Vector Machine classifier from 95.6+/-0.3 to 96.5+/-0.2. Thus the use of the triplet frequencies increased the prediction accuracy of the new method by more than 20% compared to our previous approach. A functional analysis of sequences detected gene families having significantly higher or lower probability to be correctly classified compared to the average accuracy of the method is described. The server to perform classification of EST sequences using triplet frequencies is available at (URL: http://mips.gsf.de/proj/est3).  相似文献   

11.
Summary. Transmission electron microscopy was used to examine details of the host–pathogen interface in daylily leaf cells infected by the rust fungus Puccinia hemerocallidis. Samples were prepared for study by high-pressure freezing followed by freeze substitution. The outstanding preservation of ultrastructural details afforded by this fixation protocol greatly facilitated the study of this host–pathogen interface. The extrahaustorial membrane that separated each dikaryotic haustorium from the cytoplasm of its host cell was especially well preserved and appeared almost completely smooth in profile. Large aggregations of tubular cytoplasmic elements were present near haustoria in infected host cells. Many of these tubular elements were found to be continuous with the extrahaustorial membrane and conspicuous electron-dense deposits present in the extrahaustorial matrix extended into these elements. The use of gold-conjugated wheat germ agglutinin for labeling of chitin revealed that these deposits were not part of the haustorial wall. Portions of many of the tubular elements associated with haustoria were conspicuously beaded in appearance. Some tubular elements were found to be continuous with flattened cisternae that in turn bore short beaded chains. Distinctive tubular-vesicular complexes previously reported only in cryofixed rust haustoria also were found in the haustoria of P. hemerocallidis. Received July 6, 2001 Accepted October 3, 2001  相似文献   

12.
13.
Numerous fungal and oomycete pathogens penetrate the plant cell wall and extract nutrition from the host cells by a feeding structure called the haustorium. We recently revealed that the Arabidopsis resistance protein RPW8.2 is specifically targeted to the extrahaustorial membrane (EHM) for activation of haustorium-targeted resistance to powdery mildew pathogens. Consistent with its EHM-localization, RPW8.2 contains a putative transmembrane (TM) domain at its N-terminus. Here, we show that translational fusion of YFP to the N-terminus of RPW8.2 results in localization of YFP-RPW8.2 to both the plasma membrane and the EHM, and loss of RPW8.2''s defense function. We also show that deletion of the TM domain results in mis-localization of the RPW8.2-YFP fusion protein and extremely low levels of accumulation. These results indicate that an intact N-terminal TM domain is necessary for EHM-specific localization and defense function of RPW8.2. In addition, we show that when expressed from the strong constitutive 35S viral promoter, RPW8.2 accumulates at low levels in the EHM insufficient to activate resistance, highlighting the importance of strong spatiotemporal expression of RPW8.2 from its native promoter. Taken together, our results indicate that accurate and adequate spatiotemporal expression and localization of RPW8.2 is key to activation of resistance at the host-pathogen interface.Key words: Arabidopsis, RPW8.2, resistance, powdery mildew, haustorium, extrahaustorial membrane, host-pathogen interface, protein localizationIn order to establish successful colonization on plant hosts, a haustorium-forming fungus such as powdery mildew must conquer two spatio-temporally interconnected layers of host resistance: pre-invasion (penetration) resistance and post-invasion resistance.1 Pre-invasion resistance protects plants from non-adapted pathogens by blocking their entry into the host cell.24 One common induced cellular defense response at this resistance level is the deposition of defense chemicals, including callose (β-1,3-glucan) at the site of penetration, resulting in cell wall apposition, a subcellular structure also known as a papilla.57 It has been reported that a syntaxin encoded by PENETRATION 1 (PEN1) is required for the timely assembly of the papilla,8 which is consistent with PEN1''s role in pre-invasion resistance.2 Once the fungus penetrates the plant cell wall, it will have to overcome the second layer of resistance, i.e., post-invasion resistance, to develop a functional haustorium in close contact with the host cell cytoplasm for successful colonization. Hypersensitive response (HR) manifested as rapid collapse of the invaded cell is often associated with post-invasion resistance.911 Another cellular defense response to haustorial invasion is the formation of an encasement of the haustorial complex (EHC).1216 Like the papilla, the EHC is also enriched for callose and thought to be formed via extension from the papilla by rim-growth.17We have recently reported that RPW8.2-mediated broad-spectrum powdery mildew resistance is associated with both HR and an enhancement of EHC formation.18 Most strikingly, we found that the RPW8.2-YFP fusion protein expressed from its native promoter (NP) is specifically targeted to the extrahaustorial membrane (EHM), suggesting that RPW8.2 functions at the host-pathogen interface to activate post-invasion resistance. How RPW8.2 is targeted to the EHM and directs host defense to the host-pathogen interface remains to be an open question.  相似文献   

14.
15.
Summary Nitrogen-fixing peanut root nodules are characterized by their unique structural organization, distinct from other legume nodules. The focus of this study has been in and around the hostsymbiont interface, where the bacterioid and the host cell surface (peribacteroid membrane envelope) interact during symbiosis. The infected nodule cells have revealed the presence of lipid bodies (oleosomes) in intimate association with the peribacteroid membrane, which encloses the large spherical bacteroids with a relatively narrow peribacteroid space. Electron dense structures, referred to as dense bodies have been found attached to the bacteroid outer membranes at the host-symbiont interface. The dense bodies are osmiophilic, amorphous and 3,3-diaminobenzidine positive. The isolated intact bacteroids with dense bodies attached to their cell wall showed significant catalase activity. Many microbodies showing DAB-positive reaction have been found in the host cytoplasm, associated closely with the peribacteroid membrane. These ultrastructural and cytochemical characteristics of peanut root nodules suggest that lipids are utilized during symbiosis and the dense bodies and microbodies may be involved in the catabolic process.Abbreviation DAB 3,3-diaminobenzidine  相似文献   

16.
During various periods of deep hypothermia and after warming in the rat muscle fibers of the diaphragm and of m. spinotrapezius essential structural changes take place. The destructive changes affect the myofibrillar and mitochondrial apparatuses and are mostly manifested during return out of the hypothermal state. Essential changes take place in quantitative characteristics of the sarcoplasmic reticulum, as well as in glycogen contents. Peculiar structural reactions of the respiratory and locomotor muscles are noted; they are determined by their different role in thermogenetic processes.  相似文献   

17.
Summary Ultrastructural studies were conducted on root nodules of soybean (Glycine max) inoculated as seeds withRhizobium japonicum. The development of the large peroxisomes and abundant tubular endoplasmic reticulum (ER) characteristic of the uninfected interstitial cells was followed during nodule growth and maturation. Quantitative data on differences between the uninfected and infected cells in volumes and numbers of peroxisomes, plastids and mitochondria were analyzed statistically. The peroxisomes are 60 times greater in volume per unit cytoplasm in the uninfected cells than the small presumptive peroxisomes in the infected cells. Plastids are about equal in volume in the two types of cells. Mitochondria have 4 × the volume and 3 × the number of profiles per unit cytoplasm in the infected cells than in the uninfected. The observations are discussed in relation to published evidence that several enzymes involved in ureide production are localized in organelles of the uninfected cells. The uninfected cells are viewed as essential components in the symbiotic relationship between host and bacterium.Abbreviations DAB 3,3-diaminobenzidine - ER endoplasmic reticulum  相似文献   

18.
The ultrastructural features of the encephalic dura mater-arachnoid borderline (interface) layer (zone) of rats, rabbits, cats and humans were studied. The rat's interface zone included the electron-lucent epithelium-like arranged fibroblasts of the inner dural layer, the rich in filaments cells of the dural neurothelium, a 20 nm wide intercellular cleft filled with electron-dense material and the dark mitochondria-rich cells of the outer arachnoidal layer; in rabbits and cats, this laminar distinction was less prominent, while in man, it was almost absent.  相似文献   

19.
J Q Zhang  B Elzey  G Williams  S Lu  D J Law  R Horowits 《Biochemistry》2001,40(49):14898-14906
N-RAP is a recently discovered muscle-specific protein found at cardiac intercalated disks. Double immunogold labeling of mouse cardiac muscle reveals that vinculin is located immediately adjacent to the fascia adherens region of the intercalated disk membrane, while N-RAP extends approximately 100 nm further toward the interior of the cell. We partially purified cardiac intercalated disks using low- and high-salt extractions followed by density gradient centrifugation. Immunoblots show that this preparation is highly enriched in desmin and junctional proteins, including N-RAP, talin, vinculin, beta1-integrin, N-cadherin, and connexin 43. Electron microscopy and immunolabeling demonstrate that N-RAP and vinculin are associated with the large fragments of intercalated disks that are present in this preparation, which also contains numerous membrane vesicles. Detergent treatment of the partially purified intercalated disks removed the membrane vesicles and extracted vinculin and beta1-integrin. Further separation on a sucrose gradient removed residual actin and myosin and yielded a fraction morphologically similar to fasciae adherentes that was highly enriched in N-RAP, N-cadherin, connexin 43, talin, desmin, and alpha-actinin. The finding that N-RAP copurifies with detergent-extracted intercalated disk fragments even though beta-integrin and vinculin have been completely removed suggests that N-RAP association with the adherens junction region is mediated by the cadherin system. Consistent with this hypothesis, we found that recombinant N-RAP fragments bind alpha-actinin in a gel overlay assay. In addition, immunofluorescence shows that N-RAP remains bound at the ends of isolated, detergent-treated cardiac myofibrils. These results demonstrate that N-RAP remains tightly bound to myofibrils and fasciae adherentes during biochemical purification and may be a key constituent in the mechanical link between these two structures.  相似文献   

20.
The follicle associated epithelium (FAE) which separates the lymphoid follicle of Peyer's patch from the gut lumen is known to have specialized cells called M cells or "microfold" cells in man and certain animals. These cells are considered to be involved in antigen uptake and transport. Our light microscopic study of the small intestine of bonnet monkeys suggested the presence of such specialised cells in FAE. We have confirmed the presence of M cells in bonnet monkey FAE having ultrastructural features very similar to those of human M cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号