首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Tocopherols are amphipathic antioxidants synthesized exclusively by photosynthetic organisms. Tocopherol levels change significantly during plant growth and development and in response to stress, likely as a consequence of the altered expression of pathway-related genes. Homogentisate phytyltransferase (HPT) is a key enzyme limiting tocopherol biosynthesis in unstressed Arabidopsis leaves (E. Collakova, D. DellaPenna [2003] Plant Physiol 131: 632-642). Wild-type and transgenic Arabidopsis plants constitutively overexpressing HPT (35S::HPT1) were subjected to a combination of abiotic stresses for up to 15 d and tocopherol levels, composition, and expression of several tocopherol pathway-related genes were determined. Abiotic stress resulted in an 18- and 8-fold increase in total tocopherol content in wild-type and 35S::HPT1 leaves, respectively, with tocopherol levels in 35S::HPT1 being 2- to 4-fold higher than wild type at all experimental time points. Increased total tocopherol levels correlated with elevated HPT mRNA levels and HPT specific activity in 35S::HPT1 and wild-type leaves, suggesting that HPT activity limits total tocopherol synthesis during abiotic stress. In addition, substrate availability and expression of pathway enzymes before HPT also contribute to increased tocopherol synthesis during stress. The accumulation of high levels of beta-, gamma-, and delta-tocopherols in stressed tissues suggested that the methylation of phytylquinol and tocopherol intermediates limit alpha-tocopherol synthesis. Overexpression of gamma-tocopherol methyltransferase in the 35S::HPT1 background resulted in nearly complete conversion of gamma- and delta-tocopherols to alpha- and beta-tocopherols, respectively, indicating that gamma-tocopherol methyltransferase activity limits alpha-tocopherol synthesis in stressed leaves.  相似文献   

3.
Liu X  Hua X  Guo J  Qi D  Wang L  Liu Z  Jin Z  Chen S  Liu G 《Biotechnology letters》2008,30(7):1275-1280
Tocopherol cyclase (VTE1, encoded by VTE1 gene) catalyzes the penultimate step of tocopherol synthesis. Transgenic tobacco plants overexpressing VTE1 from Arabidopsis were exposed to drought conditions during which transgenic lines had decreased lipid peroxidation, electrolyte leakage and H(2)O(2) content, but had increased chlorophyll compared with the wild type. Thus VTE1 can be used to increase vitamin E content of plants and also to enhance tolerance to environmental stresses.  相似文献   

4.
5.
6.
We report the identification and characterization of a low tocopherol Arabidopsis thaliana mutant, vitamin E pathway gene5-1 (vte5-1), with seed tocopherol levels reduced to 20% of the wild type. Map-based identification of the responsible mutation identified a G-->A transition, resulting in the introduction of a stop codon in At5g04490, a previously unannotated gene, which we named VTE5. Complementation of the mutation with the wild-type transgene largely restored the wild-type tocopherol phenotype. A knockout mutation of the Synechocystis sp PCC 6803 VTE5 homolog slr1652 reduced Synechocystis tocopherol levels by 50% or more. Bioinformatic analysis of VTE5 and slr1652 indicated modest similarity to dolichol kinase. Analysis of extracts from Arabidopsis and Synechocystis mutants revealed increased accumulation of free phytol. Heterologous expression of these genes in Escherichia coli supplemented with free phytol and in vitro assays of recombinant protein produced phytylmonophosphate, suggesting that VTE5 and slr1652 encode phytol kinases. The phenotype of the vte5-1 mutant is consistent with the hypothesis that chlorophyll degradation-derived phytol serves as an important intermediate in seed tocopherol synthesis and forces reevaluation of the role of geranylgeranyl diphosphate reductase in tocopherol biosynthesis.  相似文献   

7.
The tocopherols are amphipathic antioxidant synthesized by photosynthetic organisms, which forms the essential component in the human diet. To increase the α-tocopherol content in tobacco, two approaches have been attempted in this study: (1) transgenic approach, by constitutive overexpression of the genes encoding Arabidopsis homogentisate phytyltransferase (HPT) and tocopherol cyclase (TC) through Agrobacterium-mediated genetic transformation; (2) non-transgenic approach, by supplementation of intermediates/precursors of vitamin E biosynthesis like tyrosine, p-hydroxyphenyl pyruvic acid, homogentisic acid (HGA) and phytol in different concentrations and combinations using cell suspension culture system. Molecular analyses by PCR, RT-PCR and Southern hybridization were carried out to confirm the HPT and TC expressing transgenic tobacco lines. The α-tocopherol content in transgenic plants expressing HPT and TC increase by 5.5 and 4.1, respectively, over the wild type. These results indicate that, HPT and TC activities are important in tobacco plants for enhancing the vitamin E content. In the second approach, the supplementation of precursor in cell suspension cultures, i.e., combination of 150 μM HGA + 100 μM phytol, showed the maximum enhancement of α-tocopherol, i.e., 36-fold. These findings clearly imply that enhancement of α-tocopherol levels in tobacco system is possible, if we could modulate the vitamin E metabolic pathway. This is a very useful finding for the large-scale production of natural Vitamin E. Among the two systems tested, cell suspension culture-based system is ideal over the transgenic technology due to its efficiency and no biosafety concerns.  相似文献   

8.
Tocopherol belongs to the Vitamin E class of lipid soluble antioxidants that are essential for human nutrition. In plants, tocopherol is synthesized in plastids where it protects membranes from oxidative degradation by reactive oxygen species. Tocopherol cyclase (VTE1) catalyzes the penultimate step of tocopherol synthesis, and an Arabidopsis (Arabidopsis thaliana) mutant deficient in VTE1 (vte1) is totally devoid of tocopherol. Overexpression of VTE1 resulted in an increase in total tocopherol of at least 7-fold in leaves, and a dramatic shift from alpha-tocopherol to gamma-tocopherol. Expression studies demonstrated that indeed VTE1 is a major limiting factor of tocopherol synthesis in leaves. Tocopherol deficiency in vte1 resulted in the increase in ascorbate and glutathione, whereas accumulation of tocopherol in VTE1 overexpressing plants led to a decrease in ascorbate and glutathione. Deficiency in one antioxidant in vte1, vtc1 (ascorbate deficient), or cad2 (glutathione deficient) led to increased oxidative stress and to the concomitant increase in alternative antioxidants. Double mutants of vte1 were generated with vtc1 and cad2. Whereas growth, chlorophyll content, and photosynthetic quantum yield were very similar to wild type in vte1, vtc1, cad2, or vte1vtc1, they were reduced in vte1cad2, indicating that the simultaneous loss of tocopherol and glutathione results in moderate oxidative stress that affects the stability and the efficiency of the photosynthetic apparatus.  相似文献   

9.
10.
Tocopherols are lipophilic antioxidants that are synthesized exclusively in photosynthetic organisms. In most higher plants, alpha- and gamma-tocopherol are predominant with their ratio being under spatial and temporal control. While alpha-tocopherol accumulates predominantly in photosynthetic tissue, seeds are rich in gamma-tocopherol. To date, little is known about the specific roles of alpha- and gamma-tocopherol in different plant tissues. To study the impact of tocopherol composition and content on stress tolerance, transgenic tobacco (Nicotiana tabacum) plants constitutively silenced for homogentisate phytyltransferase (HPT) and gamma-tocopherol methyltransferase (gamma-TMT) activity were created. Silencing of HPT lead to an up to 98% reduction of total tocopherol accumulation compared to wild type. Knockdown of gamma-TMT resulted in an up to 95% reduction of alpha-tocopherol in leaves of the transgenics, which was almost quantitatively compensated for by an increase in gamma-tocopherol. The response of HPT and gamma-TMT transgenics to salt and sorbitol stress and methyl viologen treatments in comparison to wild type was studied. Each stress condition imposes oxidative stress along with additional challenges like perturbing ion homeostasis, desiccation, or disturbing photochemistry, respectively. Decreased total tocopherol content increased the sensitivity of HPT:RNAi transgenics toward all tested stress conditions, whereas gamma-TMT-silenced plants showed an improved performance when challenged with sorbitol or methyl viologen. However, salt tolerance of gamma-TMT transgenics was strongly decreased. Membrane damage in gamma-TMT transgenic plants was reduced after sorbitol and methyl viologen-mediated stress, as evident by less lipid peroxidation and/or electrolyte leakage. Therefore, our results suggest specific roles for alpha- and gamma-tocopherol in vivo.  相似文献   

11.
Tocopherols (vitamin E) are lipophilic antioxidants synthesized by all plants and are particularly abundant in seeds. Despite cloning of the complete suite of tocopherol biosynthetic enzymes and successful engineering of the tocopherol content and composition of Arabidopsis thaliana leaves and seeds, the functions of tocopherols in plants have remained elusive. To address this issue, we have isolated and characterized two VITAMIN E loci (VTE1 and VTE2) in Arabidopsis that when mutated result in tocopherol deficiency in all tissues. vte1 disrupts tocopherol cyclase activity and accumulates a redox-active biosynthetic intermediate, whereas vte2 disrupts homogentisate phytyl transferase activity and does not accumulate pathway intermediates. Mutations at either locus cause significantly reduced seed longevity compared with the wild type, indicating a critical role for tocopherols in maintaining viability during quiescence. However, only vte2 mutants exhibited severe seedling growth defects during germination and contained levels of lipid hydroperoxides and hydroxy fatty acids elevated up to 4- and 100-fold, respectively, relative to the wild type. These data demonstrate that a primary function of tocopherols in plants is to limit nonenzymatic lipid oxidation during seed storage, germination, and early seedling development. The vte mutant phenotypes also explain the strong selection for retention of tocopherol biosynthesis during the evolution of seed-bearing plants.  相似文献   

12.
Tocopherols, synthesized by photosynthetic organisms, are micronutrients with antioxidant properties that play important roles in animal and human nutrition. Because of these health benefits, there is considerable interest in identifying the genes involved in tocopherol biosynthesis to allow transgenic alteration of both tocopherol levels and composition in agricultural crops. Tocopherols are generated from the condensation of phytyldiphosphate and homogentisic acid (HGA), followed by cyclization and methylation reactions. Homogentisate phytyltransferase (HPT) performs the first committed step in this pathway, the phytylation of HGA. In this study, bioinformatics techniques were used to identify candidate genes, slr1736 and HPT1, that encode HPT from Synechocystis sp. PCC 6803 and Arabidopsis, respectively. These two genes encode putative membrane-bound proteins, and contain amino acid residues highly conserved with other prenyltransferases of the aromatic type. A Synechocystis sp. PCC 6803 slr1736 null mutant obtained by insertional inactivation did not accumulate tocopherols, and was rescued by the Arabidopsis HPT1 ortholog. The membrane fraction of wild-type Synechocystis sp. PCC 6803 was capable of catalyzing the phytylation of HGA, whereas the membrane fraction from the slr1736 null mutant was not. The microsomal membrane fraction of baculovirus-infected insect cells expressing the Synechocystis sp. PCC 6803 slr1736 were also able to perform the phytylation reaction, verifying HPT activity of the protein encoded by this gene. In addition, evidence that antisense expression of HPT1 in Arabidopsis resulted in reduced seed tocopherol levels, whereas seed-specific sense expression resulted in increased seed tocopherol levels, is presented.  相似文献   

13.
Effects of ozone on wild type and transgenic tobacco   总被引:1,自引:0,他引:1  
Tocopherol cyclase (TC, encoded by gene VTE1) catalyzes the penultimate step of tocopherol synthesis. In this study we used wild type and transgenic tobacco plants overexpressing VTE1 from Arabidopsis to examine the role of tocopherol in ozone sensitivity. Wild type plants responded to an 4-h exposure to 300 nmol mol−1 ozone by severe leaf necrosis while the transgenic lines exhibited limited injury. Compared with the wild type, VTE1-overexpressing plants had lower increase in hydrogen peroxide, malondialdehyde contents and ion leakage, and lower decrease of net photosynthetic rate 48 h following the ozone exposure. Transgenic plants also better maintained the structural integrity of the photosynthetic apparatus.  相似文献   

14.
Tocopherols are essential micronutrients for humans and animals, with several beneficial effects in plants. Among cereals, only maize grains contain high concentrations of tocopherols. In this investigation we analyzed, during 2004 and 2005, by high-performance liquid chromatography (HPLC), a population of 233 recombinant inbred lines (RIL) which were derived from two diverse parents and had extremely variable tocopherol content and composition. A genetic map was constructed using 208 polymorphic molecular markers including gene-targeted markers based on six candidate genes of the tocopherol biosynthesis pathway (HPPD, VTE1, VTE3, VTE4, P3VTE5, and P4VTE5). Thirty-one quantitative trait loci (QTL) associated with quantitative variation of tocopherol content and composition were identified by composite interval mapping (CIM); these were located on sixteen genomic regions covering all the chromosomes except chromosome 4. Most (65%) QTL were co-located, suggesting that in some cases the same QTL predominantly affected the amounts of more than one tocopherol. Two candidate genes, HPPD and VTE4 showed co-localization with major QTL for tocopherol content and composition whereas only one interval (umc1075–umc1304) on chromosome eight exhibited a QTL for α, δ, γ, and total tocopherols with high LOD and PVE values. The candidate genes associated with tocopherol content and with composition, especially VTE4 and HPPD, could be precisely used for alteration of the tocopherol content and composition of maize grains by development of functional markers. Other identified major QTL especially those on chromosomes 8, 1, and 2 (near candidate gene VTE5) can also be used for improvement of maize grain quality by marker-assisted selection.  相似文献   

15.
Tocopherols are essential components of the human diet and are synthesized exclusively by photosynthetic organisms. These lipophilic antioxidants consist of a chromanol ring and a 15-carbon tail derived from homogentisate (HGA) and phytyl diphosphate, respectively. Condensation of HGA and phytyl diphosphate, the committed step in tocopherol biosynthesis, is catalyzed by HGA phytyltransferase (HPT). To investigate whether HPT activity is limiting for tocopherol synthesis in plants, the gene encoding Arabidopsis HPT, HPT1, was constitutively overexpressed in Arabidopsis. In leaves, HPT1 overexpression resulted in a 10-fold increase in HPT specific activity and a 4.4-fold increase in total tocopherol content relative to wild type. In seeds, HPT1 overexpression resulted in a 4-fold increase in HPT specific activity and a total seed tocopherol content that was 40% higher than wild type, primarily because of an increase in gamma-tocopherol content. This enlarged pool of gamma-tocopherol was almost entirely converted to alpha-tocopherol by crossing HPT1 overexpressing plants with lines constitutively overexpressing gamma-tocopherol methyltransferase. Seed of the resulting double overexpressing lines had a 12-fold increase in vitamin E activity relative to wild type. These results indicate that HPT activity is limiting in various Arabidopsis tissues and that total tocopherol levels and vitamin E activity can be elevated in leaves and seeds by combined overexpression of the HPT1 and gamma-tocopherol methyltransferase genes.  相似文献   

16.
Tocopherols are lipophilic antioxidants synthesized exclusively by photosynthetic organisms and collectively constitute vitamin E, an essential nutrient for both humans and animals. Tocopherol cyclase (TC) catalyzes the conversion of various phytyl quinol pathway intermediates to their corresponding tocopherols through the formation of the chromanol ring. Herein, the molecular and biochemical characterization of TCs from Arabidopsis (VTE1 [VITAMIN E 1]), Zea mays (SXD1 [Sucrose Export Deficient 1]) and Synechocystis sp. PCC6803 (slr1737) are described. Mutations in the VTE1, SXD1, or slr1737 genes resulted in both tocopherol deficiency and the accumulation of 2,3-dimethyl-6-phytyl-1,4-benzoquinone (DMPBQ), a TC substrate. Recombinant SXD1 and VTE1 proteins are able to convert DMPBQ to gamma-tocopherol in vitro. In addition, expression of maize SXD1 in a Synechocystis sp. PCC6803 slr1737 knockout mutant restored tocopherol synthesis, indicating that TC activity is evolutionarily conserved between plants and cyanobacteria. Sequence analysis identified a highly conserved 30-amino acid C-terminal domain in plant TCs that is absent from cyanobacterial orthologs. vte1-2 causes a truncation within this C-terminal domain, and the resulting mutant phenotype suggests that this domain is necessary for TC activity in plants. The defective export of Suc in sxd1 suggests that in addition to presumed antioxidant activities, tocopherols or tocopherol breakdown products also function as signal transduction molecules, or, alternatively, the DMPBQ that accumulates in sxd1 disrupts signaling required for efficient Suc export in maize.  相似文献   

17.
Engineering vitamin E content: from Arabidopsis mutant to soy oil   总被引:17,自引:0,他引:17       下载免费PDF全文
We report the identification and biotechnological utility of a plant gene encoding the tocopherol (vitamin E) biosynthetic enzyme 2-methyl-6-phytylbenzoquinol methyltransferase. This gene was identified by map-based cloning of the Arabidopsis mutation vitamin E pathway gene3-1 (vte3-1), which causes increased accumulation of delta-tocopherol and decreased gamma-tocopherol in the seed. Enzyme assays of recombinant protein supported the hypothesis that At-VTE3 encodes a 2-methyl-6-phytylbenzoquinol methyltransferase. Seed-specific expression of At-VTE3 in transgenic soybean reduced seed delta-tocopherol from 20 to 2%. These results confirm that At-VTE3 protein catalyzes the methylation of 2-methyl-6-phytylbenzoquinol in planta and show the utility of this gene in altering soybean tocopherol composition. When At-VTE3 was coexpressed with At-VTE4 (gamma-tocopherol methyltransferase) in soybean, the seed accumulated to >95% alpha-tocopherol, a dramatic change from the normal 10%, resulting in a greater than eightfold increase of alpha-tocopherol and an up to fivefold increase in seed vitamin E activity. These findings demonstrate the utility of a gene identified in Arabidopsis to alter the tocopherol composition of commercial seed oils, a result with both nutritional and food quality implications.  相似文献   

18.
19.
Homogentisate prenyltransferase (HPT) is an important enzyme involved in the α-tocopherol (vitamin E) biosynthetic pathway of all plant taxa. Tocopherol biosynthesis and chlorophyll degradation are related, but more information is needed to explain their relationship. In this study, a candidate gene for HPT from Clitoria ternatea (CtHPT) was isolated and identified via a phylogeny-based approach, and its hypothetical protein sequence was analyzed. Transient expression of CtHPT with Agrobacterium-mediated infiltration into tomato leaves was then performed and observed for the metabolic relationship between the α-tocopherol biosynthesis and chlorophyll degradation by gas chromatography–mass spectrometry. In silico analysis showed that CtHPT contained a chloroplast signal peptide and nine-transmembrane α-helixes. The results showed that, the content of α-tocopherol increased in transient expression of CtHPT, with the increased pool sizes of its biosynthetic intermediates: 2-methyl-6-phythylbenzoquinol and 2,3-dimethyl-5-phythylbenzoquinol, and the increased levels of phytol and various fatty acids. Moreover, the CtHPT transient expression was observed to cause chlorophyll deficiency in the tomato leaves with simultaneous increase of phytol and fatty acids, presumably the degradative products of chlorophyll and chloroplast membranes, respectively. It was concluded that the overexpression of CtHPT may enhance the metabolic flow of the α-tocopherol biosynthetic pathway, causing the degradation of chlorophylls, thereby increasing the supply of the precursor phytol for the α-tocopherol biosynthetic pathway.  相似文献   

20.
Phytol from chlorophyll degradation can be phosphorylated to phytyl-phosphate and phytyl-diphosphate, the substrate for tocopherol (vitamin E) synthesis. A candidate for the phytyl-phosphate kinase from Arabidopsis thaliana (At1g78620) was identified via a phylogeny-based approach. This gene was designated VITAMIN E DEFICIENT6 (VTE6) because the leaves of the Arabidopsis vte6 mutants are tocopherol deficient. The vte6 mutant plants are incapable of photoautotrophic growth. Phytol and phytyl-phosphate accumulate, and the phytyl-diphosphate content is strongly decreased in vte6 leaves. Phytol feeding and enzyme assays with Arabidopsis and recombinant Escherichia coli cells demonstrated that VTE6 has phytyl-P kinase activity. Overexpression of VTE6 resulted in increased phytyl-diphosphate and tocopherol contents in seeds, indicating that VTE6 encodes phytyl-phosphate kinase. The severe growth retardation of vte6 mutants was partially rescued by introducing the phytol kinase mutation vte5. Double mutant plants (vte5 vte6) are tocopherol deficient and contain more chlorophyll, but reduced amounts of phytol and phytyl-phosphate compared with vte6 mutants, suggesting that phytol or phytyl-phosphate are detrimental to plant growth. Therefore, VTE6 represents the missing phytyl-phosphate kinase, linking phytol release from chlorophyll with tocopherol synthesis. Moreover, tocopherol synthesis in leaves depends on phytol derived from chlorophyll, not on de novo synthesis of phytyl-diphosphate from geranylgeranyl-diphosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号