首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The folate compound which is a structural component of the Escherichia coli T-even bacteriophage baseplates, has been identified as the hexaglutamyl form of folic acid using a new chromatographic procedure (Baugh, C.M., Braverman, E. and Nair, M.G. (1974) Biochemistry 13, 4952–4957). It has also been found that the host cell contains a variety of polyglutamyl forms of folic acid. The major form is the triglutamate (about 50%) but small amounts of higher molecular weightsfolates including the octaglutamate (1.8%) have been identified. Upon infection with wild-type T4D bacteriophage there is a shift in the distribution of the folate compounds so that the folyl polyglutamyl compounds having the higher molecular weights are increased. Infection of E. coli with baseplate mutants of T4D containing an amber mutation in gene 28 resulted in the formation of significant amounts (over 7%) of folate compound(s) of molecular weight much higher than those observed either in uninfected cells or cells infected with wild-type T4D. It is suggested that the T4D gene 28 product functions to cleave glutamate residues from high molecular weight folyl polyglutamates to increase the availability of the folyl hexaglutamate for virus assembly.  相似文献   

2.
We investigated the role of the T4D bacteriophage gene 28 product in folate metabolism in infected Escherichia coli cells by using antifolate drugs and a newly devised assay for folyl polyglutamate cleavage activity. Preincubation of host E. coli cells with various sulfa drugs inhibited phage production by decreasing the burst size when the phage particles produced an altered gene 28 product (i.e., after infection under permissive conditions with T4D 28ts or T4D am28). In addition, we found that another folate analog, pyrimethamine, also inhibited T4D 28ts production and T4D 28am production, but this analog did not inhibit wild-type T4D production. A temperature-resistant revertant of T4D 28ts was not sensitive to either sulfa drugs or pyrimethamine. We developed an assay to measure the enzymatic cleavage of folyl polyglutamates. The high-molecular-weight folyl polyglutamate substrate was isolated from E. coli B cells infected with T4D am28 in the presence of labeled glutamic acid and was characterized as a folate compound containing 12 to 14 labeled glutamate residues. Extracts of uninfected bacteria liberated glutamate residues from this substrate with a pH optimum of 8.4 to 8.5. Extracts of bacteriophage T4D-infected E. coli B cells exhibited an additional new folyl polyglutamate cleavage activity with a pH optimum of about 6.4 to 6.5, which was clearly distinguished from the preexisting activity in the uninfected host cells. This new activity was induced in E. coli B cells by infection with wild-type T4D and T4D amber mutants 29, 26, 27, 51, and 10, but it was not induced under nonpermissive conditions by T4D am28 or by T4D 28ts. Mutations in gene 28 affected the properties of the induced cleavage enzyme. Wild-type T4D-induced cleavage activity was not inhibited by pyrimethamine, whereas the T4D 28ts activity induced at a permissive temperature was inhibited by this folate analog. Folyl polyglutamate cleavage activity characteristic of the activity induced in host cells by wild-type T4D or by T4D gene 28 mutants was also found in highly purified preparations of these phage ghost particles. The T4D-induced cleavage activity could be inhibited by antiserum prepared against highly purified phage baseplates. We concluded that T4D infection induced the formation of a new folyl polyglutamate cleavage enzyme and that this enzyme was coded for by T4D gene 28. Furthermore, since this gene product was a baseplate tail plug component which had both its antigenic sites and its catalytic sites exposed on the phage particle, it was apparent that this enzyme formed part of the distal surface of the phage baseplate central tail plug.  相似文献   

3.
The nature of pteroyl polyglutamates in uninfected and T4D bacteriophage-infected Escherichia coli B has been examined. (3)H-p-aminobenzoic acid has been used to label the folate compounds and gel permeation chromatography on glass beads to separate the folate compound by molecular size. It has been found that, although the major folate compound in uninfected bacteria is pteroyl triglutamate, E. coli B cells also contain folate compounds having as many as six glutamate residues. Infection with T4D stimulated the addition of glutamate residues to the lower-molecular-weight host pteroyl compounds, resulting in the conversion of the host compounds into the hexaglutamate form. This viral-induced conversion is chloramphenicol sensitive and appears to be due to a late phage gene product. The phage gene responsible for this conversion has not been identified. In cells infected with a T4D mutant defective in gene 28, there was an apparent production of the large pteroyl polyglutamates equivalent in size to pte(glu)(9-12). These high-molecular-weight forms were converted into pte(glu)(6) by incubation with bacterial extracts made after infection with T4D 28(+). Apparently, the product of T4D gene 28(+) is capable of specifically cleaving the high-molecular-weight polyglutamates to the form necessary for phage tail assembly.  相似文献   

4.
Three types of reagents were used to determine the structural role and location of the polyglutamate portion of the Escherichia coli T4D bacteriophage baseplate dihydropteroyl hexaglutamate. These reagents were examined for their effect in vitro on some of the final steps in phage baseplate morphogenesis. The reagents were (i) a series of oligopeptides composed solely of glutamic acid residues but with various chemical linkages and chain lengths; (ii) a homogeneous preparation of carboxypeptidase G1, an exopeptidase that hydrolyzes carboxyl-terminal glutamates (or aspartates) from simple oligopeptides, including the gamma-glutamyl bonds on folyl polyglutamates as well as the bond between the carboxyl group of the p-aminobenzoyl moiety and the amino group of the first glutamic acid residue of folic acid; and (iii) antisera prepared against a polyglutamate hapten. All three types of reagent markedly inhibited the attachment of the phage long tail fibers to the baseplate. Other steps in baseplate assembly such as the addition of T4D gene 11 or gene 12 products were not affected by any of these reagents. These results indicate that the polyglutamate portion of the folate is located near the attachment site on the bacteriophage baseplate for the long tail fibers.  相似文献   

5.
An assay for folylpolyglutamate synthetase activity in extracts of uninfected and bacteriophage T4D-infected Escherichia coli B has been developed. T4D infection induced the formation of a new synthetase raising the total synthetase activity three-fold. Extracts obtained after infection with T4 gene 51, 27 or 28 amber mutants showed increased synthetase activities while extracts obtained from cells infected with a T4D gene 29 amber mutant did not show any increase in synthetase activity. The phage-induced synthetase was found to copurify with the gene 29 product and a 100-fold purified synthetase of molecular size of 74,000 daltons has been obtained. The purified synthetase has a folate substrate specificity different from the host synthetase since it added glutamate residues to dihydrofolate as well as to the usual tetrahydrofolate substrate.  相似文献   

6.
A fragment of E. coli bacteriophage T4 genome including the four genes (genes 51, 27, 28, 29) coding for the central plug proteins was cloned into plasmid pMCC17. The genes present on this fragment were expressed in E. coli in the absence of phage infection producing hub proteins, which could be identified on polyacrylamide gels. By applying affinity chromatography protein 29 was purified from extracts of E. coli transformed with this hybrid plasmid. The isolated protein had the ability to complement T4 29 amber mutants. The molecular weight of the purified protein was estimated as 75,000 to 85,000 depending on the composition of SDS-polyacrylamide gel used for the assay.  相似文献   

7.
L M Kozloff  M Lute    L K Crosby 《Journal of virology》1975,16(6):1391-1400
Two different proteins with high affinities for the pteridine ring of folic acid have been used to determine the location of this portion of the folate molecule in the tail plate of T4D and other T-even bacteriophage particles. The two proteins used were (i) antibody specific for folic acid and (ii) the folate-binding protein from bovine milk. Both proteins were examined for their effect on various intact and incomplete phage particles. Intact T2H was weakly inactivated by the antiserum but not by the milk protein. No other intact T-even phage, including T4D, was affected by these two proteins. When incomplete T4D particles were exposed in an in vitro morphogenesis system, it was found that neither of the two proteins affected either the addition of the long tail fibers to fiberless particles or the addition of tail cores to tail plates. On the other hand, these two proteins specifically blocked the addition of T4D gene 11 product to the bottom of T4D baseplates. After the addition of the gene 11 protein, these two reagents did not inhibit the further addition of the gene 12 protein to the baseplate. It can be concluded that the phage folic acid is a tightly bound baseplate constituent and that the pteridine portion of the folic acid is largely covered by the gene 11 protein.  相似文献   

8.
The metabolism of Zn2+ in Escherichia coli infected with T4D bacteriophage and various T4D mutants has been examined. E. coli B infected with T4D, and all T4D mutants except T4D 12-, took up zinc ions at a rate identical to that of uninfected cells. E. coli B infected with T4D 12- had a markedly decreased rate of zinc uptake. The incorporation of zinc into proteins of infected cells has also been studied. T4D phage infection was found to shut off the synthesis of all bacterial host zinc metalloproteins while allowing the formation of viral-induced zinc proteins. The amount of zinc incorporated into viral proteins was affected by the absence of various T4D gene products. Cells infected with T4D 12-, and to a much less extent those infected with T4D 29-, incorporated the least amount of zinc into proteins, while cells infected with T4D 11- and T4D 51- incorporated increased amounts of zinc into the zinc metalloproteins. In cells infected with T4D 11- and 51- most of the zinc protein was found to be the product of gene 12. The marked effect of infection of E. coli with T4D 12- on both zinc uptake and zinc incorporation into protein supports the conclusion that T4D gene 12 protein is a zinc metalloprotein. Additionally, these observations have indicated that this metalloprotein interacts with host cell membrane.  相似文献   

9.
The T4D bacteriophage gene 28 product is a component of the central plug of the tail baseplate, as shown by the following two independent lines of evidence. (i) A highly sensitive method for radioactive labeling of only tail baseplate plug components was developed. These labeled plug components were incorporated by a complementation procedure into new phage particles and were analyzed by radioautography after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Three new structural proteins were found in addition to the three known tail plug proteins (i.e., gP29, gP27, and gP5). One of the three newly identified components had a molecular weight of 24,000 to 25,000 and appeared to be a product of T4D gene 28. (ii) Characterization of mutants of Escherichia coli bacteriophage T4D which produced altered gene 28 products also indicated that the gene 28 product was a viral tail component. T4D 28ts phage particles produced at the permissive temperature had altered heat labilities compared with parent T4D particles. We isolated a single-step temperature revertant of T4D 28ts and found that it produced phage particles which phenotypically resembled the original T4D particles. Since the properties of the phage baseplate components usually determine heat lability, these two changes in physical stability after two sequential single mutations in gene 28 supported the other evidence that the gene 28 product was a viral baseplate component. Also, compared with parent T4D particles, T4D 28ts and T4D 28am viral particles adsorbed at different rates to various types of host cells. In addition, T4D 28ts particles exhibited a different host range than parent T4D particles. This T4D mutant formed plaques with an extremely low efficiency on all E. coli K-12 strains tested. We found that although T4D 28ts particles adsorbed rapidly and irreversibly to the E. coli K-12 strains, as judged by gene rescue experiments, these particles were not able to inject their DNA into the E. coli K-12 strains. On the other hand, the T4D 28ts revertant had a plating efficiency on E. coli K-12 strains that was quite similar to the plating efficiency of the original parent, T4D. These properties of phage particles containing an altered gene 28 product supported the analytical finding that the gene 28 product is a structural component of the central plug of the T4D tail baseplate. They also indicated that this component plays a role in both host cell recognition and viral DNA injection.  相似文献   

10.
Polyclonal antibodies have been raised against endonuclease V from the bacteriophage T4. This rabbit serum, from which endemic E. coli antibodies have been removed, reacts with a single protein from T4-infected E. coli with a molecular weight of 16078 dalton. It was confirmed that these antibodies were directed against endonuclease V through the inhibition of the pyrimidine dimer specific nicking activity of endonuclease V in an in vitro nicking assay. A phage lambda gt11 T4 dC DNA library was screened for phage which produced a beta-galactosidase-endonuclease V fusion protein. Immunopositive clones were detected at a frequency of 0.25% of the plaques in the library. Restriction enzyme analyses of the DNA from 45 of these phage showed that all contained a 1.8 kb T4 EcoRI fragment which had been inserted within lambda gt11 in a single orientation. Western analysis of proteins which were produced from an induction of lysogens made from these phage reveals a single fusion protein band with a molecular weight slightly larger than native beta-galactosidase.  相似文献   

11.
Infection of a variety of E.coli strains with bacteriophage T4 leads to about a 25,000 dalton increase in the apparent molecular weight of RNase D based on gel filtration on Ultrogel AcA44. No alteration occurs when infection is carried out in the presence of chloramphenicol. The change in RNase D is substantially completed by 7.5 min of infection. Chromatography of the altered RNase D on the adsorbant, Affi-gel Blue, restores the enzyme to its original molecular weight of 40,000, indicating that the modification is reversible. Mixing an extract from infected cells with one from uninfected cells converts a portion of the uninfected cell enzyme to the higher molecular weight form. No conversion takes place if the infected cell extract is first treated with phenol to inactivate proteins. Preliminary analysis indicates that the factor in infected cell extracts responsible for the conversion is a heat-labile, relatively low-molecular weight protein, and that RNase D is modified by association with this phage-specific component. The potential role of RNase D in the 3′ processing of bacteriophage T4 tRNA precursors, and the involvement of a phage gene product in this process, are discussed.  相似文献   

12.
An enzyme which specifically cleaves very-fast-sedimenting DNA of bacteriophage T4 is synthesized after infection of T4, and its synthesis is controlled by gene 49 [1,2]. This enzyme has been proved to be a DNase [2]. We have purified this DNase 3000-fold from extracts of E. coli infected with T4. The purified preparation was practically free from other DNases, and the DNase activity was not detectable in cells infected with a mutant defective in gene 49. The enzyme activity from cells infected with a temperature-sensitive mutant of gene 49 was also temperature-sensitive, suggesting strongly that gene 49 is a structural gene of the DNase. The molecular weight of the wild-type enzyme was estimated to be 50 x 10(3) by gel filtration chromatography. The purified DNase did not cleave native and denatured DNAs of T3 and T4, but cleaved renatured T3 DNA with enzymatically fragmented T3 DNA, indicating that gaps in the DNA duplex are structures susceptible to the DNase. Cleavage of the hybridized T3 DNA occurred when the fragmented DNA was phosphorylated at either the 3' or 5'-strand termini.  相似文献   

13.
Characterization of a bacteriophage T4 mutant lacking DNA-dependent ATPase.   总被引:5,自引:1,他引:4  
A DNA-dependent ATPase has previously been purified from bacteriophage T4-infected Escherichia coli. A mutant phage strain lacking this enzyme has been isolated and characterized. Although the mutant strain produced no detectable DNA-dependent ATPase, growth properties were not affected. Burst sizes were similar for the mutant phage and T4D in polA1, recB, recC, uvrA, uvrB, uvrC, and various DNA-negative E. coli. UV sensitivity and genetic recombination were normal in a variety of E. coli hosts. Mapping data indicate that the genetic locus controlling the mutant occurs near gene 56. The nonessential nature of this gene is discussed.  相似文献   

14.
Escherichia coli has been used as an indicator of the fecal contamination of water and food, identifying potential health hazards. In this study, an E. coli-specific bacteriophage, T4, was used to detect E. coli bacteria. The T4 phage small outer capsid (SOC) protein was used to present green fluorescent protein (GFP), an easily detectable marker protein, on the phage capsid. To inactivate phage lytic activity, we used the T4e(-) phage, which does not produce the lysozyme responsible for host cell lysis. Infection of E. coli K12 cells with the GFP-labeled T4e(-) phage (T4e(-)/GFP) enabled the visualization and distinction of E. coli K12 cells from T4 phage-insensitive cells, Pseudomonas aeruginosa. Prolonged incubation of E. coli K12 cells with the T4e(-)/GFP phage did not lead to cell lysis. Propagation of T4e(-)/GFP in host cells increased the intensity of green fluorescence, making the distinction of E. coli cells from other cells simple and effective. This method enables the rapid, conclusive quantitation of E. coli cells within an hour.  相似文献   

15.
Plasmid pBR322 replication is inhibited after bacteriophage T4 infection. If no T4 DNA had been cloned into this plasmid vector, the kinetics of inhibition are similar to those observed for the inhibition of Escherichia coli chromosomal DNA. However, if T4 DNA has been cloned into pBR322, plasmid DNA synthesis is initially inhibited but then resumes approximately at the time that phage DNA replication begins. The T4 insert-dependent synthesis of pBR322 DNA is not observed if the infecting phage are deleted for the T4 DNA cloned in the plasmid. Thus, this T4 homology-dependent synthesis of plasmid DNA probably reflects recombination between plasmids and infecting phage genomes. However, this recombination-dependent synthesis of pBR322 DNA does not require the T4 gene 46 product, which is essential for T4 generalized recombination. The effect of T4 infection on the degradation of plasmid DNA is also examined. Plasmid DNA degradation, like E. coli chromosomal DNA degradation, occurs in wild-type and denB mutant infections. However, neither plasmid or chromosomal degradation can be detected in denA mutant infections by the method of DNA--DNA hybridization on nitrocellulose filters.  相似文献   

16.
C Kao  E Gumbs    L Snyder 《Journal of bacteriology》1987,169(3):1232-1238
Escherichia coli lit mutations inhibit gene expression late in infection by bacteriophage T4. We cloned the lit gene from wild-type E. coli and three independent lit mutants. We present evidence that lit mutations [renamed lit(Con) mutations] cause overproduction of the lit gene product and that overproduction of this product causes the inhibition of gene expression. We also present evidence that the lit gene product is nonessential for E. coli growth, although the gene is common to most E. coli K-12 strains.  相似文献   

17.
M Ishida  Y Kanamori  N Hori  T Inaoka  E Ohtsuka 《Biochemistry》1990,29(16):3817-3821
Genes encoding mutants of the thymine photodimer repair enzyme from bacteriophage T4 (T4 endonuclease V) having an amino acid substitution (T127M, W128A, W128S, Y129A, K130L, Y131A, Y132A) were constructed by use of a previously obtained synthetic gene and expressed in Escherichia coli under the control of the E. coli tryptophan promoter. An in vitro assay of partially fractionated mutant proteins for glycosylase activity was performed with chemically synthesized substrates containing a thymine photodimer. T127M and K130L showed almost the same activity as the wild-type protein. Although W128S, Y131A, and Y132A were slightly active, W128A and Y129A lost activity. The results indicated that the aromatic amino acids around position 130 may be important for the glycosylase activity. Mutant T127M was purified, and the Km value was found to be of the same order as that of the wild type (10(-8) M). In vivo activities for all mutants were characterized with UV-sensitive E. coli. The results showed that substitution of Thr-127 with Met or Lys-130 with Leu did not have an effect on the survival of the bacteria but substitution of aromatic amino acids (128-132) had various effects on survival.  相似文献   

18.
Various folate coenzymes and their polyglutamyl derivatives involved in 1-carbon metabolism are modulated as a result of altered physiological states and also vary with respect to growth conditions. We studied the metabolic changes in folic acid and their conjugated polyglutamyl derivatives in Lactobacillus casei cells grown in the presence of D20. A 40% decrease in methyltetrahydrofolyl polyglutamate derivatives was observed in the cells grown in media prepared with D20-depleted water (D20 content, 8-10 ppm). Chromatographic analysis of folates showed significant alterations in the formyl- and methyltetrahydrofolate derivatives and their polyglutamylation profiles. Higher amounts of oxidized folates were also present in the cells grown in D20-depleted conditions. No significant changes were observed in folates and their polyglutamate derivatives when the cells were grown in the presence of 300, 450 and 600 ppm D20. The altered folate homoestasis is attributed to changes in the metabolic adaptation of cells to D20-depleted environment.  相似文献   

19.
20.
A method was devised for identifying nonlethal mutants of T4 bacteriophage which lack the capacity to induce degradation of the deoxyribonucleic acid (DNA) of their host, Escherichia coli. If a culture is infected in a medium containing hydroxyurea (HU), a compound that blocks de novo deoxyribonucleotide biosynthesis by interacting with ribonucleotide reductase, mutant phage that cannot establish the alternate pathway of deoxyribonucleotide production from bacterial DNA will fail to produce progeny. The progeny of 100 phages that survived heavy mutagenesis with hydroxylamine were tested for their ability to multiply in the presence of HU. Four of the cultures lacked this capacity. Cells infected with one of these mutants, designated T4nd28, accumulated double-stranded fragments of host DNA with a molecular weight of approximately 2 x 10(8) daltons. This mutant failed to induce T4 endonuclease II, an enzyme known to produce single-strand breaks in double-stranded cytosine-containing DNA. The properties of nd28 give strong support to an earlier suggestion that T4 endonuclease II participates in host DNA degradation. The nd28 mutation mapped between T4 genes 32 and 63 and was very close to the latter gene. It is, thus, in the region of the T4 map that is occupied by genes for a number of other enzymes, including deoxycytidylate deaminase, thymidylate synthetase, dihydrofolate reductase, and ribonucleotide reductase, that are nonessential to phage production in rich media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号