首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin-6 increases in skeletal muscle during exercise, and evidence points to Ca2+ as an initiator of IL-6 production. However, the signalling pathway whereby this occurs is unknown. One candidate for Ca2+ -mediated IL-6 induction is calcineurin, an activator of NF-AT. Here we investigated whether skeletal myocytes produce IL-6 in a Ca2+/calcineurin-dependent manner, and whether TNF-alpha, an inducer of IL-6, is affected by these stimuli. Human skeletal muscle cell cultures were stimulated with ionomycin time-and dose-dependently to elevate intracellular Ca2+ levels, with or without addition of cyclosporin A (CSA); a calcineurin inhibitor. mRNA was extracted from myocytes and analysed for IL-6 and TNF-alpha gene expression. IL-6 mRNA increased time- and dose-dependently with ionomycin stimulation, an effect that was blunted by approximately 75% in the presence of CSA. In contrast, TNF-alpha gene expression was decreased by approximately 70% in response to ionomycin treatment, but increased in response to addition of CSA. These data demonstrate that IL-6 and TNF-alpha are regulated differentially in skeletal muscle cells in response to a Ca2+ stimulus. Blocking the calcineurin pathway resulted in inhibition of the IL-6 response to ionomycin, whereas TNF-alpha increased by addition of CSA, further indicating a differential regulation of IL-6 and TNF-alpha in human skeletal myocytes.  相似文献   

2.
Malaria, blood-borne filarial worms and intestinal parasites are all endemic in Gabon. This geographical co-distribution leads to polyparasitism and, consequently, the possibility of immune-mediated interactions among different parasite species. Intestinal protozoa and helminths could modulate antimalarial immunity, for example, thereby potentially increasing or reducing susceptibility to malaria. The aim of the study was to compare the cytokine levels and cytokine ratios according to parasitic profiles of the population to determine the potential role of co-endemic parasites in the malaria susceptibility of populations. Blood and stool samples were collected during cross-sectional surveys in five provinces of Gabon. Parasitological diagnosis was performed to detect plasmodial parasites, Loa loa, Mansonella perstans, intestinal helminths (STHs) and protozoan parasites. Nested PCR was used to detect submicroscopic plasmodial infection in individuals with negative blood smears. A cytometric bead array was used to quantify interleukin (IL)-6, IL-10 and tumour necrosis factor (TNF)-α in the plasma of subjects with different parasitological profiles. Median IL-6 and IL-10 levels and the median IL-10/TNF-α ratio were all significantly higher among individuals with Plasmodium (P.) falciparum infection than among other participants (p<0.0001). The median TNF-α level and IL-10/IL-6 ratio were higher in subjects with STHs (p = 0.09) and P. falciparum-intestinal protozoa co-infection (p = 0.04), respectively. IL-6 (r = -0.37; P<0.01) and IL-10 (r = -0.37; P<0.01) levels and the IL-10/TNF-α ratio (r = -0.36; P<0.01) correlated negatively with age. Among children under five years old, the IL-10/TNF-α and IL-10/IL-6 ratios were higher in those with intestinal protozoan infections than in uninfected children. The IL-10/TNF-α ratio was also higher in children aged 5–15 years and in adults harbouring blood-borne filariae than in their control counterparts, whereas the IL-10/IL-6 ratio was lower in those aged 5–15 years with filariae and intestinal parasites but higher in adults with intestinal parasitic infections. Asymptomatic malaria is associated with a strong polarization towards a regulatory immune response, presenting high circulating levels of IL-10. P. falciparum/intestinal protozoa co-infections were associated with an enhanced IL-10 response. Immunity against malaria could differ according to age and carriage of other parasites. Helminths and intestinal protozoa can play a role in the high susceptibility to malaria currently observed in some areas of Gabon, but further investigations are necessary.  相似文献   

3.
In order to study the relationship between insulin like growth factor-II (IGF-II) and interleukin-8 (IL-8) that are upregulated in psoriasis, we monitored IL-8 expression in IGF-II-treated human keratinocytes and explored the signaling pathways of IL-8 expression by IGF-II. IGF-II increased the IL-8 mRNA and protein levels in human keratinocytes. The upregulation of IL-8 expression by IGF-II was reduced by pretreatment with inhibitors of tyrosine kinase, Src, PI3-kinase, and ERK, but not by p38. Furthermore, IGF-II remarkably increased the DNA binding activities of NF-kappaB and AP-1, and the IL-8 promoter activity. However, cotransfection with IkappaB mutant blocked the IGF-II-induced IL-8 promoter activity. In addition, cotransfection with dominant negative MEK1 mutant, but not with dominant negative p38 mutant, blocked the IGF-II-induced IL-8 promoter activity. These results suggest that IGF-II is involved in the pathogenesis of psoriasis by inducing IL-8 gene expression through the tyrosine kinase-Src-ERK1/2-AP-1 pathway, and the PI3-kinase and NF-kappaB pathway.  相似文献   

4.
Growth factor receptor tyrosine kinase regulation of the sequential phosphorylation reactions leading to mitogen-activated protein (MAP) kinase activation in PC12 cells has been investigated. In response to epidermal growth factor, nerve growth factor, and platelet-derived growth factor, B-Raf and Raf-1 are activated, phosphorylate recombinant kinase-inactive MEK-1, and activate wild-type MEK-1. MEK-1 is the dual-specificity protein kinase that selectively phosphorylates MAP kinase on tyrosine and threonine, resulting in MAP kinase activation. B-Raf and Raf-1 are growth factor-regulated Raf family members which regulate MEK-1 and MAP kinase activity in PC12 cells. Protein kinase A activation in response to elevated cyclic AMP (cAMP) levels inhibited B-Raf and Raf-1 stimulation in response to growth factors. Ras.GTP loading in response to epidermal growth factor, nerve growth factor, or platelet-derived growth factor was unaffected by protein kinase A activation. Even though elevated cAMP levels inhibited Raf activation, the growth factor activation of MEK-1 and MAP kinase was unaffected in PC12 cells. The results demonstrate that tyrosine kinase receptor activation of MEK-1 and MAP kinase in PC12 cells is regulated by B-Raf and Raf-1, whose activation is inhibited by protein kinase A, and MEK activators, whose activation is independent of cAMP regulation.  相似文献   

5.
IL-10, a cytokine first identified as a product of cloned Th2 lymphocytes, is also produced by monocytes/macrophages. By its ability to inhibit cytokine synthesis and the expression of surface antigens, IL-10 is able to temper inflammation. In contrast, TNF-alpha plays a key role in acute and chronic inflammation and has been implicated in several forms of lung injury. The objective of this study was to investigate whether activators or inhibitors of LPS-activated signalling pathways might be able to dissociate TNF-alpha from IL-10 secretion in alveolar macrophages (AM). The results show that PMA activates expression of TNF-alpha without inducing IL-10 expression. We further demonstrate that LPS-induced TNF-alpha secretion is independent of PKC activation and can be increased by inhibitors of the serine/threonine phosphatases PP1 and PP2A. In contrast, LPS-mediated IL-10 secretion is down-regulated by PMA and inhibitors of PP1 and PP2A. Addition of PKC inhibitors reverses the PMA-mediated down-regulation of LPS-induced IL-10 secretion, indicating that PKC, once activated in vivo, might play a prominent role in controlling the secretion of IL-10 by AM. This study provides evidence that the PKC activator PMA and the phosphatase inhibitor calyculin A are able to dissociate TNF-alpha from IL-10 secretion by AM. Our data further indicate that LPS-mediated activation of certain signalling molecules has different consequences on the secretion of TNF-alpha or IL-10 by AM, an observation which may be important for the modulation of immune and inflammatory processes.  相似文献   

6.
7.
8.
Cyclic AMP-dependent protein kinase, which plays a major role in metabolic and genetic regulation, consists of two classes of isozymes denoted as type I and type II. The type II isozyme, moreover, consists of two subclasses denoted as neural and non-neural based upon immunochemical differences between the enzyme isolated from bovine brain and heart, respectively. Whereas the catalytic (C) subunits of these three isozymes are quite similar, all three isozymes differ with respect to their regulatory (R) subunits. In the present report, we have compared the sensitivities to cyclic AMP of the type I and type II isozymes in several tissues from a single species (rat). The sensitivities of the three isozymes to cyclic AMP were type I much greater than non-neural type II greater than neural type II. We suggest that the differences in sensitivity to cyclic AMP of isozymes present in the same cell provides the cell with a dynamic range of responses to the widely varying alterations in cellular cyclic AMP levels produced by regulatory first messengers.  相似文献   

9.
10.
The recent discovery of Epac, a novel cAMP receptor protein, opens up a new dimension in studying cAMP-mediated cell signaling. It is conceivable that many of the cAMP functions previously attributed to cAMP-dependent protein kinase (PKA) are in fact also Epac-dependent. The finding of an additional intracellular cAMP receptor provides an opportunity to further dissect the divergent roles that cAMP exerts in different cell types. In this study, we probed cross-talk between cAMP signaling and the phosphatidylinositol 3-kinase/PKB pathways. Specifically, we examined the modulatory effects of cAMP on PKB activity by monitoring the specific roles that Epac and PKA play individually in regulating PKB activity. Our study suggests a complex regulatory scheme in which Epac and PKA mediate the opposing effects of cAMP on PKB regulation. Activation of Epac leads to a phosphatidylinositol 3-kinase-dependent PKB activation, while stimulation of PKA inhibits PKB activity. Furthermore, activation of PKB by Epac requires the proper subcellular targeting of Epac. The opposing effects of Epac and PKA on PKB activation provide a potential mechanism for the cell type-specific differential effects of cAMP. It is proposed that the net outcome of cAMP signaling is dependent upon the dynamic abundance and distribution of intracellular Epac and PKA.  相似文献   

11.
Of the 30 carbon starvation proteins whose induction has been previously shown to be important for starvation survival of Escherichia coli, two-thirds were not induced in cya or crp deletion mutants of E. coli at the onset of carbon starvation. The rest were induced, although not necessarily with the same temporal pattern as exhibited in the wild type. The starvation proteins that were homologous to previously identified heat shock proteins belonged to the latter class and were hyperinduced in delta cya or delta crp mutants during starvation. Most of the cyclic AMP-dependent proteins were synthesized in the delta cya mutant if exogenous cyclic AMP was added at the onset of starvation. Furthermore, beta-galactosidase induction of several carbon starvation response gene fusions occurred only in a cya+ genetic background. Thus, two-thirds of the carbon starvation proteins of E. coli require cyclic AMP and its receptor protein for induction; the rest do not. The former class evidently has no role in starvation survival, since delta cya or delta crp mutants of either E. coli or Salmonella typhimurium survived starvation as well as their wild-type parents did. The latter class, therefore, is likely to have a direct role in starvation survival. This possibility is strengthened by the finding that nearly all of the cya- and crp-independent proteins were also induced during nitrogen starvation and, as shown previously, during phosphate starvation. Proteins whose synthesis is independent of cya- and crp control are referred to as Pex (postexponential).  相似文献   

12.
In Saccharomyces cerevisiae, the Ras/cyclic AMP (cAMP)/protein kinase A (PKA) pathway is a nutrient-sensitive signaling cascade that regulates vegetative growth, carbohydrate metabolism, and entry into meiosis. How this pathway controls later steps of meiotic development is largely unknown. Here, we have analyzed the role of the Ras/cAMP/PKA pathway in spore formation by the meiosis-specific manipulation of Ras and PKA or by the disturbance of cAMP production. We found that the regulation of spore formation by acetate takes place after commitment to meiosis and depends on PKA and appropriate A kinase activation by Ras/Cyr1 adenylyl cyclase but not by activation through the Gpa2/Gpr1 branch. We further discovered that spore formation is regulated by carbon dioxide/bicarbonate, and an analysis of mutants defective in acetate transport (ady2Δ) or carbonic anhydrase (nce103Δ) provided evidence that these metabolites are involved in connecting the nutritional state of the meiotic cell to spore number control. Finally, we observed that the potential PKA target Ady1 is required for the proper localization of the meiotic plaque proteins Mpc70 and Spo74 at spindle pole bodies and for the ability of these proteins to initiate spore formation. Overall, our investigation suggests that the Ras/cAMP/PKA pathway plays a crucial role in the regulation of spore formation by acetate and indicates that the control of meiotic development by this signaling cascade takes places at several steps and is more complex than previously anticipated.  相似文献   

13.
Originally identified as an antagonist of Ras action, Rap1 exhibits many Ras-independent effects, including a role in signaling pathways initiated by cyclic AMP (cAMP). Since cAMP is a critical mediator of the effects of thyrotropin (TSH) on cell proliferation and differentiation, we examined the regulation of Rap1 by TSH in a continuous line of rat thyroid-like cells. Both cAMP and protein kinase A (PKA) contribute to the regulation of Rap1 activity and signaling by TSH. TSH activates Rap1 through a cAMP-mediated and PKA-independent mechanism. TSH phosphorylates Rap1 in a PKA-dependent manner. Interference with PKA activity blocked phosphorylation but not the activation of Rap1. Rather, PKA inhibitors prolonged Rap1 activation, as did expression of a Rap1A mutant lacking a PKA phosphorylation site. These results indicate that PKA elicits negative feedback regulation on cAMP-stimulated Rap1 activity in some cells. The dual regulation of Rap1 by cAMP and PKA extends to downstream effectors. The ability of TSH to stimulate Akt phosphorylation was markedly enhanced by the expression of activated Rap1A and was repressed in cells expressing a putative dominant-negative Rap1A mutant. Although the expression of activated Rap1A was sufficient to stimulate wortmannin-sensitive Akt phosphorylation, TSH further increased Akt phosphorylation in a phosphatidylinositol 3-kinase- and PKA-dependent manner. The ability of TSH to phosphorylate Akt was impaired in cells expressing a Rap1A mutant that could be activated but not phosphorylated. These findings indicate that dual signals, Rap1 activation and phosphorylation, contribute to TSH-stimulated Akt phosphorylation. Rap1 plays an essential role in cAMP-regulated differentiation. TSH effects on thyroid-specific gene expression, but not its effects on proliferation, were markedly enhanced in cells expressing activated Rap1A and repressed in cells expressing a dominant-negative Rap1A mutant. These findings reveal complex regulation of Rap1 by cAMP including PKA-independent activation and PKA-dependent negative feedback regulation. Both signals appear to be required for TSH signaling to Akt.  相似文献   

14.
A cyclic AMP dependent protein kinase in Dictyostelium discoideum   总被引:4,自引:0,他引:4  
A cyclic AMP-dependent protein kinase was found to appear during the time course of development of Dictyosteliumdiscoideum. No cyclic AMP dependency was observed at any stage of development in crude 110,000 X G soluble extracts. After partial purification, however, extracts from post-aggregation stages contained enzyme that was activated up to 6-fold by cyclic AMP, whereas protein kinase from earlier stages was not affected by cyclic AMP. Likewise, cyclic AMP binding activity increased from the aggregation to the slug stage of development. Approximately one-half of the total cyclic AMP binding activity co-purified with the cyclic AMP dependent protein kinase. The enzyme from Dictyostelium showed similarities to mammalian protein kinases with respect to its kinetic properties but differed in its behavior on ion-exchange chromatography.  相似文献   

15.
16.
We compared the effects of overexpressing a tightly regulated anti-inflammatory cytokine, interleukin 10 (IL-10), and the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) on sulfur mustard induced cytotoxicity in human epidermal keratinocytes. Both cytokines were overexpressed when compared with the cells transfected with the empty vector as determined by quantitative ELISA. Cells overexpressing interleukin 10 suppressed the pro-inflammatory cytokines interleukin 8 and interleukin 6 following exposure to 50-300 microM sulfur mustard. These cells exhibited delayed onset of sulfur mustard induced cell death. On the other hand, cells overexpressing tumor necrosis factor alpha induced a sustained elevation in both interleukin 6 and 8 expression following exposure to 50-300 microM sulfur mustard. These cells were sensitized to the effects of sulfur mustard that resulted in an increased sulfur mustard induced cell death. Normal human epidermal keratinocytes treated with sulfur mustard exhibited elevated levels of tumor necrosis factor alpha expression and increased activity of nuclear factor kappa B. Gene array data indicated that cells overexpressing interleukin 10 induced several genes that are involved in growth promotion and cell-fate determination. We, therefore, identify IL-10 and TNF-alpha signal transduction pathways and their components as possible candidates for early therapeutic intervention against sulfur mustard induced cell injury.  相似文献   

17.
We have previously demonstrated that treatment of the human keratinocyte cell line NCTC 2544 with a UVB dose equivalent to 1h exposure (100 mJ/cm2) results in a significant increase of IL-8 production. In this study, we use specific inhibitors to investigate the role of both PKA- and PKC-mediated pathways in the regulation of UVB-induced IL-8 expression in NCTC 2544 cell line. We show here that the treatment of irradiated human keratinocytes with PKA inhibitors [H89 and PKA inhibitor (PKAi)] induced a significant decrease of IL-8 production at both mRNA and protein levels. However, the regulation of IL-8 production seems to be mediated via a cAMP-independent PKA pathway, since drugs known to enhance cAMP concentrations [PGE2, cholera toxin and dibutyryl cAMP] decrease IL-8 production in irradiated cells by down-regulating NF-kappa B activation in response to UVB radiation. Using PMA (a potent pharmacological activator of PKC) and calphostin C (a specific PKC inhibitor), we demonstrated an up-regulation of IL-8 in NCTC 2544 cells and a down-regulation of the cytokine in UVB-irradiated cells, respectively. We also observed that in our experimental conditions, staurosporine, an inhibitor of both PKC and PMA-stimulated cellular responses, does not involve PKC inhibition in irradiated cells and significantly decreased NF-kappa B activity in response to UVB radiation. Finally, we concluded that a cAMP-independent PKA activation and a PKC-associated pathway are probably involved in the regulation of UVB-induced IL-8 synthesis in human keratinocytes.  相似文献   

18.
Ultraviolet (UV) B can lead to inflammatory responses such as sunburn, which involves the production of various inflammatory cytokines and chemokines, and the induction of cell death. Keratinocytes in the skin has one of the highest risks of exposure to UV. However, the detailed mechanisms underlying UVB irradiation-induced inflammation and cell death are not well known. Thus, we investigated the effect of UVB irradiation on the production of various cytokines/chemokines and the induction of cell death in UVB-irradiated human keratinocytes (HaCaT cells). We evaluated 11 cytokines/chemokines in cell culture supernatants from HaCaT cells exposed to 0-400 mJ/cm(2) UVB irradiation. UVB at a dose 400 mJ/cm(2) induced the release of various cytokines; interleukin (IL)-1beta, IL-6, IL-8, interferon (IFN)-gamma, granulocyte-colony stimulating factor (G-CSF), macrophage inflammatory protein (MIP)-1beta, and tumor necrosis factor (TNF)-alpha. These results suggest that UVB irradiation-induced the release of several cytokines/chemokines and led to cell death in human keratinocytes. UV exposure may be associated with multiple physiological events in the human skin.  相似文献   

19.
Platelets are the primary players in both thrombosis and hemostasis. Cyclic AMP (cAMP) and cAMP-dependent protein kinase (PKA) are important signaling molecules in the regulation of platelet function, such as adhesion, aggregation, and secretion. Elevation of intracellular cAMP, which induces the activation of PKA, results in the inhibition of platelet function. Thus, tight control of the intracellular cAMP/PKA signaling pathway has great implications for platelet-dependent hemostasis and effective cardiovascular therapy. In this review, we summarize the PKA substrates and their contributions to platelet function, especially the advancing understanding of the cAMP/PKA-dependent signaling pathway in platelet physiology. In addition, we suggest the possibility that cAMP/PKA is involved in the platelet procoagulant process and receptor ectodomain shedding.  相似文献   

20.
Platelets are the primary players in both thrombosis and hemostasis.Cyclic AMP (cAMP) and cAMP-dependent protein kinase (PKA) are important signaling molecules in the regulation of platelet function,such as adhesion,aggregation,and secretion.Elevation of intracellular cAMP,which induces the activation of PKA,results in the inhibition of platelet function.Thus,tight control of the intracellular cAMP/PKA signaling pathway has great implications for platelet-dependent hemostasis and effective cardiovascular therapy.In this review,we summarize the PKA substrates and their contributions to platelet function,especially the advancing understanding of the cAMP/PKA-dependent signaling pathway in platelet physiology.In addition,we suggest the possibility that cAMP/PKA is involved in the platelet procoagulant process and receptor ectodomain shedding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号